2012年普通高等学校招生全国统一考试数学理试题(广东卷)(解析版)

合集下载

2012广东高考理数

2012广东高考理数

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6} 3 若向量BA=(2,3),C A =(4,7),则BC =A (-2,-4)B (3,4)C (6,10D (-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)x D.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49B.13C.29D.198.对任意两个非零的平面向量α和β,定义。

若平面向量a,b满足|a|≥|b|>0,a与b的夹角,且a·b和b·a都在集合中,则A.12B.1C.32D.5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。

10. 的展开式中x³的系数为______。

(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。

12.曲线y=x3-x+3在点(1,3)处的切线方程为。

13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。

(二)选做题(14 - 15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

2012年广东高考试题(理数,word解析版)

2012年广东高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i--==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)B C B A C A =-=-- 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( )()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2012年高考数学广东卷含参考答案(理科)

2012年高考数学广东卷含参考答案(理科)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B y =C . 1()2xy =D . 1y x x=+5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-16.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ 和βα 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B .1 C .32 D .52二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 10.261()x x+的展开式中3x 的系数为__________.(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =________. 12.曲线33y x x =-+在点(1,3)处的切线方程为__________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为_______.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的 参数方程分别为⎩⎨⎧==ty t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,圆O 的半径为1,A ,B ,C 是圆上三点,且满足︒=∠30ABC ,过点A 做圆O 的切线与OC 的延长线交与点P ,则PA= .图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(2)(πω+=x x f (其中R x ∈>,0ω)的最小正周期为π10.(1) 求ω的值;(2) 设,56)355(,2,0,-=+⎥⎦⎤⎢⎣⎡∈παπβαf 1716)655(=-πβf ,求)cos(βα+的值. 17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100], (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a ++⋅⋅⋅+<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1) 求椭圆C 的方程(2) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.)21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012年普通高等学校招生全国统一考试(广东卷)理科数学A 卷参考答案一、选择题:1. D2. C3. A4. A5. B6. C7. D8. C 二、填空题:9.12x x ⎧⎫≤-⎨⎬⎩⎭ 10. 20 11. 2n-1 12. y=2x+1 13. 814. (1,1) 15.三、解答题:16. 解:(1)由f(x)得: 其最小正周期(2)由(1)得:同理由:又17. 解:(1)由图得:(2)由图得:由题知:21105T w w ππ==⇒=15w ∴=0,w >又1()2cos()56f x x π=+515(5)2cos 53536f παπαπ⎡⎤⎛⎫∴+=++ ⎪⎢⎥⎝⎭⎣⎦62cos 25πα⎛⎫=+=-⎪⎝⎭3sin 5α⇒=5168(5)cos 61717f βπβ-==得:,0,παβ⎡⎤∈⎢⎥4cos 5α∴==15sin 17β=cos()cos cos sin sin αβαβαβ∴+=-483151351751785=⨯-⨯=-()0.0060.0060.010.0540.006101x +++++⨯=0.018x ⇒=()()8090100.18901000.006100.06P X x P X ≤<==≤<=⨯=[)8090∴⨯在,的学生人数为:0.1850=9[)90100⨯在,的学生人数为:0.0650=30,1,2ξ=()()()2122993322212121212910,1,2222222C C C C P P P C C C ξξξ=========18. 解: (1)证明:(2)由(1)得:在矩形ABCD 中,如图所示建立直角坐标系,由(1)知,所以,二面角B-PC-A 的正切值为:3。

2012年广东高考理科数学卷(试题和答案)

2012年广东高考理科数学卷(试题和答案)

(二)选做题(14、15 题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在平面直角坐标系中 xoy 中,曲线 C1 和曲线 C 2 的 参数方程分别为 ⎨ 为 .
⎧x = t ⎩y = t
( t 为参数)和 ⎨
⎧ ⎪ x = 2 cosθ ( θ 为参数) ,则曲线 C1 和曲线 C 2 的交点坐标 ⎪ ⎩ y = 2 sin θ
β=
α ⋅β .若平面向量 a , b 满足 a ≥ b > 0 , a 与 b 的夹 β
⎧n ⎫ ⎟ ,且 a b 和 b a 都在集合 ⎨ | n ∈ Z ⎬ 中,则 a b = 4⎠ ⎩2 ⎭
B. 1 C.
1 2
3 2
D.
5 2
第 1 页 共 4 页
二、填空题:本大题共 7 小题.考生 作答 6 小题.每小题 5 分,满分 30 分. (一)必做题(9~13 题) 9.不等式 | x + 2 | − | x |≤ 1 的解集为___________. 10. ( x + ) 的展开式中 x 3 的系数为__________. (用数字作答)
8. 选 C. 【提示】 a b =
a b
⋅ cos θ =
b n1 n nn ⋅ cos θ = 2 , 两 式 相 乘 , 得 cos 2 θ = 1 2 , ,b a= 2 2 4 a
nn 1 1 nn 1 3 ∵ < cos 2 θ < 1 ,∴ < 1 2 < 1 ,由于 n ∈ Z ,故 1 2 = × . 2 2 4 4 2 2
2012 年普通高等学校招生全国统一考试(广东卷)
数学(理科 A 卷)
本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟. 一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.设 i 为虚数单位,则复数 A. 6 + 5i

2mxt-2012年广东高考理科数学试题与答案(解析版)

2mxt-2012年广东高考理科数学试题与答案(解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i --==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==u u u r u u u r;则BC =u u u r ( )()A (2,4)-- ()B (2,4) ()C (,)610()D (,)-6-10【解析】选A(2,4)BC BA CA =-=--u u u r u u u r u u u r 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V πππ=⨯⨯+⨯⨯-=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=g o g ;若平面向量,a b r r 满足0a b ≥>r r ,a r 与b r 的夹角(0,)4πθ∈,且,a b b a r r r r o o 都在集合}2nn Z ⎧∈⎨⎩中,则a b =r r o ( )()A 12()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a b a b b a a b b a baθθθ=>=>⇒⨯=∈r r r r r r r r r r o o o o r r,a b b a r r r r o o 都在集合}2n n Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=r r r r r r o o o(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。

2012年广东高考理科数学试题及答案

2012年广东高考理科数学试题及答案

试卷类型:A2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 . 设i为虚数单位,则复数56ii=A 6+5iB 6-5iC -6+5iD -6-5i2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM=A .UB {1,3,5}C {3,5,6}D {2,4,6}3 若向量BA=(2,3),CA=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln(x+2)B.y=-1x C.y=(12)x D.y=x+1x5.已知变量x,y满足约束条件,则z=3x+y的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A. 49B.13C.29D.198.对任意两个非零的平面向量α和β,定义。

2012广东高考理科数学试题及答案(希望多多支持)

2012广东高考理科数学试题及答案(希望多多支持)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题1.(复数)设i 为虚数单位,则复数56ii-=( ) A.65i +B.65i -C.65i -+D.65i --2.(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( ) A.UB.{}1,3,5C.{}3,5,6D.{}2,4,63.(向量)若向量()2,3BA = ,()4,7CA = ,则BC =( )A.()2,4--B.()2,4C.()6,10D.()6,10--4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A.()ln 2y x =+B.y =C.12xy ⎛⎫= ⎪⎝⎭D.1y x x=+5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A.12B.11C.3D.1-6.(立体几何)某几何体的三视图如图1所示,它的体积为( )A.12πB.45πC.57πD.81π7.(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.198.对任意两个非零的平面向量α和β,定义⋅=⋅ αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A.12B.1C.32D.52二、填空题(一)必做题(9—13题)9.(不等式)不等式21x x +-≤的解集为__________________.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________. 12.曲线33y x x =-+在点()1,3处的切线方程为___________________.13.(算法)执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为______. (二)选做题(14—15题)14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =__________.三、解答题16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.19.设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列.(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++< .20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e 且椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且O A B ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = . (Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.2012广东高考理科数学答案一、选择题. 1.解析:D.56i65i i-=--. 2.解析:C.{}3,5,6U C M =.3.解析:A.()2,4BC BA CA =-=--.4.解析:A.()ln 2y x =+在()2,-+∞上是增函数.5.解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11.6.解析:C.该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.7.解析:D.两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为51459=. 8.解析:C.⋅==⋅ a a b a b b b b 1cos 2k θ=,= b b a a 2cos 2kθ=,两式相乘,可得212cos 4k k θ=.因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以1k 、2k 都是正整数,于是2121cos 124k k θ<=<,即1224k k <<,所以123k k =.而0≥>a b ,所以13k =,21k =,于是32=a b . 二、填空题9.解析:1,2⎛⎤-∞- ⎥⎝⎦.2x x +-的几何意义是x 到2-的距离与x 到0的距离的差,画出数轴,先找出临界“21x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.解析:20.621x x ⎛⎫+ ⎪⎝⎭的展开式通项为()621231661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭,令1233k -=,解得3k =,所以621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为3620C =.11.解析:21n -.设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-.12.解析:210x y -+=.21|3112x y ='=⨯-=,所以切线方程为()321y x -=-,即210x y -+=.13.解析:8.第一次循环,()11221s =⨯⨯=,4i =,2k =;第二次循环,()12442s =⨯⨯=,6i =,3k =;第三次循环,()14683s =⨯⨯=,8i =,4k =.此时退出循环,输出s 的值为8.14.解析:()1,1.法1:曲线1C 的普通方程是2y x =(0y ≥),曲线2C 的普通方程是222x y +=,联立解得11x y =⎧⎨=⎩,所以交点坐标为()1,1.法2:联立t θθ⎧=⎪=22sin θθ=,即22cos 20θθ+-=,解得cosθ=cos θ=(舍去),所以11t =⎧⎪=,交点坐标为()1,1.15.连接OA ,则60AOC ∠=︒,90OAP ∠=︒,因为1OA =,所以PA =三、解答题16.解析:(Ⅰ)210T ππω==,所以15ω=. (Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c o s i n 5α=,15sin 17β,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-.17.解析:(Ⅰ)由()0.00630.010.054101x ⨯+++⨯=,解得0.018x =.(Ⅱ)分数在[)80,90、[]90,100的人数分别是500.018109⨯⨯=人、500.006103⨯⨯=人.所以ξ的取值为0、1、2.()023921236606611C C P C ξ====,()113921227916622C C P C ξ====,()20392123126622C C P C ξ====,所以ξ的数学期望是691111012112222222E ξ=⨯+⨯+⨯==. 18.解析:(Ⅰ)因为PC ⊥平面BDE ,BD ⊂平面BDE ,所以PC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.而PC PA P = ,PC ⊂平面PAC ,PA ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)由(Ⅰ)可知BD ⊥平面PAC ,而AC ⊂平面PAC ,所以BD AC ⊥,而A B C D 为矩形,所以ABCD 为正方形,于是2AB AD ==.法1:以A 点为原点,AB 、AD 、AP 为x 轴、y 轴、z 轴,建立空间直角坐标系A BDP -.则()0,0,1P 、()2,2,0C 、()2,0,0B 、()0,2,0D ,于是()0,2,0BC =,()2,0,1PB =-.设平面PBC 的一个法向量为=1n (),,x y z ,则0BC PB ⎧⋅=⎪⎨⋅=⎪⎩11n n ,从而2020y x z =⎧⎨-=⎩,令1x =,得()1,0,2=1n .而平面PAC 的一个法向量为=2n ()2,2,0BD =-.所以二面角B P C A --的余弦值为cos ,⋅<>==121212=n n n n n n ,于是二面角B PC A --的正切值为3.法2:设AC 与BD 交于点O ,连接OE .因为PC ⊥平面BDE ,OE ⊂平面BDE ,BE ⊂平面BDE ,所以PC OE ⊥,PC BE ⊥,于是OEB ∠就是二面角B PC A --的平面角.又因为BD ⊥平面PAC ,OE ⊂平面PAC ,所以OEB ∆是直角三角形.由OEC ∆∽PAC ∆可得OE PAOC PC=,而2AB AD ==,所以AC =,OC =1PA =,所以3PC =,于是133PA OE OC PC =⨯==,而OB =B PC A --的正切值为3OBOE=. 19.解析:(Ⅰ)由()()12123213232725a a a a a a a a ⎧=-⎪+=-⎨⎪+=+⎩,解得11a =.(Ⅱ)由11221n n n S a ++=-+可得1221n n n S a -=-+(2n ≥),两式相减,可得122n n n n a a a +=--,即132n n n a a +=+,即()11232n nn n a a +++=+,所以数列{}2n na +(2n ≥)是一个以24a +为首项,3为公比的等比数列.由1223a a =-可得,25a =,所以2293n n n a -+=⨯,即32n n n a =-(2n ≥),当1n =时,11a =,也满足该式子,所以数列{}n a 的通项公式是32n n n a =-.(Ⅲ)因为1113323222n n n n n ----=⋅≥⋅=,所以1323n n n --≥,所以1113n n a -≤,于是112111111131331113323213nnn n a a a -⎛⎫- ⎪⎡⎤⎛⎫⎝⎭+++≤+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- .点评:上述证法实质上是证明了一个加强命题1211131123nn a a a ⎡⎤⎛⎫+++≤-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,该加强命题的思考过程如下.考虑构造一个公比为q 的等比数列{}n b ,其前n 项和为()111n n b q T q-=-,希望能得到()1121111312nn b q a a a q -+++≤<- ,考虑到()11111n b q b q q -<--,所以令1312b q =-即可.由n a 的通项公式的形式可大胆尝试令13q =,则11b =,于是113n n b -=,此时只需证明1113n n n b a -≤=就可以了.当然,q 的选取并不唯一,也可令12q =,此时134b =,132n n b +=,与选取13q =不同的地方在于,当1n =时,1n n b a >,当2n ≥时,1n nb a <,所以此时我们不能从第一项就开始放缩,应该保留前几项,之后的再放缩,下面给出其证法.当1n =时,11312a =<;当2n =时,121113152a a +=+<;当3n =时,12311111315192a a a ++=++<. 当4n ≥时,1n nb a <,所以 31231132211111113311151951916212n n a a a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+++<+++<+++<- .综上所述,命题获证.下面再给出1211132n a a a +++< 的两个证法. 法1:(数学归纳法) ①当1n =时,左边111a ==,右边32=,命题成立. ②假设当n k =(2k ≥,k ∈N )时成立,即113322ki ii =<-∑成立.为了证明当1n k =+时命题也成立,我们首先证明不等式:1111132332i i i i++<⋅--(1i ≥,i ∈N ). 要证1111132332i i i i++<⋅--,只需证1111132332i i i i+++<--⋅,只需证11132332i i i i +++->-⋅,只需证1232i i +->-⋅,只需证23->-,该式子明显成立,所以1111132332i i i i++<⋅--. 于是当1n k =+时,111211111113311323232332322k k k i i i i i ii i i ++====+<+<+⨯=----∑∑∑,所以命题在1n k =+时也成立.综合①②,由数学归纳法可得,对一切正整数n ,有1211132n a a a +++< . 备注:不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,其实这是一个错误的认识.法2:(裂项相消法)(南海中学钱耀周提供)当1n =时,11312a =<显然成立.当2n =时,121113152a a +=+<显然成立. 当3n ≥时,()32122nn n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+- ()12211221222221n n n n n n C C C C n n --=+⋅+⋅++⋅>⋅=- ,又因为()252221a =>⨯⨯-,所以()21n a n n >-(2n ≥),所以()111112121n a n n n n ⎛⎫<=- ⎪--⎝⎭(2n ≥),所以 123111111111111311112234122n a a a a n n n ⎛⎫⎛⎫++++<+-+-++-=+-< ⎪ ⎪-⎝⎭⎝⎭ . 综上所述,命题获证.20.解析:(Ⅰ)因为e =2223c a =,于是223a b =.设椭圆C 上任一点(),P x y ,则()()2222222222122443y PQ x y a y y y b b ⎛⎫=+-=-+-=--++ ⎪⎝⎭(b y b -≤≤).当01b <<时,2PQ 在y b =-时取到最大值,且最大值为244b b ++,由2449b b ++=解得1b =,与假设01b <<不符合,舍去.当1b ≥时,2PQ 在1y =-时取到最大值,且最大值为236b +,由2369b +=解得21b =.于是23a =,椭圆C 的方程是2213x y +=.(Ⅱ)圆心到直线l的距离为d =,弦长AB =OAB ∆的面积为12S AB d =⋅=,于是()2222211124S d d d ⎛⎫=-=--+ ⎪⎝⎭.而(),M m n 是椭圆上的点,所以2213m n +=,即2233m n =-,于是22221132d m n n ==+-,而11n -≤≤,所以201n ≤≤,21323n ≤-≤,所以2113d ≤≤,于是当212d =时,2S 取到最大值14,此时S 取到最大值12,此时212n =,232m =.综上所述,椭圆上存在四个点⎝⎭、⎛ ⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 21.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解.因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况:①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞.②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ .③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则1x =2x =,于是{}12B x x x x x =<>或.当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中1x =2x =.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得所以()f x 在D 内有极大值点1,极小值点a .②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.。

2012高考数学理(广东卷)解析

2012高考数学理(广东卷)解析

功,对于平时只重难、偏、怪题的学生来说,并不是好事,虽然题难度不大,但要把分数拿到也非易事,对于数学复习来说,无疑释放了一个重要信息——就是基本功扎实是非常重要的。

也就是不管高考题千变万变,我们的复习要以不变应万变,“考点和知识考查是不变的”。

5. 中间层面高兴,尖优生欲哭无泪。

整卷由于只顾考生的得分率和平均分,迎合社会的好评,因而少了区分度较高的题,中间学生来说是该大欢喜,但对于高层学生来说就毫无优势。

2012年广东省理科数学详细答案一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 解:22565665i i i i ii--=-=-+,故选C2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则C M = A .U B {1,3,5} C {3,5,6} D {2,4,6} 选C3 若向量BA=(2,3),C A =(4,7),则BC = A (-2,-4) B (3,4) C (6,10 D (-6,-10)解:(2,3)(4,7)(2,4)BC BA AC =+=-=--,故选 A4.下列函数中,在区间(0,+∞)上为增函数的是 A.y=ln (x+2)C.y=(12)x D.y=x+1x解:A5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y的最大值为 A.12 B.11 C.3 D.-1解:画约束区域如右,令z=0得3y x =-,化目标函数为斜截式方程:3y x z =-+得,当3,2x y ==时m ax 11z =,故选B【评】1-5题是送分题,确是宽和仁厚的题。

6,某几何体的三视图如图1所示,它的体积为xBA .12π B.45π C.57π D.81π解:几何体直观图如右,几何体由一个圆柱和一个同底的圆锥构成。

2012高考理科数学(广东版)试卷真题及答案

2012高考理科数学(广东版)试卷真题及答案

绝密★使用前试卷类型:A20##普通高等学校招生全国统一考试〔##卷〕数学〔理科〕本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的##和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型〔B〕填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角"条形码粘贴处〞。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为V=1/3Sh其中S为锥体的底面积,h为锥体的高。

第I卷选择题〔共40分〕一、选择题:本大题共8小题,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i为虚数单位,则复数56i i-=〔〕A.65i+B.65i-C.65i-+D.65i--2.设集合{1,2,3,4,5,6}U=,{1,2,4}M=,则UM =〔〕A.U B.{1,3,5}C.{3,5,6}D.{2,4,6}3.若向量(2,3)BA =,(4,7)CA =,则BC =〔〕A.(2,4)--B.(2,4)C.(6,10)D.(6,10)-4.下列函数中,在区间(0,)+∞上为增函数的是〔〕A.ln(2)y x=+B.y=.12xy⎛⎫= ⎪⎝⎭D.1y xx=+5.已知变量x,y满足约束条件211yx yx y≤⎧⎪+≥⎨⎪-≤⎩;则3z x y=+的最大值为〔〕A.12B.11C.3D.1-6.某几何体的三视图如图1所示,它的体积为〔 〕A .12πB .45πC .57πD .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 〔 〕A .49B .13C .29D .198.对任意两个非零的平面向量α和β,定义αβαβ=ββ。

2012年广东高考试题(理数,word解析版)

2012年广东高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i--==--,故选D. 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)B C B A C A =-=-- 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B本题考查线性规划问题.首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分即为约束条件对应的可行域,当直线y=-3x+z 经过点A 时,z 取得最大值.由⇒,此时,z=y+3x=11.6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2012年高考理科数学广东卷(含详细答案)

2012年高考理科数学广东卷(含详细答案)

数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩(t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a xax=-++在D内的极值点.数学试卷第4页(共42页)数学试卷第5页(共42页)数学试卷第6页(共42页)3 / 142012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】(2,BC BA AC BA CA =+=-=-【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--,再由BC AC AB =-能求数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)||cos ||a b θ,||cos ||y b a θ,x ,,所以24cos ,所以cos θ5 / 143||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 333||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即数学试卷 第16页(共42页) 数学试卷 第17页(共42页)数学试卷 第18页(共42页)60,所以60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题tan603=7 / 14(Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)PAPC P =,PAC ; ACBD O =,连结,OE ,BE ⊥BE ,所以(2,DB=-的一个法向量,(0,2,0)BC=,(2,0,1)BP=-设平面PBC的法向量为(,,)n x y z=202n BC yn BP x⎧==⎪⎨=-⎪⎩2,取(1,0,2)n=,的平面角为θ,2||||8510DB nDB n==所以二面角B PC A--的正切值为3.9 / 14数学试卷 第28页(共42页) 数学试卷 第29页(共42页)数学试卷 第30页(共42页)(Ⅰ)2n n S a +=17a a =⎧⎪-⇒⎨133n -,所以时,111a =1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>1)-数学试卷 第34页(共42页) 数学1||||sin 2OA OB AOB ∠的距离2d =,即12)(,)x +∞,2x <,所以2(,Ax B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=1<时,0∆<,则()0g x >恒成立,A B =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪⎪ ⎭⎝2)(,)x +∞的变化情况如下表:a极值即可.【考点】导数的运算,利用导数求函数的极值,解含参的一元二次不等式,集合的基本运算数学试卷第40页(共42页)数学。

2012年广东高考理科数学试题及答案(详解) 2

2012年广东高考理科数学试题及答案(详解) 2

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。

锥体的体积公式为,其中S 为锥体的底面积,h 为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6} 3 若向量B A =(2,3),C A =(4,7),则B C =A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)x D.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。

若平面向量a,b满足|a|≥|b|>0,a 与b的夹角,且a b和b a都在集合中,则A.12 B.1 C. 32D. 5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。

10. 的展开式中x³的系数为______。

(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。

12.曲线y=x3-x+3在点(1,3)处的切线方程为。

13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。

2012年广东省高考数学试卷(理科)附送答案

2012年广东省高考数学试卷(理科)附送答案

2012年广东省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i2.(5分)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6}3.(5分)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4) C.(6,10)D.(﹣6,﹣10)4.(5分)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.C.D.5.(5分)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3 D.﹣16.(5分)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π7.(5分)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.8.(5分)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=()A.B.1 C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)不等式|x+2|﹣|x|≤1的解集为.10.(5分)中x3的系数为.(用数字作答)11.(5分)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=.12.(5分)曲线y=x3﹣x+3在点(1,3)处的切线方程为.13.(5分)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.14.(5分)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为.15.(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则图PA=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数f(x)=2cos(ωx+)(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,],f(5α+)=﹣,f(5β﹣)=,求cos(α+β)的值.17.(13分)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(13分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.19.(14分)设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.20.(14分)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.21.(14分)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.2012年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i【分析】把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.【解答】解:===﹣6﹣5i.故选D.2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6}【分析】直接利用补集的定义求出C U M.【解答】解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4) C.(6,10)D.(﹣6,﹣10)【分析】由向量,向量,知,再由,能求出结果.【解答】解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.C.D.【分析】利用对数函数的图象和性质可判断A正确;利用幂函数的图象和性质可判断B错误;利用指数函数的图象和性质可判断C正确;利用“对勾”函数的图象和性质可判断D的单调性【解答】解:A,y=ln(x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A正确;B,在[﹣1,+∞)上为减函数;排除BC,在R上为减函数;排除CD,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选A5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3 D.﹣1【分析】先画出线性约束条件表示的可行域,在将目标函数赋予几何意义,数形结合即可得目标函数的最值【解答】解:画出可行域如图阴影部分,由得C(3,2)目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11故选B6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【分析】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项【解答】解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.【分析】先求个位数与十位数之和为奇数的两位数的个数n,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求【解答】解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A,则A包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P(A)=故选D8.(5分)(2012•广东)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=()A.B.1 C.D.【分析】由题意可得○==,同理可得○==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1),由此求得n、m的值,从而得到○==的值.【解答】解:由题意可得○====,n ∈Z.同理可得○====,m∈Z.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1).故有n=3,m=1,∴○==,故选:C.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为.【分析】由题意,可先将不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集【解答】解:∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.(5分)(2012•广东)中x3的系数为20.(用数字作答)【分析】由题意,可先给出二项式的通项,再由通项确定出x3是展开式中的第几项,从而得出其系数【解答】解:由题意,的展开式的通项公式是Tr+1==x12﹣3r令12﹣3r=3得r=3所以中x3的系数为=20故答案为2011.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n= 2n﹣1.【分析】由题意,设公差为d,代入,直接解出公式d,再由等差数列的通项公式求出通项即可得到答案【解答】解:由于等差数列{a n}满足a1=1,,令公差为d所以1+2d=(1+d)2﹣4,解得d=±2又递增的等差数列{a n},可得d=2所以a n=1+2(n﹣1)=2n﹣1故答案为:2n﹣1.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0.【分析】先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.【解答】解:y′=3x2﹣1,令x=1,得切线斜率2,所以切线方程为y﹣3=2(x﹣1),即2x﹣y+1=0.故答案为:2x﹣y+1=0.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:814.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为(1,1).【分析】把曲线C1与C2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C1与C2的交点坐标.【解答】解:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组可得,故曲线C1与C2的交点坐标为(1,1),故答案为(1,1).15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C 是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则图PA=.【分析】连接OA,根据同弧所对的圆周角等于圆心角的一半,得到∠AOC=60°.因为直线PA与圆O相切于点A,且OA是半径,得到△PAO是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.【解答】解:连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=OAtan60°=故答案为:三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数f(x)=2cos(ωx+)(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,],f(5α+)=﹣,f(5β﹣)=,求cos(α+β)的值.【分析】(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;(2)由题设条件,可先对,与进行化简,求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.【解答】解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.【分析】(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.【解答】解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2∴18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.【分析】(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.【解答】解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为319.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.【分析】(1)在2S n=a n+1﹣2n+1+1中,令分别令n=1,2,可求得a2=2a1+3,a3=6a1+13,又a1,a2+5,a3成等差数列,从而可求得a1;(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n+2n ②,由①②可知{a n+2n}为首项是3,3为公比的等比数列,从而可求a n;(3)由a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1可得≤,累加后利用等比数列的求和公式可证得结论;【解答】解:(1)在2S n=a n+1﹣2n+1+1中,令n=1得:2S1=a2﹣22+1,令n=2得:2S2=a3﹣23+1,解得:a2=2a1+3,a3=6a1+13又2(a2+5)=a1+a3解得a1=1(2)由2S n=a n+1﹣2n+1+1,①2S n﹣1=a n﹣2n+1(n≥2),②=3a n+2n,①﹣②得:a n+1又a1=1,a2=5也满足a2=3a1+21,所以a n=3a n+2n对n∈N*成立+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+1∴a n+2n=3n,∴a n=3n﹣2n;(3)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1+++…+=<.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.【分析】(1)由得a2=3b2,椭圆方程为x2+3y2=3b2,求出椭圆上的点到点Q 的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M 的坐标.【解答】解:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1(舍)∴b=1∴椭圆方程为(2)假设M(m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.【分析】(1)根据方程2x2﹣3(1+a)x+6a=0的判别式讨论a的范围,求出相应D即可;(2)由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,然后根据(1)中讨论的a的取值范围分别求出函数极值即可.【解答】解:(1)记h(x)=2x2﹣3(1+a)x+6a(a<1)△=9(1+a)2﹣48a=(3a﹣1)(3a﹣9),当△<0,即,D=(0,+∞),当,当a≤0,.(2)由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,①当,f(x)在D内有一个极大值点a,有一个极小值点;②当,∵h(1)=2﹣3(1+a)+6a=3a﹣1≤0,h(a)=2a2﹣3(1+a)a+6a=3a﹣a2>0,∴1∉D,a∈D,∴f(x)在D内有一个极大值点a.③当a≤0,则a∉D,又∵h(1)=2﹣3(1+a)+6a=3a﹣1<0.∴f(x)在D内有无极值点.。

2012年广东省高考数学试卷(理科)答案与解析

2012年广东省高考数学试卷(理科)答案与解析

A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i 考点:复数代数形式的乘除运算.系的扩充和复数.专题:数系的扩充和复数.分析:把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.,由此能求出结果.解答:解:===﹣6﹣5i.故选D.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 考点:补集及其运算.合.专题:集合.分析:直接利用补集的定义求出C U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.题主要考查集合的表示方法、求集合的补集,属于基础题.,向量,则A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)考点:平面向量的坐标运算.面向量及应用.专题:平面向量及应用.分析:由向量,向量,知,再由,能求出结果.,能求出结果.解答:解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3) =(﹣2,﹣4). 故选A . 点评: 本题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算.题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算. 4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()上为增函数的是( )A .y =ln (x+2) B .C .D .考点: 对数函数的单调性与特殊点;函数单调性的判断与证明. 专题: 函数的性质及应用.数的性质及应用. 分析: 利用对数函数的图象和性质可判断A 正确;利用幂函数的图象和性质可判断B 错误;利用指数函数的图象和性质可判断C 正确;利用“对勾”函数的图象和性质可判断D 的单调性单调性 解答: 解:A ,y=ln (x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A 正确;确;B ,在[﹣1,+∞)上为减函数;排除B C ,在R 上为减函数;排除C D ,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D 故选故选 A 点评: 本题主要考查了常见函数的图象和性质,题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,特别是它们的单调性的判断,特别是它们的单调性的判断,简单复合函数简单复合函数的单调性,属基础题的单调性,属基础题5.(5分)(2012•广东)已知变量x ,y 满足约束条件,则z=3x+y 的最大值为( )A . 12 B . 11 C . 3D . ﹣1 考点: 简单线性规划. 专题: 不等式的解法及应用.等式的解法及应用. 分析: 先画出线性约束条件表示的可行域,画出线性约束条件表示的可行域,在将目标函数赋予几何意义,在将目标函数赋予几何意义,在将目标函数赋予几何意义,数形结合即可得目数形结合即可得目标函数的最值标函数的最值:画出可行域如图阴影部分,解答:解:画出可行域如图阴影部分,由得C(3,2)越大, 目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11 故选 B 故选点评:本题主要考查了线性规划的思想、方法、技巧,二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题识,数形结合的思想方法,属基础题6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为(广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π考点:由三视图求面积、体积.间位置关系与距离;空间角;空间向量及应用;立体几何.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项可得到正确选项解答:解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱的圆柱故它的体积是5×π×32+π×32×=57π故选C 点评: 本题考查三视图还原几何体及求组合体的体积,解题的关键是熟练记忆相关公式及由三视图得出几何体的长宽高等数据,且能根据几何体的几何特征选择恰当的公式进行求体积的运算,求体积的运算,7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(的概率是( )A .B .C .D .考点: 古典概型及其概率计算公式. 专题: 概率与统计.率与统计. 分析: 先求个位数与十位数之和为奇数的两位数的个数n ,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求奇数的两位数的个数,由古典概率的求解公式可求 解答: 解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45 记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A ,则A 包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P (A )=故选D 点评: 本题主要考查了古典概率的求解公式的应用,题主要考查了古典概率的求解公式的应用,解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、组组合的知识求解基本事件的个数合的知识求解基本事件的个数8.(5分)(2012•广东)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=( )A .B .1 C .D .考点: 平面向量数量积的运算. 专题: 空间向量及应用.间向量及应用. 分析:由题意可得•==,同理可得•==,故有n ≥m 且m 、n ∈z .再由cos 2θ=,与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1),由此求得n=3,m=1,从而得到,从而得到 •== 的值.的值.解答:解:由题意可得解:由题意可得 •====.同理可得同理可得 •====.由于||≥||>0,∴n ≥m 且 m 、n ∈z . ∴cos 2θ=.再由与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1).故有故有 n=3,m=1,∴•==, 故选C .点评: 本题主要考查两个向量的数量积的定义,得到本题主要考查两个向量的数量积的定义,得到n ≥m 且m 、n ∈z ,且∈(,1),是解题的关键,属于中档题.解题的关键,属于中档题.的解集为的解集为.考点: 绝对值不等式的解法. 专题: 集合.合. 分析: 由题意,可先将不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集段的不等式的解集并起来即可得到所求不等式的解集 解答:解:∵|x+2|﹣|x|=∴x ≥0时,不等式|x+2|﹣|x|≤1无解;无解; 当﹣2<x <0时,由2x+2≤1解得x ≤,即有﹣2<x ≤;当x ≤﹣2,不等式|x+2|﹣|x|≤1恒成立,恒成立, 综上知不等式|x+2|﹣|x|≤1的解集为故答案为点评: 本题考查绝对值不等式的解法,题考查绝对值不等式的解法,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,分段求解不等分段求解不等式.式.10.(5分)(2012•广东)中x 3的系数为的系数为20 .(用数字作答)(用数字作答)考点: 二项式定理. 专题: 排列组合.列组合.分析: 由题意,可先给出二项式的通项,再由通项确定出x 3是展开式中的第几项,从而得出其系数出其系数 解答:解:由题意,的展开式的通项公式是Tr+1==x 12﹣3r令12﹣3r=3得r=3 所以中x 3的系数为=20 故答案为20 点评: 本题考查二项式定理的通项,属于二项式考查中的常考题型,题考查二项式定理的通项,属于二项式考查中的常考题型,解答的关键是熟练掌握解答的关键是熟练掌握二项式的通项公式二项式的通项公式11.(5分)(2012•广东)已知递增的等差数列{a n }满足a 1=1,a 3=a 22﹣4,则a n = 2n ﹣1 .考点: 等差数列的通项公式. 专题: 等差数列与等比数列.差数列与等比数列. 分析: 由题意,设公差为d ,代入,直接解出公式d ,再由等差数列的通项公式求出通项即可得到答案求出通项即可得到答案 解答: 解:由于等差数列{a n }满足a 1=1,,令公差为d 所以1+2d=(1+d )2﹣4,解得d=±2 又递增的等差数列{a n },可得d=2 所以a n =1+2(n ﹣1)=2n ﹣1 故答案为:2n ﹣1. 点评: 本题考查等差数列的通项公式,题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,需要熟练需要熟练记忆公式.记忆公式.12.(5分)(2012•广东)曲线y=x 3﹣x+3在点(1,3)处的切线方程为)处的切线方程为2x ﹣y+1=0 .考点: 利用导数研究曲线上某点切线方程. 专题: 导数的概念及应用.数的概念及应用. 分析: 先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.化成一般式即可.解答: 解:y ʹ=3x 2﹣1,令x=1,得切线斜率2,所以切线方程为y ﹣3=2(x ﹣1), 即2x ﹣y+1=0.故答案为:2x ﹣y+1=0. 点评: 本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.属于基础题.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为的值为 8 .考点: 循环结构. 专题: 算法和程序框图.法和程序框图. 分析: 由已知中的程序框图及已知中输入8,可得:进入循环的条件为i <8,即i=2,4,6模拟程序的运行结果,即可得到输出的s 值.值. 解答: 解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4; 当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i <8”,退出循环,,退出循环,则输出的s=8 故答案为:8 点评: 本题主要考查的知识点是程序框图,题主要考查的知识点是程序框图,在写程序的运行结果时,在写程序的运行结果时,在写程序的运行结果时,我们常使用模拟循环的我们常使用模拟循环的变法,同时考查了运算求解能力,属于基础题.变法,同时考查了运算求解能力,属于基础题.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1与C 2的参数方程分别为(t 为参数)和(θ为参数),则曲线C 1与C 2的交点坐标为的交点坐标为 (1,1) .考点: 抛物线的参数方程;圆的参数方程. 专题: 坐标系和参数方程.标系和参数方程.分析: 把曲线C 1与C 2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C 1与C 2的交点坐标.的交点坐标.解答: 解:在平面直角坐标系xOy 中,曲线C 1与C 2的普通方程分别为的普通方程分别为 y 2=x ,x 2+y 2=2.解方程组解方程组可得可得,故曲线C 1与C 2的交点坐标为(1,1),故答案为故答案为 (1,1). 点评: 本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于中档题. .考点: 与圆有关的比例线段. 专题: 直线与圆.线与圆.分析: 连接OA ,根据同弧所对的圆周角等于圆心角的一半,根据同弧所对的圆周角等于圆心角的一半,得到∠得到∠AOC=60°.因为直线PA 与圆O 相切于点A ,且OA 是半径,得到△P AO 是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.解答: 解:连接OA ,∵圆O 的圆周角∠ABC 对弧AC ,且∠ABC=30°, ∴圆心角∠AOC=60°.又∵直线P A 与圆O 相切于点A ,且OA 是半径,是半径, ∴OA ⊥PA , ∴Rt △P AO 中,OA=1,∠AOC=60°, ∴PA=OAtan60°= 故答案为:点评: 本题给出圆周角的度数和圆的半径,题给出圆周角的度数和圆的半径,求圆的切线长,着重考查了圆周角定理和圆的切求圆的切线长,着重考查了圆周角定理和圆的切线的性质,属于基础题.线的性质,属于基础题.(其中的值;(1)求ω的值;(2)设,,,求cos(α+β)的值.的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.角函数的求值;三角函数的图像与性质.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;值;(2)由题设条件,可先对,与进行化简,)的值. 求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.解答:解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴点评:本题考查了三角函数的周期公式及两角和与差的余弦函数,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].的值;(1)求图中x的值;分)的的(2)从成绩不低于80分的学生中随机选取2人,(含90分)分以上(含人,该该2人中成绩在90分以上的数学期望.人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.率与统计.专题:概率与统计.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018 (2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2 ∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面P AC;的正切值.(2)若P A=1,AD=2,求二面角B﹣PC﹣A的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.间位置关系与距离;空间角;立体几何.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由题设条件及图知,可先由线面垂直的性质证出P A⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A 的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:解:(1)∵P A⊥平面ABCD ∴P A⊥BD ∵PC⊥平面BDE ∴PC⊥BD,又P A∩PC=P ∴BD⊥平面P AC (2)设AC与BD交点为O,连OE ∵PC⊥平面BDE ∴PC⊥平面BOE ∴PC⊥BE 的平面角∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面P AC ∴BD⊥AC ∴四边形ABCD为正方形,又P A=1,AD=2,可得BD=AC=2,PC=3 ∴OC=在△P AC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为3 点评: 本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握要熟练掌握19.(14分)(2012•广东)设数列{a n }的前n 项和为S n ,满足2S n =a n+1﹣2n+1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.成等差数列.(1)求a 1的值;的值; (2)求数列{a n }的通项公式;的通项公式; (3)证明:对一切正整数n ,有.考点: 数列与不等式的综合;等差数列的性质;数列递推式. 专题: 等差数列与等比数列.差数列与等比数列.分析: (1)在2S n =a n+1﹣2n+1+1中,令分别令n=1,2,可求得a 2=2a 1+3,a 3=6a 1+13,又a 1,a 2+5,a 3成等差数列,从而可求得a 1; (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n +2n②,由①②可知{a n +2n}为首项是3,3为公比的等比数列,从而可求a n ;(3)(法一),由a n =3n ﹣2n =(3﹣2)(3n ﹣1+3n ﹣2×2+3n ﹣3×22+…+2n ﹣1)≥3n ﹣1可得≤,累加后利用等比数列的求和公式可证得结论;,累加后利用等比数列的求和公式可证得结论;(法二)由a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n 可得,<•,于是当n ≥2时,<•,<•,,…,<•,累乘得:<•,从而可证得+++…+<.解答: 解:(1)在2S n =a n+1﹣2n+1+1中,中,令n=1得:2S 1=a 2﹣22+1,令n=2得:2S 2=a 3﹣23+1, 解得:a 2=2a 1+3,a 3=6a 1+13 又2(a 2+5)=a 1+a 3 解得a 1=1 (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1,又a1=1,a2=5也满足a2=3a1+21,成立所以a n+1=3a n+2n对n∈N*成立∴a n+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+2n=3n,∴a n=3n﹣2n;(法一)(3)(法一)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1+++…+=<;(法二)∵a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n,∴<•,当n≥2时,<•,<•,,…<•,累乘得:<•,∴+++…+≤1++×+…+×<<.点评:本题考查数列与不等式的综合,考查数列递推式,着重考查等比数列的求和,着重考查放缩法的应用,综合性强,运算量大,属于难题.查放缩法的应用,综合性强,运算量大,属于难题.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.的方程;(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.积;若不存在,请说明理由.圆与圆锥曲线的综合;直线与圆相交的性质;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.专圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.题:分析:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,求出椭圆上的点到点Q 的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M (m ,n )存在,则有m 2+n 2>1,求出|AB|,点O 到直线l 距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M 的坐标.的坐标.解答:解:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2椭圆上的点到点Q 的距离=①当﹣b ≤﹣1时,即b ≥1,得b=1 ②当﹣b >﹣1时,即b <1,得b=1(舍)(舍)∴b=1 ∴椭圆方程为(2)假设M (m ,n )存在,则有m 2+n 2>1 ∵|AB|=,点O 到直线l 距离∴=∵m 2+n 2>1 ∴0<<1,∴当且仅当,即m 2+n 2=2>1时,S △AOB 取最大值,又∵解得:所以点M 的坐标为或或或,△AOB 的面积为.点评: 本题考查椭圆的标准方程,考查三角形面积的求解,考查基本不等式的运用,正确表示三角形的面积是关键.三角形的面积是关键.考点: 利用导数研究函数的极值;交集及其运算;一元二次不等式的解法. 专题: 导数的综合应用.数的综合应用.分析: (1)根据方程2x 2﹣3(1+a )x+6a=0的判别式讨论a 的范围,求出相应D 即可;即可;(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a ,然后根据(1)中讨论的a 的取值范围分别求出函数极值即可.范围分别求出函数极值即可. 解答: 解:(1)记h (x )=2x 2﹣3(1+a )x+6a (a <1)△=9(1+a )2﹣48a=(3a ﹣1)(3a ﹣9),当△<0,即,D=(0,+∞),当,当a ≤0,.(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a , ①当,f (x )在D 内有一个极大值点a ,有一个极小值点;,有一个极小值点; ②当,∵h (1)=2﹣3(1+a )+6a=3a ﹣1≤0,h (a )=2a 2﹣3(1+a )a+6a=3a ﹣a 2>0, ∴1∉D ,a ∈D ,∴f (x )在D 内有一个极大值点a . ③当a ≤0,则a ∉D ,又∵h (1)=2﹣3(1+a )+6a=3a ﹣1<0. ∴f (x )在D 内有无极值点.内有无极值点. 点评: 本题主要考查了一元二次不等式的解法9,以及利用导数研究函数的极值,同时考查了计算能力和分类讨论的数学思想,属于中档题.了计算能力和分类讨论的数学思想,属于中档题.。

2012年高考理科数学广东卷-答案

2012年高考理科数学广东卷-答案
所以 ,即 ,
所以椭圆 的方程为: ,设椭圆 上的一动点 , ,
则 .
①若 ,当 时, ,解得 ;
②若 , ;
综合①②, ,所以椭圆 的方程为 ;
(Ⅱ)假设在椭圆 上,存在点 满足题意,则 ,在 中, , ,所以当 时, 有最大值 ,此时,点 到直线 的距离 ,即 , , ,
所以在椭圆 上存在点 ,使得直线 与圆 相交于不同的两点 、 ,且 的面积最大,最大值为 .
体积 .
【提示】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项.
【考点】由三视图求几何体的体积
7.【答案】D
【解析】设个位数与十位数分别为 , 则 , , , , , , , , , 所以 , 分别为一奇一偶;
【考点】排列与组合及其应用
8.【答案】C
【解析】设 , , , .
因为 ,所以 ,所以 或 或 或 ,
因为 ,所以 ,即 ,则 , ,
因为 ,所以 ,所以只能取 , ,
则 .
【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即可.
【考点】集合的含义,平面向量的数量积的运算
所以为 的数学期望为 .
【提示】(Ⅰ)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;
(Ⅱ)不低于8(0分)的学生有12人,9(0分)以上的学生有3人,则随机变量 的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.
【考点】分布列与期望
18.【答案】(Ⅰ)因为 平面 , 平面 ,
【考点】函数单调性的判断

2012年高考数学理(广东卷)及参考答案Word版

2012年高考数学理(广东卷)及参考答案Word版

2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为13V sh=,其中S为锥体的底面积,h为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设i为虚数单位,则复数56ii-=A.65i+B.65i-C.65i-+D.65i--2.设集合U={1,2,3,4,5,6},M={1,2,4 } 则UC M=A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}3.若向量BA=(2,3),CA=(4,7),则BC=A.(-2,-4)B.(2,4) C.(6,10) D.(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.ln(2)y x=+B.y=C.y=12x⎛⎫⎪⎝⎭D.1y xx=+25.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1- 6.某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是 A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。

2012年普通高等学校招生全国统一考试数学理试题(广东卷)(解析版)

2012年普通高等学校招生全国统一考试数学理试题(广东卷)(解析版)

1 2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共21题,满分150分。

考试用时120分钟。

参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。

锥体的体积公式为13V sh =,其中S 为锥体的底面积,h 为锥体的高。

一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,则复数56i i-= A . 65i + B .65i - C .65i -+ D .65i --2.设集合U ={1,2,3,4,5,6}, M ={1,2,4 } 则U C M = A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}3.若向量BA =(2,3),CA =(4,7),则BC = A .(-2,-4) B .(2,4) C .(6,10) D .(-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y =.y=12x⎛⎫ ⎪⎝⎭D .1y x x =+ 5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为A .12B .11C .3D .1-6.某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 A.49 B. 13 C. 29 D. 19 8.对任意两个非零的平面向量α 和β ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A .12 B.1 C. 32 D. 52 二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。

2012年普通高等学校招生全国统一考试理科数学(广东卷)

2012年普通高等学校招生全国统一考试理科数学(广东卷)

12广东(理)1.(2012广东,理1)设i 为虚数单位,则复数56i i-=( ).A .6+5iB .6-5iC .-6+5iD .-6-5iD 56i i -=(56i)i i i -⋅⋅=225i 6i i -=65i 1+-=-6-5i .2.(2012广东,理2)设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M =( ). A .U B .{1,3,5} C .{3,5,6} D .{2,4,6} C ∵U ={1,2,3,4,5,6},M ={1,2,4},∴∁U M ={3,5,6}. 3.(2012广东,理3)若向量BA =(2,3),CA =(4,7),则BC=( ).A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)A ∵BA =(2,3),CA=(4,7),∴BC =BA +AC =BA -CA=(2,3)-(4,7)=(2-4,3-7) =(-2,-4).4.(2012广东,理4)下列函数中,在区间(0,+∞)上为增函数的是( ). A .y =ln (x +2) B .yC .y =12x⎛⎫ ⎪⎝⎭D .y =x +1xA ∵函数y =ln (x +2)的定义域为(-2,+∞),y '=12x +在(-2,+∞)上大于0恒成立,(0,+∞)⊆(-2,+∞),∴函数y =ln (x +2)在区间(0,+∞)上为增函数.5.(2012广东,理5)已知变量x ,y 满足约束条件2,1,1,y x y x y ≤⎧⎪+≥⎨⎪-≤⎩则z =3x +y 的最大值为( ).A .12B .11C .3D .-1B 由约束条件作出可行域,如图,∴可得最优解2,1,y x y =⎧⎨-=⎩即3,2,x y =⎧⎨=⎩ ∴z max =3×3+2=11.6.(2012广东,理6)某几何体的三视图如图所示,它的体积为( ).A .12πB .45πC .57πD .81πC 由三视图知该几何体是由圆锥和圆柱构成的组合体,示意图如图所示,∴该几何体的体积为V =V 圆锥+V 圆柱=13πr 2h 1+πr 2h 2=13π×32×4+π×32×5=12π+45π=57π.7.(2012广东,理7)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ). A .49B .13C .29D .19D 在个位数与十位数之和为奇数的两位数中:(1)当个位数是偶数时,由分步计数乘法原理知,共有5×5=25个; (2)当个位数是奇数时,由分步计数乘法原理知,共有4×5=20个. 综上可知,基本事件总数共有25+20=45(个), 满足条件的基本事件有5×1=5(个), ∴概率P =545=19.8.(2012广东,理8)对任意两个非零的平面向量α和β,定义α =α·β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈0,4π⎛⎫ ⎪⎝⎭,且a b 和b a 都在集合 n 2n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =( ). A .12B .1C .32D .52C 由题意知|a |≥|b |>0,∴|b ||a |≤1.∵θ∈0,4π⎛⎫ ⎪⎝⎭,∴cos θ∈⎫⎪⎪⎝⎭,即a b =a b b b ⋅⋅=2|a ||b |θ|b |cos ⋅⋅=|a ||b |·cos θ;b a =b a a a ⋅⋅=|b ||a |θ|a |cos ⋅⋅=|b ||a |·cos θ.又∵a b 和b a 都在集合 n 2n Z ⎧⎫∈⎨⎬⎩⎭中,且|b ||a |·cos θ<1,∴|b ||a |·cos θ=12,即得|b ||a |=12θcos , ∴a b =|a ||b |cos θ=2cos 2θ∈(1,2),∴a b =32.9.(2012广东,理9)不等式|x +2|-|x |≤1的解集为 .1x|x }2⎧≤-⎨⎩由题意知,-2和0将R 分成三部分.(1)当x ≤-2时,原不等式可化简为-(x +2)-(-x )≤1,即-2≤1,∴x ≤-2. (2)当-2<x <0时,化简为(x +2)+x ≤1,即2x ≤-1,∴x ≤-12,∴-2<x ≤-12.(3)当x ≥0时,化简为x +2-x ≤1,即2≤1,此时无解.综上可得不等式的解集为1x|x }2⎧≤-⎨⎩.10.(2012广东,理10)621x x ⎛⎫+ ⎪⎝⎭的展开式中x 3的系数为 .(用数字作答)20 T r +1=r 6C ·(x 2)r ·6r1x -⎛⎫ ⎪⎝⎭=r 6C ·x 3r -6,∴要求展开式中x 3的系数,即3r -6=3,∴r =3,即T 4=36C ·x 3=20x 3,∴x 3的系数为20.11.(2012广东,理11)已知递增的等差数列{a n }满足a 1=1,a 3=22a -4,则a n = . 2n -1 设等差数列{a n }的公差为d (d >0).由a 3=22a -4得a 1+2d =(a 1+d )2-4,即1+2d =(1+d )2-4,d 2=4.又{a n }是递增数列,∴d =2, ∴a n =a 1+(n -1)d =1+(n -1)·2=2n -1.12.(2012广东,理12)曲线y =x 3-x +3在点(1,3)处的切线方程为 . 2x -y +1=0 由y =x 3-x +3得y '=3x 2-1,∴切线的斜率k =y '|x =1=3×12-1=2,∴切线方程为y -3=2(x -1),即2x -y +1=0.13.(2012广东,理13)执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为 .8 i =2,k =1,2<8,s =11×(1×2)=2;i =4,k =2,4<8,s =12×(2×4)=4;i =6,k =3,6<8,s =13×(4×6)=8;i =8,k =4,8=8,输出s =8.14.(2012广东,理14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为x t,y =⎧⎪⎨⎪⎩t 为参数)和x θ,y θ⎧⎪⎨⎪⎩(θ为参数),则曲线C 1与C 2的交点坐标为 .(1,1) 由C 1得y 即y 2=x (y ≥0).①由C 2得x 2+y 2=2.②由①②联立222y x,x y 2,⎧=⎨+=⎩得x 1,y 1.=⎧⎨=⎩15.(2012广东,理15)(几何证明选讲选做题)如图,圆O 的半径为1,A ,B ,C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA = .连接AO ,则由∠ABC =30°知∠AOP =60°.又OA =1,∴PA =OA ·tan 60°16.(2012广东,理16)已知函数f (x )=2cos ωx 6π⎛⎫+ ⎪⎝⎭(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 55α3π⎛⎫+ ⎪⎝⎭=-65,f 55β6π⎛⎫- ⎪⎝⎭=1617,求cos (α+β) 的值.17.(2012广东,理17)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(2012广东,理18)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE . (1)证明:BD ⊥平面PAC ;(2)若PA =1,AD =2,求二面角B -PC -A 的正切值.19.(2012广东,理19)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有11a +21a +…+n1a <32.20.(2012广东,理20)在平面直角坐标系xOy 中,已知椭圆C :22x a +22y b =1(a >b >0)的离心率e且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A ,B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.21.(2012广东,理21)设a <1,集合A ={x ∈R |x >0},B ={x ∈R |2x 2-3(1+a )x +6a >0},D =A ∩B . (1)求集合D (用区间表示);(2)求函数f (x )=2x 3-3(1+a )x 2+6ax 在D 内的极值点.。

2012高考试题—数学理(广东卷)解析版

2012高考试题—数学理(广东卷)解析版

2012高考试题—数学理(广东卷)解析版功,对于平时只重难、偏、怪题的学生来说,并不是好事,虽然题难度不大,但要把分数拿到也非易事,对于数学复习来说,无疑释放了一个重要信息——就是基本功扎实是非常重要的。

也就是不管高考题千变万变,我们的复习要以不变应万变,“考点和知识考查是不变的”。

5. 中间层面高兴,尖优生欲哭无泪。

整卷由于只顾考生的得分率和平均分,迎合社会的好评,因而少了区分度较高的题,中间学生来说是该大欢喜,但对于高层学生来说就毫无优势。

2012年广东省理科数学详细答案一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设i 为虚数单位,则复数56ii-= A 6+5i B 6-5i C -6+5i D -6-5i解:22565665i i i i i i--=-=-+,故选C 2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则C M = A .U B {1,3,5} C {3,5,6} D {2,4,6}选C3 若向量BA =(2,3),CA =(4,7),则BC = A (-2,-4) B (3,4) C (6,10 D (-6,-10)解:(2,3)(4,7)(2,4)BC BA AC =+=-=--,故选 A 4.下列函数中,在区间(0,+∞)上为增函数的是 A.y=ln (x+2)C.y=(12)xD.y=x+1x解:A5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y的最大值为 A.12 B.11 C.3 D.-1解:画约束区域如右,令z=0得3y x =-,化目标函数为斜截式方程:3y x z =-+得,当3,2x y ==时max 11z =,故选B【评】1-5题是送分题,确是宽和仁厚的题。

6,某几何体的三视图如图1所示,它的体积为xB没有变化题,看命题人真是好人。

2012年广东高考理科数学试题及答案(详解) 2

2012年广东高考理科数学试题及答案(详解) 2

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 . 设i为虚数单位,则复数56ii-=A 6+5iB 6-5iC -6+5iD -6-5i2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM=A .UB {1,3,5}C {3,5,6}D {2,4,6}3 若向量BA=(2,3),CA=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln(x+2)(12)x D.y=x+1x5.已知变量x,y满足约束条件,则z=3x+y的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49B.13C.29D.198.对任意两个非零的平面向量α和β,定义。

若平面向量a,b满足|a|≥|b|>0,a 与b的夹角,且a b和b a都在集合中,则A.12B.1C.32D.5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。

10. 的展开式中x³的系数为______。

(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。

12.曲线y=x3-x+3在点(1,3)处的切线方程为。

13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。

(二)选做题(14 - 15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(广东卷)A
数学(理科)
本试卷共21题,满分150分。

考试用时120分钟。

参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。

锥体的体积公式为1
3
V sh =
,其中S 为锥体的底面积,h 为锥体的高。

一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,则复数
56i
i
-= A . 65i + B .65i - C .65i -+ D .65i -- 2.设集合U ={1,2,3,4,5,6}, M ={1,2,4 } 则U C M =
A .U
B .{1,3,5}
C .{3,5,6}
D .{2,4,6}
3.若向量BA
=(2,3),CA =(4,7),则BC =
A .(-2,-4)
B .(2,4)
C .(6,10)
D .(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是
A .ln(2)y x =+ B
.y =.y=12x
⎛⎫
⎪⎝⎭
D .1y x x =+
5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪
+≥⎨⎪-≤⎩
,则z =3x +y 的最
大值为
A .12
B .11
C .3
D .1-
6.某几何体的三视图如图1所示,它的体积为 A .12π B.45π C.57π D.81π
7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是
A.
49 B. 13 C. 29 D. 19
8.对任意两个非零的平面向量α 和β ,定义αβ
αβββ
⋅=⋅
.若平面向量,a b 满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫
∈⎨⎬⎩⎭中,则a b =
A .12 B.1 C. 32 D. 52
二、填空题:本大题共7小题,考生答6小题,每小题5分,
满分30分。

(一)必做题(9-13题)
9.不等式21x x +-≤的解集为_____。

10. 2
6
1()x x
+
的展开式中3x 的系数为______。

(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2
324a a =-,则
n a = ____。

12.曲线3
3y x x =-+在点(1,3)处的切线方程为 。

13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 。

(二)选做题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2
的参数方程分别为
)x t t y =⎧⎪⎨
=⎪⎩为参数
和()x y θθθ⎧=⎪⎨=⎪⎩为参数,则曲线C 1与C 2的交点坐标为_______。

15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC=30°,过点A 做圆O 的切线与OC 的延长线交于点P ,则PA=_____________。

三、解答题:本大题共6小题,满分80分。

解答须写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)已知函数()2cos()(0,)6
f x x x R π
ωω=+>∈其中的最小正周期为10π.
(1)求ω的值; (2)设56516,0,
,(5),(5)235617f f παβαπβπ⎡⎤
∈+=--=⎢⎥⎣⎦
,求cos()αβ+的值。

17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:
[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100
(1)求图中x 的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。

18.(本小题满分13分)
如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD ,点 E 在线段PC 上,PC⊥平面BDE 。

(1) 证明:BD⊥平面PAC ;
(2) 若PA=1,AD=2,求二面角B-PC-A 的正切值。

19. (本小题满分14分)设数列{}n a 的前n 项和为S n ,满足
11221,,n n n S a n N +*+=-+∈且123,5,a a a +成等差数列。

(1) 求a 1的值;
(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有
1211132
n a a a +++< . 20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 1:22
221(0)x y a b a b
+=>>
的离心率
e =C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;
(2)在椭圆C 上,是否存在点M (m ,n )使得直线l :mx +ny =1与圆O :x 2+y 2
=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由。

21.(本小题满分14分)
设a <1,集合{}
{}
2
0,23(1)60A x R x B x R x a x a =∈>=∈-++>,D A B = .
(1)求集合D (用区间表示);
(2)求函数3
2
()23(1)6f x x a x ax =-++在D 内的极值点。

2012年普通高等学校招生全国统一考试(广东卷)A
数学(理科)答案
一 、选择题:
9. (,]-∞12
10. 20 11. 2n -1 12. y =2x +1
13. 8 14. (1,1)
三、解答题:
16.(本小题满分12分)已知函数()2cos()(0,)6
f x x x R π
ωω=+>∈其中的最小正周期为10π.
(1)求ω的值;
(2)设56516,0,,(5),(5)235617f f παβαπβπ⎡⎤
∈+=--=⎢⎥⎣⎦
,求cos()αβ+的值。

解析:(1)最小正周期为210ππω=,15
ω=; (2)56(5)2cos()3365f ππαπα+=++=-,即3
cos()25πα+=-,
得3sin 5α=,又0,2πα⎡⎤
∈⎢⎥⎣⎦
,得4cos 5α=;
同理,8cos 17β=
,15
sin 17
β=, 所以cos()cos cos sin sin αβαβαβ+=-13
105
=-
. 17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:
[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100
(1)求图中x 的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。

解析:(1)由0.0061030.01100.05410101x ⨯⨯+⨯+⨯+=,得x =0.018; (2)成绩在区间[)80,90的学生有0.01810509⨯⨯
=
人,成绩在区间[90,100]的学生有0.00610503⨯⨯=人,成绩不低于80分的学生共12人,0,1,2ξ=,
292126(0)11C P C ξ===

11932129
(1)22
C C P C ξ===

232121
(2)22
C P C ξ===
, 6911
()0121122222
E ξ=⨯
+⨯+⨯=.。

相关文档
最新文档