聚类分析之系统聚类法
五种常用系统聚类分析方法及其比较
五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
聚类分析
聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
系统聚类分析
聚类分析聚类分析是研究“物以类聚”的一种多元统计方法。
国内有人称它为群分析、点群分析、簇群分析等。
聚类分析的基本概念聚类分析是研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。
它把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。
在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。
它职能是建立一种能按照样品或变量的相似程度进行分类的方法。
聚类分析的基本思想是认为我们所研究的样本或指标(变量)之间存在着程度不同的相似性(亲疏关系)。
于是根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。
最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。
这种方法是最常用的、最基本的一种,称为系统聚类分析。
聚类分析有两种:一种是对样本的分类,称为Q型,另一种是对变量(指标)的分类,称为R型。
聚类分析给人们提供了丰富多彩的方法进行分类,这些方法大致可以归纳为:(1)系统聚类法。
首先将n个也样品看成n类(一个类包含一个样品),然后将性质最接近的两类合并成一个新类,我们得到n-1类,再从中找出最接近的两类加以合并成了n-2类,如此下去,最后所有的样品均在一类,将上述并类过程画成一张图(称为聚类图)便可决定分多少类,每类各有什么样品。
(2)模糊聚类法。
将模糊数学的思想观点用到聚类分析中产生的方法。
该方法多用于定型变量的分类。
(3)K—均值法。
K—均值法是一种非谱系聚类法,它是把样品聚集成k个类的集合。
类的个数k可以预先给定或者在聚类过程中确定。
该方法可用于比系统聚类法大得多的数据组。
系统聚类
为了便于我们理解系统聚类法的方法和步骤,下面给出一个例子逐步进行说 明:
例:为了研究辽宁等 5 省 1991 年城镇居民生活消费情况的分布规律,根据调 查资料做类型分类,用最短距离法做类间分类。数据如下:
因此将 3、4 合并为一类,为类 6,替代了 3、4 两类 类 6 与剩余的 1、2、5 之间的距离分别为:
d(3,4)1=min(d31,d41)=min(13.80,13.12)=13.12 d(3,4)2=min(d32,d42)=min(24.63,24.06)=24.06 d(3,4)5=min(d35,d45)=min(3.51,2.21)=2.21 得到新矩阵
2、选择 D(0)表中最小的非零数,不妨假设 dpq ,于是将 Gp 和 Gq 合并为一
新类,记为 Gr GP ,Gq
3、利用递推公式计算新类与其它类之间的距离,产生 D(1)表。若类的个 数等于 1,转到下一步,否则回到前一步。类推直至所有的样本点归为一类为止。
4、画聚类图 5、决定类的个数 6、聚类结果的解释和证实 由于类与类之间的距离的计算方法不同,形成了不同的系统聚类方法。
吉林 黑龙江 天津 北京 上海 河南 福建 安徽 辽宁 青海 贵州 湖南 江西 广西 宁夏
6 -+-+
7 -+ +-----+
3 ---+ +---------------------------+
1 -+-------+
|
2 -+
+-----------+
聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析
聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21)思想很简单,想象成⼀颗倒⽴的树,叶节点为样本本⾝,根据样本之间的距离(相似系数),将最近的两样本合并到⼀个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最⼩的合为新的根节点。
以此类推对于样本X=(x1,x2,,,x m),共n个样品,m个特征,我们可以考虑两种情形聚类R型聚类:m个特征之间的聚类,可以理解为⼀种降维。
Q型聚类:n个样品之间的聚类,这就是⼀般意义上机器学习中的系统聚类(⽂中的下标i、j在R型、Q型中的含义不⼀样,聪明的读者⾃⾏分辨)相似系数:R型(真正意义上的相似系数)(r)$r_{ij}=\frac{\left | \sum \left ( X_{i}-\bar{X_{i}} \right )\left ( X_{j}-\bar{X_{j}} \right ) \right |}{\sqrt{\sum \left ( X_{i}-\bar{X_{i}} \right )^{2}\sum \left ( X_{j}-\bar{X_{j}} \right )^{2}}}$可以看到$r_{ij}$越⼤标明两特征相似程度越⾼Q型(真正意义上的样品距离)(d)闵可夫斯基(Minkowski)距离:$\sqrt[p]{\left | x-\mu _{i} \right |^{p}}$Minkowski距离没有考虑变量之间的相关关系。
引进马⽒距离:$d_{ij}={\mathbf{X}}'\mathbf{S}^{-1}\mathbf{X}$其中$X=(X_{i1}-X_{j1} \right , X_{i2}-X_{j2} \right, X_{im}-X_{jm})$(不明原因的公式不正确显⽰)类间相似系数:最⼤相似系数法r=Max(r)D=Min(d)最⼩相似系数法r=Min(r)D=Max(d)可以看出,就是⼈为规定了,当某两个指标或样品合并后,新的样本(或指标)与上⼀节点样品(或指标)的距离(或相似系数)的选取现举实例说明测量了300名成年⼥⼦⾝⾼(X1)、下肢长(X2)、腰围(X3)、胸围(X4)得到相似系数矩阵可以看到X1,X2的相似系数最⼤,所以将X1,X2合并为G5X3变为G3,X4变为G4G3与G4的相似系数不变,为0.73G5与G3、G5与G4的类间相似系数采⽤最⼤相似系数法G5与G3的类间相似系数r = Max r即$r_{53}=Max(r_{13},r_{23})=Max(0.09,0.05)=0.09$$r_{54}=Max(r_{14},r_{24})=Max(0.23,0.17)=0.23$所以有根据上述步骤,直到所有的类都归为⼀类。
聚类分析的方法
聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。
系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。
根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。
系统聚类分析法基本步骤如下(许志友,1988)。
(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。
设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。
1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。
1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。
有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。
2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。
第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。
系统聚类法的原理和具体步骤
系统聚类法(Hierarchical Clustering)是一种常用的聚类分析方法,用于将样本或对象根据相似性或距离进行层次化的分组。
其原理和具体步骤如下:
原理:
系统聚类法通过计算样本或对象之间的相似性或距离,将它们逐步合并为不同的聚类组。
该方法基于一个假设,即相似的样本或对象更有可能属于同一个聚类。
具体步骤:
距离矩阵计算:根据选定的相似性度量(如欧氏距离、曼哈顿距离等),计算样本或对象之间的距离,并生成距离矩阵。
初始化聚类:将每个样本或对象视为一个初始聚类。
聚类合并:根据距离矩阵中的最小距离,将距离最近的两个聚类合并为一个新的聚类。
更新距离矩阵:根据合并后的聚类,更新距离矩阵,以反映新的聚类之间的距离。
重复步骤3和4,直到所有的样本或对象都合并为一个聚类或达到指定的聚类数目。
结果展示:将合并过程可视化为一棵聚类树状图(树状图或树状图),以显示不同聚类之间的关系和层次结构。
需要注意的是,系统聚类法有两种主要的实现方式:凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从单个样本开始,逐步合并为更大的聚类;分裂层次聚类从一个整体聚类开始,逐步分裂为更小的聚类。
以上步骤适用于凝聚层次聚类。
系统聚类法在数据分析、模式识别、生物学分类等领域广泛应用。
通过系统聚类法,可以将样本或对象进行有序的分组,帮助发现数据中的模式和结构,并为进一步的分析和解释提供基础。
第一节系统聚类分析
第一节系统聚类分析第五章聚类分析(一)教学目的通过本章的学习,对聚类分析从总体上有一个清晰地认识,理解聚类分析的基本思想和基本原理,掌握用聚类分析解决实际问题的能力。
(二)基本要求了解聚类分析的定义,种类及其应用范围,理解聚类分析的基本思想,掌握各类分析方法的主要步骤。
(三)教学要点1、聚类分析概述;2、系统聚类分析基本思想,主要步骤;3、动态聚类法基本思想,基本原理,主要步骤;4、模糊聚类分析基本思想,基本原理,主要步骤;5、图论聚类分析基本思想,基本原理。
(四)教学时数6课时五)教学内容 (1、聚类分析概述2、系统聚类分析3、动态聚类法4、模糊聚类分析5、图论聚类分析统计分组或分类可以深化人们的认识。
实际应用中,有些情况下进行统计分组比较容易,分组标志确定了,分组也就得到了,但是,有些情况下进行统计分组却比较困难,特别是当客观事物性质变化没有明显标志时,用于确定分组的标志和组别就很难确定。
聚类分析实际上给我们提供了一种对于复杂问题如何分组的统计方法。
第一节聚类分析概述一、聚类分析的定义聚类分析是将样品或变量按照它们在性质上的亲疏程度进行分类的多元统计分析方法。
聚类分析时,用来描述样品或变量的亲疏程度通常有两个途径,一是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类和类之间的距离,用点与点间距离来描述样品或变量之间的亲疏程度;另一个是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。
二、聚类分析的种类(一)聚类分析按照分组理论依据的不同,可分为系统聚类法,动态聚类法,模糊聚类、图论聚类、聚类预报等多种聚类方法。
1、系统聚类分析法。
是在样品距离的基础上定义类与类的距离,首先将个样品自成n一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。
这种聚类方法称为系统聚类法。
根据并类过程所做的样品并类过程图称为聚类谱系图。
数学建模-聚类分析
满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1
谱系聚类法
x1 x2 x3 x4 0 0.60 0
x2
x3
x4
x5
x6
x7
x8
0.43
0.47 0.57 0.38 0.31 0.45
0.46
0.45 0.45 0.40 0.79 0.45
0
0.12 0.23 0.21 0.65 0.27 0 0.22 0.29 0.70 0.23 0 0.22 0.80 0.14 0 0.66 0.19 0 0.77 0
G6 G6 G3 G3
0 3.5 5.5 0 2
l p,q
G4
G5
G4 G5
△
0 1.5 5 7
0
Dpq Max dij:xi G p,xj Gq
xp2• xp1• xp3•
d pq
2、 最长距离法(Furthest neighbor )
xq1• xq2• xq3•
• 最长距离法与最短距离法的并类步骤完全相同,只 是类间距离的递推公式有所不同。
d ( x, y) ( xi yi ) 2
d
2 kr
p
pd
2 kp
i 1
2 2 2 2 q d kq d pq | d kp d kq |
当 p、q β 、γ 四个参数取不同的值 时,就形成了不同的聚类方法.
1 1 1 1、 最短距离法 p = 、 q = , 0, 2 2 2 1 1 1 p = 、 q = , 0, 2、 最长距离法 2 2 2 np nq p= 、 q = , 0, 0 3、类平均距离: np nq np nq
聚类结果分析
当类间距离取为4.0和2.5时,全国各省份被合并成以下几类: ① 上海、北京、天津3直辖市为一类,而上海和北京更接近;
系统聚类分析方法
系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。
基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。
常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。
1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。
它们所对应的要素数据可用表3.4.1给出。
(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。
①总和标准化②标准差标准化③极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。
④极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。
2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。
①绝对值距离选择不同的距离,聚类结果会有所差异。
在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。
例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。
对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。
▲ 基本步骤:①把各个分类对象单独视为一类;②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。
★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。
因此,直接聚类法并不是最好的系统聚类方法。
[举例说明](点击打开新窗口,显示该内容)例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。
聚类分析
1聚类分析内涵1.1聚类分析定义聚类分析(Cluster Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术. 也叫分类分析(classification analysis)或数值分类(numerical taxonomy),它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:(1)系统聚类法:开始每个对象自成一类,然后每次将最相似的两类合并,合并后重新计算新类与其他类的距离或相近性测度.这一过程一直继续直到所有对象归为一类为止.并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法):首先对n个对象初步分类,然后根据分类的损失函数尽可能小的原则对其进行调整,直到分类合理为止.(3)最优分割法(有序样品聚类法):开始将所有样品看成一类,然后根据某种最优准则将它们分割为二类、三类,一直分割到所需的K类为止.这种方法适用于有序样品的分类问题,也称为有序样品的聚类法.(4)模糊聚类法:利用模糊集理论来处理分类问题,它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法:利用图论中最小支撑树的概念来处理分类问题,创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题,在多元统计分析中,可用来作预报的方法很多,如回归分析和判别分析.但对一些异常数据,如气象中的灾害性天气的预报,使用回归分析或判别分析处理的效果都不好,而聚类预报弥补了这一不足,这是一个值得重视的方法。
聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q 型是对样品进行分类。
聚类分析的思路和方法
一种叫相似系数,性质越接近的变量或样本,它们的相似系数越接近于1或一l,而彼此无关的变量或样本它们的相似系数则越接近于0,相似的为一类,不相似的为不同类。
3
另一种叫距离,它是将每一个样本看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
设有n个样本单位,每个样本测得p项指标(变量),原始资料矩阵为:
聚类分析终止的条件
*
迭代次数:当目前的迭代次数等于指定的迭代次数(SPSS默认为10)时终止迭代。
类中心点偏移程度:新确定的类中心点距上个类中心点的最大偏移量小于等于指定的量(SPSS默认为0)时终止聚类。
壹
贰
例子1:31个省区小康和现代化指数的聚类分析
利用2001年全国31个省市自治区各类小康和现代化指数的数据,对地区进行聚类分析。
夹角余弦
相关系数
计数变量(Count)(离散变量)的聚类统计量
对于计数变量或离散变量,可用于度量样本(或变量)之间的相似性或不相似性程度的统计量主要有卡方测度(Chi-square measure)和Phi方测度(Phi-square measure)。
二值(Binary)变量的聚类统计量
*
组间平均连接法(Between-group linkage)
03
组内平均连接法(Within-group linkage)
04
重心法(Centroid clustering)
05
中位数法(Median clustering)
06
离差平方和法(Ward’s method)
07
最短距离法(Nearest Neighbor) 以两类中距离最近的两个个体之间的距离作为类间距离。
SPSS聚类的分析详解
二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:
第十一章 聚类分析
瘤病症的分类、大气污染的轻重、学习成绩的分几 等以及社会经济发展状况的分类等等。
以往,人们对研究对象的分类(例如将植物分为不
同的门、纲、目、科、属、种)大都只凭这些研究 对象的直观形态描述来进行。但随着分类工作变得 更细致时,往往要求从数值上进行考虑。这时需要 用到聚类分析方法。
第一节 聚类分析的一些基本概念 本例特殊情 观测号当做分类对象,而把变量当作为分类依据。并记 Basic Concepts of Clustering Analysis 况,它所有变量的 事例的数目为n,变量的数目为m,那么第i个事例的观 单位相同且变异程 察值将是一个1×m的行向量,记为xi=(xi1, xi2, …, xim), 度也基本一致 其中i =1,2,…,n。 在大多数情况下具有不同的单 注意:xi1和xi2,…,xim 位和有不同的变异程度(方差)。 10个学生8门课程的学习成绩
⑶ 对于一切xi和xj,cij =cji。 常用的相似系数有以下4种(P190): 1. 相关系数 2. 夹角余弦 3. 指数相似系数 4. 绝对值指数尺度
第一节 聚类分析的一些基本概念 Basic Concepts of Clustering Analysis
任何符合下述四个条件的统计量 dij 均可被定义为事
聚类分析是一种应用变量的数值特征来对研究对象
进行分类的非常有用的统计分析方法。
第一节 聚类分析的一些基本概念 但可以比较不同方法得到的划分结果,即可以从实践
的角度来确定那个分类结果比较合理,那个分类结果 Basic Concepts of Clustering Analysis 不那么理想。
意类 k 之间的距离系数为: drk=pdkp+q dkq+ dpq+ | dkp- dkq |
系统聚类法
系统聚类法是一种聚类分析方法,它通过迭代不断调整类簇中心来将数据点聚类到相应的类簇中。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
这些算法的共同点是都通过迭代来改进聚类结果。
系统聚类法是一种基于计算机的数据分析方法,它可以将相似的数据点聚类到同一类簇中,从而发现数据的结构和模式。
系统聚类法通常用于无监督学习,即对于没有标记的数据进行聚类。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
基于划分的聚类方法,如K-Means,是一种迭代算法。
它首先随机选取K个数据点作为类簇中心,然后将其他的数据点分配到最近的类簇中。
接着,它会根据分配的数据点重新计算类簇中心,并再次重新分配数据点。
这个过程会不断重复直到满足某种停止条件。
基于层次的聚类方法,如层次聚类,是一种
分治算法。
它首先将所有数据点看作是单独的类簇,然后不断地将最相似的两个类簇合并。
每次合并都会形成一层新的类簇层次结构,直到所有数据点被合并为一个类簇。
系统聚类法还可以根据不同的度量标准来计算类簇相似度,常用的度量标准有欧几里得距离、曼哈顿距离、余弦相似度等。
系统聚类法在很多领域都有广泛的应用,如市场细分、文本分类、图像识别、生物信息学等。
不过,系统聚类法也有一些缺陷,如对异常值敏感、对初始聚类中心的选择敏感、对类簇数量的限制等。
因此,在使用系统聚类法时需要谨慎选择算法和参数,并结合其他方法进行验证。
聚类分析之系统聚类法
聚类分析之系统聚类法系统聚类法是一种常用的聚类分析方法,旨在将样本集合划分为不同的簇,使得同一个簇内的样本之间相似度较高,而不同簇之间的样本相似度较低。
本文将介绍系统聚类法的基本原理、常用的聚类算法以及应用领域等内容。
系统聚类法的基本原理是通过计算样本之间的距离或相似度来判断它们之间的关系,并将相似的样本归为同一簇。
在系统聚类法中,最常用的距离度量方法有欧氏距离、曼哈顿距离和余弦相似度等。
通过选择适当的距离度量方法,可以更准确地描述样本之间的差异。
常见的系统聚类算法包括层次聚类法、BIRCH算法和DBSCAN算法等。
层次聚类法是一种自底向上的聚类算法,它从每个样本开始,逐步合并相邻的样本,直到所有样本都被合并为一个簇。
BIRCH算法是一种基于CF树的聚类算法,它通过构建一种多叉树的数据结构来实现高效的聚类计算。
DBSCAN算法则是一种基于密度的聚类算法,它通过确定样本的邻域密度来判断是否属于同一簇。
系统聚类法在许多领域中都有广泛的应用。
在生物信息学领域,系统聚类法可以用于基因表达数据的聚类分析,从而找到具有相似表达模式的基因。
在市场营销领域,系统聚类法可以用于将顾客划分为不同的群体,从而为不同群体制定个性化的营销策略。
在图像处理领域,系统聚类法可以用于图像分割,将具有相似颜色或纹理特征的像素归为同一簇。
尽管系统聚类法具有广泛的应用前景,但也存在一些挑战和限制。
首先,系统聚类法对初始样本集合的选择较为敏感,不同的初始选择可能导致不同的聚类结果。
其次,系统聚类法在处理大规模数据时计算复杂度较高,需要消耗大量的计算资源。
此外,系统聚类法还面临着噪声和异常值的影响,这些值可能会干扰正常的聚类结果。
总之,系统聚类法是一种重要的聚类分析方法,通过计算样本之间的距离或相似度,将相似的样本归为同一簇。
它在生物信息学、市场营销和图像处理等领域具有广泛的应用价值。
然而,系统聚类法仍面临一些挑战和限制,如初始样本选择、计算复杂度和噪声处理等问题。
系统聚类分析
0.26
0.04
0.00
0.15
0.00
0.00
二、距离的计算
常见的距离有 ① 绝对值距离
d ij xik x jk
② 欧氏距离
d ij ( xik x jk ) 2
k 1 n
n
(i, j 1,2,, m)
(3.4.5)
i 1
(i, j 1,2,, m)
(3.4.6)
计算原来各类与新类之间的距离,这样就得到 一个新的(m-1)阶的距离矩阵; 再从新的 距离矩阵中选出最小者dij,把Gi和Gj归并成新 类;再计算各类与新类的距离,这样一直下去, 直至各分类对象被归为一类为止。
例题:以下根据式(3.4.9)中的距离矩阵,
用最短距离聚类法对某地区的9个农业区进行 聚类分析。
1 m x j xij 0 m i 1 sj 1 m ( xij x ) 2 1 j m i 1
③ 极大值标准化,即
xij xij max{xij }
i
(i 1,2, , m; j 1,2, , n)
(3.4.3)
经过这种标准化所得的新数据,各要素的 极大值为1,其余各数值小于1。
假设有m 个聚类的对象,每一个聚类对象 都有n个要素构成。它们所对应的要素数据可 用表3.4.1给出。
表3.4.1 聚类对象与要素数据
要 聚 类 对 象 素
x1
x11 x21 xi1 xm1
x2 x j
x12 x22 xi 2 x1 j xij
xn
x1n xin xmn
d8,10=min{d84,d89}= min{1.29,1.40}=1.29
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统聚类法过程
1
最短距离系统聚类法
根据五个学生的六门课的成绩,对这五个学生进行分类
ID 学生1 学生2 学生3 学生4 学生5
数学 65 77 67 80 74
物理 61 77 63 69 70
化学 72 76 49 75 80
语文 84 64 65 74 84
历史 81 70 67 74 81
重心法: (Centroid clustering)
D (G p , Gq ) d ( x p , xq )
两个类的重心如下:
xp
xp2
x p1 x p 2 2
D(G p , Gq )
xq
xq1 xq 2 2
xq 2
x p1
xq1
ID 1 2 3 4 5 6 7 8 9 10
数学 物理 65 76 67 84 74 78 66 77 83 86 61 77 63 95 70 84 71 71 100 94
绝对值距离:
p d ( x1 , x2 ) | x1k x2 k | 27 k 1
欧氏距离:
d ( x1 , x2 )
分类准则
距离近的样品聚为一类 数据的一般的格式
样品与样品之间的常用距离(样品i与样品j)
p 绝对值距离:d ( xi , x j ) | xik x jk | k 1
欧氏距离:d ( x i, xj )
2 ( x x ) ik jk k 1
1 q
p
p Minkowski距离: d ( xi , x j ) ( xik x jk )q k 1
英语 79 55 57 63 74
1.写出样品间的距离矩阵(以欧氏距离为例)
0 G1 38.9 G 0 2 D0 39.7 32.2 G3 0 26.5 15.9 32.4 0 G4 15.8 30.9 43.6 18.2 0 G 5
引例3 下表是中国大陆地区31个省级行政区域的月人均消费 数据(单位:元),请根据消费水平对这31个省级行政区域 进行分类。
城市 北京 天津 河北 …… 青海 宁夏 新疆 人均 粮食 支出 21.3 21.5 18.25 …… 20.33 19.75 21.03 人均副 食支出 124.89 122.39 90.21 …… 75.64 70.24 78.55 人均烟、 酒、饮 料支出 35.43 29.08 24.45 …… 20.88 18.67 14.35 人均 衣着 支出 93.01 55.04 62.48 …… 53.81 61.75 64.98 人均日 人均水 人均其他 用杂品 电燃料 非商品支 支出 支出 出 20.58 11.3 7.45 …… 10.06 10.08 9.83 43.97 54.88 47.5 …… 32.82 40.26 33.87 433.73 288.13 178.84 …… 171.32 165.22 161.67
p
ki kj p
x
=0.983
2 2 x x ki kj k 1
类与类之间的常用距离
1.由一个样品组成的类是最基本的类;如果每一类都由一 个样品组成,那么样品间的距离就是类间距离。 2.如果某一类包含不止一个样品,那么就要确定类间距 离,类间距离是基于样品间距离定义的,大致有如下几种 定义方式: 记号:G p 和 Gq 是两个类,D(G p , Gq )是这两个类的距离。 xi G p x j Gq d ( xi , x j ) 是这两个样品的距离。
历史 81 70 67
英语 79 55 57
相关系数: (数学, 语文)
x
k 1 p k 1
p
ki
xi xkj x j
2 p 2
xki xi xkj x j
k 1
= 0.663
夹角余弦:r (数学, 语文)
x
k 1 p k 1
最短距离法: (Nearest Neighbor)
D (G p , Gq ) min d ( xi , x j )
D(G p , Gq )
最长距离法: (Furthest Neighbor)
D(G p , Gq ) max d ( xi , x j )
D(G p , Gq )
Chebyshev距离:d ( x i , x j ) max | xik x jk |
1 k p
1 马氏距离: d ( x i , x j ) ( xi x j ) ( xi x j ) 其中: xi ( xi1 , xi 2 ,, xip ) x j ( x j1 , x j 2 ,, x jp ) 为样本的协方差矩阵
组间平均连接法: (Between-group Linkage)
d1 d 2 d3 d 4 D (G p , Gq ) 4
组内平均连接法 (Within-group Linkage)
d1 d 2 d3 d 4 d5 d 6 D(G p , Gq ) 6
引例2 下表是30个学生的六门课的成绩。根据这30个人的成 绩,将六门课程分为两类。
序号 1 2 3 …… 28 29 30 数学 65 77 67 …… 77 91 78 物理 61 77 63 …… 90 82 84 化学 72 76 49 …… 85 84 100 语文 84 64 65 …… 68 54 51 历史 81 70 67 …… 73 62 60 英语 79 55 57 …… 76 60 60
2
x
k 1
p
ki
xi
x
k 1
p
kj
xj
2
夹角余弦: r ( X i , X j )
x
k 1 p k 1
p
ki kj p
x
2 2 x x ki kj k 1
序号 1 2 3
数学 65 77 67
物理 61 77 63
化学 72 76 49
语文 84 64 65
序号 1 2 3 …… 28 29 30 数学 65 77 67 …… 77 91 78 物理 61 77 63 …… 90 82 84 化学 72 76 49 …… 85 84 100 语文 84 64 65 …… 68 54 51 历史 81 70 67 …… 73 62 60 英语 79 55 57 …… 76 60 60
如何分类
引例1中,如果只考虑数学成绩(取 前十个学生的成绩来分析),可以 将十个人的分数画在x轴上,然后把 接近的点放入一类。 ID 1 2 3 4 5 6 7 8 9 10 数学 65 76 67 84 74 78 66 77 83 86
引例1中,如果考虑数学成绩和物理成绩 (取前十个学生的成绩来分析),可以 将十个人的两个分数看作是 xoy 平面上 的点,然后把接近的点分为一类。 ID 1 2 3 4 5 6 7 8 9 10 数学 物理 65 76 67 84 74 78 66 77 83 86 61 77 63 95 70 84 71 71 100 94
2.将每一个样品看做是一个类,即 G1 , G2 , G3 , G4 , G5 观察 D(G1 , G5 ) 15.8最小,故将G1与G5聚为一类,记为G6 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D1 D(G6 , G2 ) max{D(G1 , G2 ), D(G5 , G2 )} max{38.9,30.9} 38.9 D(G6 , G3 ) max{D (G1 , G3 ), D(G5 , G3 )} max{39.7, 43.6} 43.6 D(G6 , G4 ) max{D(G1 , G4 ), D (G5 , G4 )} max{26.5,18.2} 26.5
2.将每一个样品看做是一个类,即 G1 , G2 , G3 , G4 , G5
观察 D(G1 , G5 ) 15.8最小,故将G1与G5聚为一类,记为G6 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D1
D(G6 , G2 ) min{D(G1 , G2 ), D(G5 , G2 )} min{38.9,30.9} 30.9 D(G6 , G3 ) min{D(G1 , G3 ), D(G5 , G3 )} min{39.7, 43.6} 39.7 D(G6 , G4 ) min{D(G1 , G4 ), D(G5 , G4 )} min{26.5,18.2} 18.2
0 G6 30.9 G 0 2 D1 39.7 32.2 G3 0 18.2 15.9 32.4 0 G4
3.观察 D(G2 , G4 ) 15.9最小,故将G2与G4聚为一类,记为G7 . 计算新类与其余各类之间的距离,得到新的距离矩阵D2 D(G7 , G6 ) min{D(G2 , G6 ), D(G4 , G6 )} min{30.9,18.2} 18.2 D(G7 , G3 ) min{D(G2 , 2
2 ( x x ) 1k 2k 19.416 k 1 p
Minkowski距离:
3 d ( x1 , x2 ) ( x1k x2 k ) 17.573 k 1
p 1 3
Chebyshev距离: d ( x1 , x2 ) max | x1k x2 k | 16
数学模型与数学建模之
聚类分析之 系统聚类法及其SPSS实现