现代光学基础 光的偏振习题
《光的偏振》同步练习2
13.6光的偏振1.由下列哪些现象可以说明光是横波()A.光的干涉和衍射现象B.光的折射现象C.光的全反射现象D.光的偏振现象2.对于自然光和偏振光,以下认识正确的是()A.从太阳、蜡烛等普通光源直接发出的光是自然光B.自然光通过一个偏振片后成为偏振光,偏振光再通过一个偏振片后又还原为自然光C.电灯光透过偏振光,偏振片旋转时看到透射光的亮度无变化,说明透射光不是偏振光D.自然光只有在通过偏振片后才能成为偏振光3.如图19-1所示,让自然光照射到P、Q两振片上,当P、Q两偏振片的透振方向夹角为以下哪些度数,透射光的强度最弱()图19-1A.0°B.30°C.60°D.90°4.在杨氏干涉实验装置的双缝后面各放置一偏振片,若两个偏振片的透振方向相互垂直,则()A.光屏上仍有干涉条纹,但亮条纹的亮度减小B.光屏上仍有干涉条纹,但亮条纹的亮度增大C.干涉条纹消失,光屏上一片黑暗D.干涉条纹消失,但仍有光射到光屏上5.如图19-2所示,P是一偏振片,P的偏振方向(用带有箭头的实线表示)为竖直方向。
下列四种入射光束中,哪几种照射P时能在P的另一侧观察到透射光()图19-2A.太阳光B.沿竖直方向振动的光C.沿水平方向振动的光D.沿与竖直方向成45°角振动的光6.两个偏振片紧靠在一起,将它们放在一盏灯的前面以致没有光通过。
如果将其中的一片旋转180°,在旋转过程中,将会产生下述的哪一种现象() A.透过偏振片的光强先增强,然后又减少到零B.透过的光强先增强,然后减少到非零的最小值C.透过的光强在整个过程中都增强D.透过的光强先增强,再减弱,然后又增强7.在如图19-3所示中,A、B为两偏振片,一束自然光沿OO′方向射向A,此时在光屏C上,透射光的强度最大,则下列说法中正确的是()图19-3A.此时A,B的偏振方向平行B.只有将B绕OO′轴顺时针旋转90°,屏上透射光的强度最弱,几乎为零C.不论将A或B绕OO′轴旋转90°时,屏上透射光的强度最弱,几乎为零D.将A沿顺时针方向旋转180°时,屏上透射光的强度最弱,几乎为零8.在某些特定环境下照像时,常在照相机镜头前装一片偏振滤光片使景象清晰,关于其原理下列说法正确的是()A.增强透射光的强度B.减弱所拍摄景物周围反射光的强度C.减弱透射光的强度D.增强所拍摄景物周围反射光的强度9.光的偏振现象说明光是横波,下列现象中不能反映光的偏振特性的是()A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B.一束自然光入射到两种介质的分界面上,当反射光与折射光线之间的夹角恰好是90°时,反射光是偏振光C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振光片可以使照片更清晰D.通过手指间的缝隙观察荧光灯,可以看到彩色条纹10.夜晚,汽车前灯发出的强光将迎面驶来的汽车司机照得睁不开眼,严重影响行车安全。
第4节 光的偏振
光的偏振测试题1、(考查自然光)下列说法正确的是( )A .自然光就是白光B .自然光一定是复色光C .单色光不是自然光 D.自然光可以是单色光,也可是复色光2、(考查对偏振现象理解)能说明光波是横波的现象是A.光的干涉现象B.光的衍射现象C.光的偏振现象D.光的反射现象3、(考查偏振光的概念)有关偏振和偏振光的下列说法中正确的有 ( )A .只有电磁波才能发生偏振,机械波不能发生偏振B .只有横波能发生偏振,纵波不能发生偏振C .自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光D .除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光4、(考查偏振光的检验)两个偏振片紧靠在一起将它们放在一盏灯的前面以致没有光通过.如果将其中的一片旋转180度,在旋转过程中,将会产生下述的哪一种现象A .透过偏振片的光强先增强,然后又减少到零B .透过偏振片的光强光增强,然后减少到非零的最小值C .透过偏振片的光强在整个过程中都增强D .透过偏振片的光强先增强,再减弱,然后又增强5、(考查光的偏振现象)如图所示,P 是一偏振片,P 的透振方向竖直,如图中箭头所示,下列四种入射光束中,能在P 的另一侧观察到透射光的是 ( )A .太阳光B .沿竖直方向振动的偏振光C .沿水平方向振动的偏振光D .沿与竖直方向成45º角的偏振光6、(考查偏振现象的应用)夏天柏油路面上的反射光是偏振光,其振动方向与路面平行,人佩戴的太阳镜的镜片是由偏振玻璃制成的,镜片的透振方向应是( )A .竖直的B .水平的C .斜向左上45°D .斜向右上45°7、(考查偏振光的应用)下列现象能反映光的偏振特性的是 ( )A.一束自然光相继通过两个偏振片,以光束为转轴旋转其中一个偏振片,透射光的强度发图4-4-3生变化B .日落时分,拍摄水面下的景物,在照相机镜头前装上偏振光片可以使景象更清晰C .戴上由偏振片组成的“眼镜”观看立体电影D .通过手指间的狭缝观察日光灯时,可以看到彩色条纹8、(考查反射光的偏振)恰好垂直。
光的偏振典型习题
光的偏振1.下列关于偏振光的说法中正确的是( )A.自然光就是偏振光B.沿着一个特定方向传播的光叫偏振光C.沿着一个特定方向振动的光叫偏振光D.单色光就是偏振光答案:C解析:自然光包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同;只有沿着特定方向振动的光才是偏振光。
所以选项C正确。
2.(2010·石家庄市第一中学高二检测)P是一偏振片,P的透振方向(用带箭头的实线表示) 为竖直方向。
下列四种入射光束中哪几种照射P时能在P的另一侧观察到透射光?( )A.太阳光B.沿竖直方向振动的光C.沿水平方向振动的光D.沿与竖直方向成45°角振动的光答案:ABD解析:只要光的振动方向不与偏振片的透振方向垂直,光都能通过偏振片。
太阳光、沿竖直方向振动的光、沿与竖直方向成45°角振动的光均能通过偏振片。
3.在垂直于太阳光的传播方向前后放置两个偏振片P和Q。
在Q的后边放上光屏,以下说法正确的是( )A.Q不动,旋转偏振片P,屏上光的亮度不变B.Q不动,旋转偏振片P,屏上光的亮度时强时弱C.P不动,旋转偏振片Q,屏上光的亮度不变D.P不动,旋转偏振片Q,屏上光的亮度时强时弱答案:BD解析:P是起偏器,它的作用是把太阳光(自然光)转变为偏振光,该偏振光的振动方向与P的透振方向一致,所以当Q与P的透振方向平行时,通过Q的光强最大;当Q与P的透振方向垂直时,通过Q的光强最小,即无论旋转P或Q,屏上的光强都是时强时弱。
4.如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P 处迎着入射光方向,看不到光亮,则( )A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后,在P处将看到光亮D.以SP为轴将B转过90°后,在P处将看到光亮答案:BD解析:自然光沿各个方向发散是均匀分布的,通过偏振片后,透射光是只有沿着某一特定方向振动的光。
光的偏振 习题
2.马吕斯定律以公式来表示为 2.马吕斯定律以公式来表示为 I = I0 cos2 α . 式中 α是线偏振光的振动方向和检偏器偏 振化方向之间的夹角, 振化方向之间的夹角, I0 是() A.自然光的光强 A.自然光的光强 B.线偏振光的光强 B.线偏振光的光强 C.部分偏振光的光强 C.部分偏振光的光强 D.透过检偏器后船身光的光强 D.透过检偏器后船身光的光强 3.设有自然光入射 设有自然光入射, 3.设有自然光入射,当两偏振片的偏振化 方向之间的夹角由30 变为45 30° 45° 方向之间的夹角由30°变为45°时,则通 过检偏器后船身光的强度之比 I45° I30°为() A.3/2 A.3/2 B.2/3 C.1/3 D.3
I2 = I1 cos 60° = 3I0 /16 (2)I0为自然光: I1 = I0 / 2
2
I2 = I1 cos 60° = I0 / 8
2
4.将三个偏振片叠放在一起,第二个与第三个 将三个偏振片叠放在一起,
的偏振化方向分别与第一个的偏振化方向成 45° 90° 45°和90°角. (1)强度为 I0自然光垂直入射到这一堆偏振 片上,试求经每一偏振片后的光强和偏振状态. 片上,试求经每一偏振片后的光强和偏振状态. 如果将第二个偏振片抽走,情况又如何? (2)如果将第二个偏振片抽走,情况又如何?
4.一束光强为 4.一束光强为 I0的自然光垂直安全无害两 个偏振片, 个偏振片,且此两偏振片的偏振化方向成 45° 若不考虑偏振片的反射和吸收, 45°角,若不考虑偏振片的反射和吸收, 则穿过两个偏振片后的光强 I 为() A. 2I0 4 B. I0 4 C. I0 2 D. 2I0 2 5.一束光线由空气射向玻璃, 5.一束光线由空气射向玻璃,没有检测到 一束光线由空气射向玻璃 反向光,那么入射光() 反向光,那么入射光() A. i ≠ i0,线偏振光 B.i = i0,自然光 C.i ≠ i0,部分偏振光 D.i = i0,线偏振光
光的偏振习题解答(试题复习)
第十九章 光的偏振一 选择题1. 把两块偏振片一起紧密地放置在一盏灯前,使得后面没有光通过。
当把一块偏振片旋转180︒时会发生何种现象:( )A. 光强先增加,然后减小到零B. 光强始终为零C. 光强先增加后减小,然后又再增加D. 光强增加,然后减小到不为零的极小值 解:)2π(cos 20+=αI I ,α从0增大到2π的过程中I 变大;从2π增大到π的过程中I 减小到零。
故本题答案为A 。
2. 强度为I 0的自然光通过两个偏振化方向互相垂直的偏振片后,出射光强度为零。
若在这两个偏振片之间再放入另一个偏振片,且其偏振化方向与第一偏振片的偏振化方向夹角为30︒,则出射光强度为:( )A. 0B. 3I 0 / 8C. 3I 0 / 16D. 3I 0 / 32 解:0000202032341432)3090(cos 30cos 2I I I I =⋅⋅=-=。
故本题答案为D 。
3. 振幅为A 的线偏振光,垂直入射到一理想偏振片上。
若偏振片的偏振化方向与入射偏振光的振动方向夹角为60︒,则透过偏振片的振幅为:( )A. A / 2B.2 / 3A C. A / 4 D. 3A / 4解:0222'60cos A A =,2/'A A =。
故本题答案为A 。
4. 自然光以60︒的入射角照射到某透明介质表面时,反射光为线偏振光。
则( )A 折射光为线偏振光,折射角为30︒B 折射光为部分偏振光,折射角为30︒C 折射光为线偏振光,折射角不能确定D 折射光为部分偏振光,折射角不能确定解:本题答案为B 。
光轴 e o 光波阵面 选择题5图。
11章光的偏振。习题答案
第11章 光的偏振 习题11.1 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I = I 0/8。
已知P 1和P 3的偏振化方向互相垂直。
若以入射光为轴,旋转P 2,问P 2最少要转过多大角度,才能使出射光的光强为零?解 首先求P 2 与P 3 的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为301=8I I (1)自然光通过P 1后光强变为1012I I =(2) 设P 2 与P 1的偏振化方向之间夹角为θ,则由马吕斯定律可得透过P 2 的光强为222101cos cos 2I I I θθ==(3) 又由马吕斯定律可得透过P 3后的光强为()2222320011cos 90cos sin sin 228I I I I θθθθ=−==D (4) 将式(1)和式(4)联立求解,可得P 2 与P 1的偏振化方向之间夹角为θ=45º若以入射光为轴,旋转P 2,使出射光的光强为零,则由马吕斯定律得到()2222320011cos 90cos sin sin 2028I I I I αααα=−===D (5) 求解式(5)可得到P 2最少要转过的角度为α=45 º11.2 有三个偏振片堆叠在一起,第一块与第三块的偏振化方向互相垂直,第二块与第一块的偏振化方向互相平行。
设入射自然光的光强为I 0,若第二块偏振片以恒定角速度ω绕光的传播方向旋转,如图11-1所示。
试证明,此自然光通过这一系统后,出射光的光强为0(1cos 4)16I I t ω=−。
图11-1 题11.2图证 如图11-1所示,P 1的偏振化方向垂直于P 3的偏振化方向。
设入射自然光的光强为I 0,则通过P 1后强度为I 0/2。
若在时刻t , P 2的偏振化方向 与 P 1的偏振化方向的夹角为t ωθ=,则P 2 与P 3的夹角为θ−D 90。
根据马吕斯定律可得此时出射光强为222101cos cos 2I I I t θω==(1) ()()()2232222020200cos 90sin 1cos sin 212cos sin 81sin 2811cos 416I I I I t t I t t I t I t θθωωωωωω=−===⋅=⋅=−D11.3 使自然光通过两个偏振化方向相交60˚的偏振片,透射光的光强为I 。
第15章光的偏振习题
第15章光的偏振习题15-1 四个偏振片依次前后排列,每个偏振片的透振方向均相对前一偏振片的透振方向沿顺时针方向转过45°角.若入射自然光的光强为I0,不考虑吸收、散射和反射等因数引起的光强损失,则出射此偏振片系统的光强多大?答案:I0/1615-2 让入射光连续通过两个偏振片,前者称为起偏片,后者称为检偏片,通过改变二者之间的夹角可调节出射光的光强.设入射光为自然光,通过起偏片后的光强为1,要使出射光强减弱为1/2,1/4,1/8,试问二偏振片的透振方向夹角各为多少?答案:45°,60°,69°18′或69.3°15-3 在两个透振方向正交的偏振片之间有一个偏振片,该偏振片以匀角速度ω以光线传播方向为轴旋转,试证明:自然光通过此装置后出射的光强为ܫൌܫ16ሺ1െcos4߱ݐሻ式中I0为入射光强.证明略15-4 一束部分偏振光通过旋转的理想偏振片时,出射光强的最大值是最小值的7倍.试求光束中两成分光强之比.答案:ூ线ூ自然=315-5 如果已经测出光在某种介质中的全反射临界角为45°,试求光从空气射向这种介质界面时的布儒斯特角.答案:݅ୠൌarctan√2ൎ54.7°,ሺ54°42ᇱሻ15-6 证明:当光线以布儒斯特角入射时,折射光线与反射光线互相垂直.证明略15-7 一束线偏振光正入射一块方解石晶体,其振动面与晶体主截面成20°角.求透过晶体后o 光和e 光的振幅和强度之比.答案:0.364;0.13215-8 一束钠黄光以60°角入射到方解石(݊୭ൌ1.6584,݊ୣൌ1.4864)平板上,设光轴与平板平行且垂直于入射面,试求晶体中o 光与e 光的夹角是多少?若方解石平板的厚度为1cm ,试求在板出射面量细光束之间分开的距离是多少? 答案:4.16°,1.05mm15-9 设方解石(主折射率݊୭ൌ1.6584,݊ୣൌ1.4864)和石英(主折射率݊୭ൌ1.5442,݊ୣൌ1.5533)薄板的光轴都平行于其表面,并用它们制做钠黄光(589.3nm )的λ/4片,薄板的最小厚度分别为多少?答案:方解石:0.857µm ,石英:16.18µm15-10* 两块偏振片透振方向夹角为60°,中央插入一块λ/4片,波片主截面平分上述夹角,光强为I 0的自然光入射,求通过第二个偏振片的光强.答案:ହଵܫ15-11 两偏振片之间有一/2λ片,波片由负晶体制成,其e 光振动方向与P 1的透振方向成38°.设波长为632.8nm λ=的光垂直射到P 1上,要使透射光有最大振幅,P 2 应如何放置?若晶片的折射率݊୭ൌ1.52,݊ୣൌ1.48,试计算此晶片的最小厚度.答案:P 2应与P 1透振方向成76°;7.91ൈ10ିଷ mm15-12. 如图所示,已知一束自然光入射到折射率݊ଶൌସଷ的水面上时反射光是线偏振的,一块折射率݊ଷൌଷଶ的平面玻璃浸在水面下,若要使玻璃表面的反射光O'N '也是线偏振的,则玻璃习题图15-12表面与水平面夹角φ应为多大?答案:߮ൌ11°30Ԣ。
光的偏振和偏振方向练习题
光的偏振和偏振方向练习题一、选择题(单选)1. 偏振光的特点是()。
a)振动方向与传播方向垂直b)振动方向与传播方向平行c)振动方向与传播方向夹角为45度d)振动方向与传播方向相反2. 光的偏振是指()。
a)光的振动方向恒定不变b)光的传播速度不同c)光的波长不同d)光的频率不同3. 偏振片是利用()进行光的偏振。
a)反射b)折射c)干涉d)吸收4. 偏振片的主要作用是()。
a)将非偏振光转化为偏振光b)将偏振光转化为非偏振光c)改变光的波长d)改变光的强度5. 两个互相垂直的偏振片的透过光强度()。
a)最大b)最小c)为零d)不受偏振片方向影响二、判断题(对错)1. 当光的振动方向与偏振片方向垂直时,光完全透过偏振片。
2. 两个互相平行的偏振片的透过光强度为零。
3. 光在经过偏振片后,无论振动方向如何改变,传播速度始终保持不变。
4. 光的偏振方向与电场振动方向垂直。
5. 偏振片的透过光强度与偏振片的厚度无关。
三、简答题1. 定义偏振现象,并解释为什么会发生偏振。
2. 请简述偏振片的工作原理,并举例说明偏振片在实际中的应用。
3. 光的偏振方向可以改变吗?如果可以,请说明原因。
四、应用题1. 一个 unpolarized 光源 S 发出的光通过一个偏振片 P1,然后垂直于 P1 的方向放置了另一个垂直偏振片 P2。
求通过 P2 透射光的强度与光源 S 发出的光强度的比值。
2. 一个 unpolarized 光源 S 发出的光通过一个偏振片 P1,然后将 P1 逆时针旋转 30 度,再通过另一个逆时针旋转 45 度的偏振片 P2。
求通过 P2 透射光的强度与光源 S 发出的光强度的比值。
参考答案:一、选择题(单选)1. a)振动方向与传播方向垂直2. a)光的振动方向恒定不变3. a)反射4. a)将非偏振光转化为偏振光5. c)为零二、判断题(对错)1. 对2. 错3. 对4. 对5. 对三、简答题1. 偏振现象是指光中的电场振动方向在某一平面上的变化。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振习题答案及解法
光的偏振习题答案及解法————————————————————————————————作者:————————————————————————————————日期:光的偏振习题、答案及解法一、 选择题1. 在双缝干涉实验中,用单色自然光照色双缝,在观察屏上会形成干涉条纹若在两缝封后放一个偏振片,则(B ) A 、 干涉条纹的间距不变,但明纹的亮度加强; B 、 干涉条纹的间距不变,但明纹的亮度减弱; C 、干涉条纹的间距变窄,但明纹的亮度减弱; D 、 没有干涉条纹。
2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的7倍,那么入射光束中自然光与线偏振光的光强比值为(B ) A 、 21 ; B 、 31 ; C 、 41 ; D 、 51 。
参考答案:()θηη200cos 12-+=I I I ()ηη-+=1200max I I I η20min I I = ()7212000minmax=-+=ηηηI I I I I ηη-=27 31=η 3.若一光强为0I 的线偏振光先后通过两个偏振片1P 和2P 。
1P 和2P 的偏振化方向与原入射光矢量振动方向的夹角分别为090和α,则通过这两个偏振片后的光强I (A ) A 、)2(sin 4120a I ; B 、 0 ; C 、 a I 20cos 41 ; D 、 a I 20sin 41。
参考答案: ⎪⎭⎫ ⎝⎛-=απα2cos cos 220I I )2(sin 4120a I I =4.一光强为0I 的自然光垂直通过两个偏振片,且两偏振片偏振化方向成030则穿过两个偏振片后的光强为(D )A 、 430I ;B 、 40I ;C 、 80I ;D 、 830I 。
参考答案: 836cos 2cos 202020II I I ===πα 5.一束光强为0I 自然光,相继通过三个偏振片321P P 、、P 后,出射光的光强为8I I =。
光的偏振计算题及答案
《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E ϖ、P 2的夹角都不超过A (即P 1夹在E ϖ和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E ϖ与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E ϖ必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E ϖθ1 2 ϖ1 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I 0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 / 2 即 α =60° 1分I I 0 / 8π/4π/23π/45π/4π3π/2α I 0I P P P14.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知,r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112 i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃(资料素材和资料部分来自网络,供参考。
6_6光的偏振习题
Dy 0 Dx0 1 , 2
此图D1, D2, D,是左旋圆偏振波
补充:用矢量波的波函数和Jones列矩阵
按照 D 矢量的波函数:
Dx Dx0 cos(kz t x0 ) Dy Dy0 cos(kz t y0 )
复指数函数形式:
Dx Dx0 exp j ( kz t ) x 0 Dy Dy0 exp j ( kz t ) y 0
都是线偏振光, 光轴
一般 o e ,光轴除外。
正晶体:石英 .no 1.544 ne 1.553 单轴 负晶体 : 方解石.no 1.658 ne 1.486 双轴
四、偏振器件:
⒈尼科耳棱镜:可以作为起偏器,也可以作为检偏器。自然光通过平行尼 科耳时透射光最强;通过正交尼科耳时透射光强为0。 1 2 sin ( n o n e ) tg ⒉沃拉斯顿棱镜: 1 2 2 (n n )d . d — 晶片的厚度。 ⒊波片: ( 2 k 1 ) , ( 2 k 1 ) , ① 4 片: 4 2 能把圆偏振光→线偏振光;也能使线偏振光→椭圆、圆、线偏振光。
2 1 π (2) A2 y x A1
y
A2
o
A1
x
(2)
ˆD0 coskz t ˆ Di jD0 sinkz t
解:
D iD0 cos kz t jD0 cos kz t 2
Dy 0 Dx0 1 , 2
偏振光和偏振器件的琼斯矩阵
一、偏振光的矩阵表示 1、沿z方向传播单色偏振光矩阵表示 因为: 因此: 则有: 最后有:
第九章 光的偏振习题
第九章 光的偏振习题一、择填空题1、按照小说《隐形人》中所述,其主人公发明了一种特殊的化合物,喝了它以后,他就成为光的完全透明体,完全隐形了。
可是小说的作者忽略了一个重要的事实,那就是这位隐形人也看不见周围的东西,这是因为(A )光束正好干涉相消;(B )偏振光的布儒斯特定理;(C )透明的视网膜无法吸收光线;(D )入射光的全反射;(E )对于不同波长的入射光,眼睛的焦距会发生变化。
答案[ ]2、如图1所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。
已知反射光是完全偏振光,那么折射角r 的值为。
3、(1)如图2a 所示 ,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度。
这时将有 条光线从方解石透射出来;(2)如果把方解石切割成等厚的A 、B 两块,并平行地移开很短一段距离,如图2b 所示,此时光线通过这两块方解石后将有 条光线射出来;(3)在图b 中如把B 块绕光线转过一个角度,此时将有条光线从B 块射出来。
4、将自然光入射到两个主截面互成60°角的尼科耳棱镜上,可得到一偏振光。
若在两个尼科耳之间再放入一块偏振片,使其偏振化方向和两尼科耳的主截面各成30°角,则放入偏振片前入射光强与出射光强之比是 ;放入偏振片前与放入偏振片后两次出射光强之比是 。
5、一单色光通过偏振片P 投射到屏上形成亮点,若将P 以入射光线为轴旋转一周,发图2A B (b)(a)图1i 0现屏上亮点产生明暗交替的变化,由此,判定入射光是A .线偏振光;B .圆偏振光;C .部分偏振光;D .自然光。
答案 [ ]6、波长为λ的平行单色光垂直入射到缝宽为a 的单缝上,在缝后凸透镜的焦平面处有一观察屏,如图3所示。
若在缝前盖上两块偏振片P 1和P 2,两块偏振片各遮盖一半缝宽,而且P 1的偏振化方向与缝平行,而P 2的偏振化方向与缝垂直,试问:(1)屏上的衍射条纹宽度[A] 增为两倍; [B] 减为一半; [C] 不变;答案 [ ](2)自然光通过偏振片后,光强[A] 增强; [B] 减弱; [C] 不变。
19光的偏振习题解答
第十九章 光的偏振一 选择题1. 把两块偏振片一起紧密地放置在一盏灯前,使得后面没有光通过。
当把一块偏振片旋转180︒时会发生何种现象:( )A. 光强先增加,然后减小到零B. 光强始终为零C. 光强先增加后减小,然后又再增加D. 光强增加,然后减小到不为零的极小值解:)2π(cos 20+=αI I ,α从0增大到2π的过程中I 变大;从2π增大到π的过程中I 减小到零。
故本题答案为A 。
2. 强度为I 0的自然光通过两个偏振化方向互相垂直的偏振片后,出射光强度为零。
若在这两个偏振片之间再放入另一个偏振片,且其偏振化方向与第一偏振片的偏振化方向夹角为30︒,则出射光强度为:( )A. 0B. 3I 0 / 8C. 3I 0 / 16D. 3I 0 / 32解:0000202032341432)3090(cos 30cos 2I I I I =⋅⋅=-=。
故本题答案为D 。
5. 如题图所示,一束光垂直投射于一双折射晶体上,晶体的光轴如图所示。
下列哪种叙述是正确的?( )A o 光和e 光将不分开B n e >n oC e 光偏向左侧D o 光为自然光解:本题答案为C 。
二 填空题1. 强度为I 0的自然光,通过偏振化方向互成30︒角的起偏器与检偏器后,光强度变为 。
解:3 I 0/85. 产生双折射现象的原因,是由于晶体对寻常光线与非常光线具有不同的 ,传播方向改变时,非常光线的传播速度 。
解:折射率;改变。
e o 选择题5图。
光的偏振习题(附答案)-(1)汇编
光的偏振(附答案)填空题1. 一束光垂直入射在偏振片P上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程•若入射光是自然光或圆偏振光,则将看到光强不变;若入射光是线偏振光,则将看到明暗交替变化,有时出现全暗;若入射光是部_ 分偏振光或椭圆偏振光,则将看到明暗交替变化,但不出现全暗•2. 圆偏振光通过四分之一波片后,出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的14倍•4. 两个偏振片叠放在一起,强度为I o的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度, 若在两片之间再插入一片偏振片,其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I o.5. 某种透明媒质对于空气的临界角(指全反射)等于45°,贝比从空气射向此媒质的布儒斯特角是54.7°,就偏振状态来说反射光为完全偏振光,反射光矢量的振动方向垂直入射面,透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于1.732.7. 一束钠自然黄光(入=589.3 X9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm,对钠黄光方解石的主折射率n o=1.6584 n e =1.4864, 则o、e两光透过晶片后的光程差为86um。
、e两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2后分别加一个同质同厚度的偏振片P1、P2,则当P1与P2的偏振化方向互相平行或接近平行时,在屏幕上仍能看到清晰的干涉条纹.计算题9. 有一束自然光和线偏振光组成的混合光,当它通过偏振片时改变偏振片的取向,发现透射光强可以变化7倍.试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为10,其中线偏振光的光强为101,自然光的光强为I 02.在该光束透过偏振片后,其光强由马吕斯定律可知:= I°1COSJ 」|2当口=0时,透射光的光强最大当「二二/2时,透射光的光强最小入射总光强为:I^ I 01 I 0210. 如图所示,一个晶体偏振器由两个直角棱镜组成(中间密合)•其中一个直 角棱镜由方解石晶体制成,另一个直角棱镜由玻璃制成,其折射率n 等于方 解石对e 光的折射率n e . 一束单色自然光垂直入射,试定性地画出折射光线, 并标明折射光线光矢量的振动方向.(方解石对o 光和e 光的主折射率分别 为 1.658 和 1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率,因此e 光进入方解石 后传播方向不变.而n=n e >n 。
光的偏振计算题及答案
《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E 、P 2的夹角都不超过A (即P 1夹在E 和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E 与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E 必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E θ1 21 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 /2 即 α =60° 1分I 014.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃。
第08章 光的偏振 习题
第8章 光的偏振8.1 设一束自然光光强为0I ,垂直入射到起偏器上,开始时起偏器和检偏器的透振化方向平行,然后使检偏器绕入射光的传播方向转过,试分别求出这两种情况下,透过检偏器后的光强为多少?45,600解:经起偏器透过的光为振动方向平行其的线偏振光,光强0/2I I =. ∴经过起偏器后形成光强为的线偏振光. 0/2I 根据马吕斯定律得,检偏器转过后的光强为45,600'220011cos cos 4524o I I I I θ===, '220221cos cos 6028o I 0I I I θ===。
8.2 使自然光通过两个偏振化方向夹角为60的偏振片时,透射光强为o 1I ,今在这两个偏振片之间再插入另一块偏振片,它的偏振化方向与前两个偏振片均成,问此时透射光强0302I 与1I 之比为多少?解:由题意,设自然光光强为0I ,得经过第一个偏振片后形成光强为0/2I I =的线偏振光,根据马吕斯定律得,再经过一个偏振方向夹角为的偏振片后的光强为060'2200111cos cos 6028I 0I I I θ=== 当经过先后都为夹角的偏振片的光强为030()'2220202229cos cos cos 30cos 30320I I I θθ==I =8.3 自然光入射到两块垂叠的偏振片上,如果透过的光强为:⑴透射光最大强度的三分之一;⑵入射光强的三分之一.则这两块偏振片透振化方向间的夹角为多少?解:设自然光的强度为0I ,两块偏振片透振化方向间的夹角为θ。
所以当通过第一个偏振片后的光强I 为2I ,为线偏振光;根据马吕斯定律'cos I I 2θ=通过第二个偏振片后的最大光强应为cos 1θ=,即0θ=时光强最大,为02I。
(1)由题意'22001cos cos 22cos arccos33I I I I θθθθ=====3×(2)由题意,透过的光强为入射光强的三分之一即透过的光强为3I'2200cos cos 23cos arccos66I I I I θθθθ=====8.4 一束太阳光,以某一入射角入射到平面玻璃板上,这时反射光为线偏振光.测得此时对应的折射角为,试求:⑴入射角为多少?⑵此种玻璃的折射率是多少?032解:(1)由布儒斯特定律可知入射角009032682i 0πγ=−=−=,(2)设玻璃的折射率为,空气的折射率2n 11n =,得0212tan tan 682.475n i n n ==≈8.5 当一束自然光从空气入射到折射率为1.40的液体表面上时,反射光为线偏振光.试求:⑴入射角为多少;⑵折射角为多小?解:(1)由布儒斯特定律可知21tan 1.4arctan1.454.46n i n i ===≈(2)由,可得054.46i ≈sin cos cos 0.5812235.54i πγγγ⎛⎞=−=≈⎜⎟⎝⎠≈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 光的偏振(2)一.选择题:(共30分)1.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹,若在两缝后放一个偏振片,则[ ](A ) 干涉条纹的间距不变,但明纹的亮度加强。
(B ) 干涉条纹的间距不变,但明纹的亮度减弱。
(C ) 干涉条纹的间距不窄,但明纹的亮度减弱。
(D ) 无干涉条纹。
2.光强为I 0的自然光垂直通过两个偏振片,它们的偏振化方向之间的夹角α =600,设偏振片没有吸收,则出射光强I 与入射光强I 0之比为 [ ](A )1/4 (B ) 3/4 (C )1/8 (D )3/83.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为600,假设二者对光无吸收,光强为I 0的自然光垂直入在偏振片上,则出射光强为 [ ](A) I 0/8 (B) 3I 0 /8 (C) I 0 /4 (D) 3 I 0/44.光强为I 0的自然光依次通过两个偏振片和,若的偏振化方向的夹角,则透射偏振光的强度是[ ](A) I 0/4 (B) √3 I 0/4 (C) √3 I 0/2 (D) I 0/8 (E) 3I 0 /85.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。
当其中一偏振片慢慢转动1800时透射光强度发生变化为: [ ](A) 光强单调增加。
(B) 光强先增加,后有减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零6.一束自然光自空气射向 一块平板玻璃(如图),设入射角等于布儒斯特角i 0 ,则在界面2的反射光 [ ](A) 是自然光(B) 是完全偏振光且光矢量的振动方向垂直入射面 (C) 是完全偏振光且光矢量的振动方向平行入射面(D) 是部分偏振光7.一束单色平面偏振光,垂直投射到一块用方解石(负晶体)制成的四分之一波片(对投射光的频率)上,如图所示,如果入射光的振动面与光轴成450角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光8(A) 线偏振光 (B) 部分偏振光(C) 和原来旋转方向相同的圆偏振光(D) 和原来旋转方向相反的圆偏振光9(对投射光的频率)上,如图所示 成300角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光10.一束单色线偏振光其偏振化方向与1/4波片的光轴夹角α =π/4。
此偏振光经过波片后[ ](A)仍为线偏振光 (B) 振动面旋转了(C) 振动面旋转了 (D) 变为圆偏振光二、填空题1. 一束自然光垂直穿过两个偏振片,两个偏振片方向成450角。
已知通过此两偏振片后的光强为I ,则入射至第二个偏振片的线偏振光强度为________. 2.使光强为I 0的自然光依次垂直通过三块偏振片P 1、P 2和P 3。
与的偏振化方向成450角。
则透过三块偏振片的光强I 为__________ 3. 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹。
若在双缝S 1和S 2的前面分别加一同质同厚的偏振片P 1、P 2 ,则当P 1与P 2的偏振化方向相互_______时,在屏幕上仍能看到很清楚的干涉条纹。
4. 一束自然光以布儒斯特角入射到平板玻璃上, 就偏振状态来说则反射光为________,反射光 矢量的振动方向________,透射光为_________。
5. 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。
已知反射光是完全偏振光,那么折射角r 的值为________. 6.在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光,n 1、n 2为两种介质的折射率,图中入射角i 0=arctg(n 2/ n 1),i 0射光线和反射光线,并用点或短线把振动方向表示出来。
7. 用方解石晶体(n o >n e )切成一个顶角A = 300的三棱镜,其光轴方向如图,若单色自然光垂直AB 面入射(见图)。
试定性的画出三棱镜内外的光路,并画出光矢量的振动方向。
8. 圆偏振光通过四分之一波片后,出射的光一般是________偏振光。
9.一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm ,对钠黄光方解石的主折射率n o =1.6584、n e =1.4864,则o 、e 两光透过晶片后的光程差为______μm 10.11. 波长为600 nm 光的主折射率为1.74则此波片的最小厚度为_________ 12. 如图所示,一束线偏振光垂直的穿过一个偏振片M 和一个1/4波片N ,入射线偏振光的光振动方向与1/4波片的光轴平行,偏振片M 的偏振化方向与1/4波片光轴的 S M夹角为450,则经过M 后光是_______偏振光;经过N 后的光是______偏振光13. 原来为光学各向同性的介质,在机械应为作用下,显现出光学各向异性即产生双折射现象,称为________效应;在外加电场作用下,发生双折射现象,称为_________效应;在外加磁场的作用下,发生双折射现象,称为_________效应。
三、计算题1. 两个偏振片叠在一起,一束单色自然光垂直入射。
(1)若认为偏振是理想的(对投射部分没有反射和吸收),当连续穿过两个偏振片后的透射光强为最大透射光强的1/3时,两偏振片偏振化方向间的夹角α为多大? (2)若考虑到每个偏振片因吸收和反射而使透射光部分的光强减弱5%,要使透射光强仍如(1)中得到的透射光强,则此时α应为多大?2. 有三个偏振片叠在一起,已知第一个与第三个的偏振化方向相互垂直。
一束光强为I 0的自然光垂直入射在偏振片上,求第二个偏振片与第一个偏振片的偏振化方向之间的夹角为多大时,该入射光连续通过三个偏振片之后的光强为最大。
3. 一束单色自然光以入射角500从空气入射到一块方解石晶体的表面上,方解石的光轴平行方解石表面且入射面垂直,求方解石中的两条折射线间的夹角。
已知n折射率取为14. 一束单色自然光自空气(n = 1)入射到一块方解石晶体上,晶体光轴方向如图所示,其主折射率n o = 1.658、n e =1.486,已知晶体厚度d = 2.00 cm ,入射角I = 600。
(1) 求a、b 两透射光间的垂直距离;(2) 两束透射光中,哪一束在晶体中是寻常光? 哪一束在晶体中是非寻常光?透射光的光矢量振动方向如何?并请在图中注明。
5. 一束单色自然光(波长λ=589.3×10-9m )垂直入射在 方解石晶片上,光轴平行于晶片的表面,如图。
已知 晶片厚度d = 0.05 mm ,对该光方解石的主折射率 n o =1.658、n e =1.486。
求 (1) o 、e 两光束穿出晶片后的光程差∆L (2) o 、e 两光束穿出晶片后的位相差∆Φ6.用方解石制作对钠黄光(波长λ=589.3×10-9 m )适用的四分之一波片(1) 请指出应如何选取该波长的光轴方向;(2) 对于钠黄光,方解石的主折射率分别为n 7. 如图所示,在两个偏振化方向互相平行的偏振片P 1 和P 2之间插入一块厚度为d 的方解石晶片,用波长为λ=5000Å的单色平行自然光垂直入射时,透过检偏器P 2的光强恰好为零。
已知此方解石晶片的光轴C 与起偏器P 1的偏振化方向间的夹角α=450光轴与晶片表面平行,方解石的主折射率n o =1.66、n e =1.49。
求此方解石晶片可能的最小厚度d 。
8. 在两个相互正交的尼科耳棱镜之间放一块 水晶的旋光晶片(光轴垂直水晶的表面),如图,入射光为纳黄光(λ=589.3×10-9 m ), 对此波长水晶的旋光率α =21.750/mm ,若使出射光最强,求晶片的最小厚度。
9. 一束单色线偏振光(λ=589.3×10-9 m)沿光轴方向通过水晶块,如图。
已知对右、左旋圆偏振光的水晶折射率分别为n R =1.55812、n L =1.54870,b a 光轴2I 045的位相差为π,则晶体厚度l 四、证明题1. 若i 2. 的示意图,两个尼科耳M 、N它们的偏振取向与电场方向分别成±450角。
克尔盒为盛有介质的二端透光的容器,内有一个平行板长为板间距为d 通过尼科耳N ,若给极板加电压U 则有光通过尼科耳N 。
此时两偏振光间产生的位相差为σ =2πk l U 2/d 2试由克尔效应表示式∆n=n ∥-n ⊥=n e 五、改错题1. 用方解石晶体(n o >n e )若有错误请另画出图予以改正。
2. 用方解石晶体(n o >n e )棱镜AB 六、问答题 第1题1. 试写出马吕斯定律的数学表达式,并说明式中各符号代表什么。
2. 如图所示,三种透明介质Ⅰ、Ⅱ、Ⅲ的折射率分别为n 1、n 2、n 3它们之间的两个交界面互相平行。
一束自然光以起偏角i 0由介质Ⅰ射向介质Ⅱ,欲使在介质Ⅱ和介质Ⅲ的交界面上的反射光也是线偏振光,三个折射率n 1、n 2和n 3之间应满足什么关系?3. 假设石英的主折射率n o 和n e 与波长无关。
某块石英晶片对波长为7000Å的光是四分之一波片。
当波长为3500Å的线偏振光垂直入射到该晶片上、且其振动方向与晶片光轴成角450时,透射光的偏振状态是怎样的?第6.2题第5.2题B C 3n一、选择题1.(B)2.(C)3.(A)4.(E)5.(B)6.(B)7.(A)8.(D)9.(B)10.(D)二、选择题1.2I 2.I0/8 3.平行或接近4.完全(线)偏振光、垂直于入射面、部分偏振光5.π/2-arctg(n2/n1) 6.见图7.见图8.线9.8.6,91.710.图11.线,圆13.光弹性(应力双折射)、电光(克尔及普克尔斯)磁光(磁致双折射或科顿-莫顿磁光)三、计算题1.解:设I0为入射光强度;I为连续穿过两偏振片的光强。
(1)I=I0cos2α/2显然,当α=0时,即两偏振化方向平行时,I最大。
Imax=I0/2由(I/2)/3= I0cos2α/2得α=54.8°(2)考虑对透射光的吸收和反射,则(I/2)/3= I0(1-5﹪)cos2α/2 α=52.6°2.解:以P1、P2、P3分别表示三个偏振片,I1为透过第一个偏振片P1的光强,且I1= I0/2.设P2与P1的偏振化方向之间的夹角为θ,连续穿过P1、P2后的光强,且I2,I2= I1cos2θ = (I0cos2θ)/2设连续穿过三个偏振片后的光强为I3,I3=I2 cos2(π/2-α)= (I0sin22θ)/8显然,当2θ=90°,即θ=45°时,I3最大。