人教版七年级数学下册培优小测一 无答案
人教版2020七年级数学下册期中综合复习培优训练题1(附答案详解)
人教版2020七年级数学下册期中综合复习培优训练题1(附答案详解)1.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数2.如图,已知直线AB ∥CD ,直线l 与直线AB 、CD 相交于点,E 、F ,将l 绕点E 逆时针旋转40°后,与直线AB 相交于点G ,若∠GEC=80°,那么∠GFE=( )A .60°B .50°C .40°D .30°3.如图,在平面直角坐标系上有个点()1,0P ,点P 第1次向上跳运1个单位至点()11,1P 紧接着第2次向左跳动2个单位至点()21,1P-,第3次向上跳动1个单位,第4次向右跳运3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位, ⋯,依此规律跳动下去,点P 第2016次跳动至点2016P 的坐标是( )A .()505,1008B .()505,1008-C .()504,1007D .()504.1007- 4.下列命题正确的个数是( )①等腰三角形的腰长大于底边长;②三条线段a 、b 、c ,如果a b c +>,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A .0个B .1个C .2个D .3个5.下列各数是无理数的是( )A .4B .2.2020020002C .39D .﹣16.一个运算程序输入后,得到的结果是221x -,则这个运算程序是( )A.先乘2,然后平方,再减去1 B.先平方,然后减去1,再乘2C.先平方,然后乘2,再减去1 D.先减去1,然后平方,再乘27.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为()A.1010B.2C.1D.﹣10068.下列计算结果正确的是:( )A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,的中点是坐标原点固定点,,把正方形沿箭头方向推,使点落在轴正半轴上点处,则点的对应点的坐标为()A.B.C.D.10.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm11.关于x轴、y轴或远点对称的点的坐标的特征点P与点p′关于x轴对称⇔_____坐标相等,_____坐标互为相反数点P与点p′关于y轴对称⇔______坐标相等,_____坐标互为相反数点P与点p′关于原点对称⇔___________坐标均互为相反数12.在平面直角坐标系中,点P(﹣2,6)在第____象限.13.已知点A(-2,0),B(3,0),则S∆ABC=_______.14.如图,在一次军棋比赛中,如果团长所在的位置的坐标为(2,-5),司令所在的位置的坐标为(4,-2),那么工兵所在的位置的坐标为_________.15.若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为______. 16.已知31x 0216+=,则x=_______ 17.借助于计算器计算,可求2243+;224433+;22444333+…… 仔细观察上面几题的计算结果,试猜想2220092009444333⋅⋅⋅+⋅⋅⋅n n 的结果为_________. 18.已知|x ﹣y+2|+2x y +-=0,则x 2﹣y 2的值为______.19.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2017个正方形的面积为__________。
人教版七年级数学下册平行线培优试卷
EN M DA (第9题图)D AEB O C七年级数学(下)假期培优试卷(1)班级 姓名一、选择题(每小题3分,共36分)1、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000平方千米.将 2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯2、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .43、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个 4.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)5.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 6、下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个B. 2个C. 3个D. 4个7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元 B .1700元 C .1710元 D .1750元 8、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长( )A .1500米B .1575米C .2000米D .2075米9.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ; ③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( ) A .1 B .2 C .3 D .410.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=21∠MFE. 则∠MFB=( )A .30°B .36°C .45°D .72° 11、如右图所示,点E 在AC 的延长线上,下列条件中 能判断...CD AB //( )A. ∠3= ∠4B. ∠1 =∠2C. ∠D= ∠DCED. ∠D +∠DCE=180° 12、一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的 角度可能是( )A. 第一次向左拐 30,第二次向右拐 30B. 第一次向右拐 50,第二次向左拐130 C. 第一次向右拐50,第二次向右拐130 D. 第一次向左拐50,第二次向左拐130 二、填空题(每小题3分,共18分)13.用吸管吸易拉罐内的饮料时,如图①∠1=100°,则∠2= (易拉罐的上下底面互相平行)14.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡 成的∠1= °时,电线杆与地面垂直。
七年级数学下册第14讲平面直角坐标系一培优讲义无答案新人教版
01.若是点M(a+b,ab)在第二象限,那么点N(a,b)在第_____________象限.
02.假设点A(6-5a,2a-1).
(1)点A在第二象限,求a的取值范围;
(2)当a为实数时,点A可否在第三象限,试说明理由;
(3)点A可否在座标原点处?什么缘故?
03.点P{- ,-[ -|1- |]}关于y轴对称点的坐标是_____________.
,那么(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).
【变式题组】
01. 如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标别离是_________、_________、____________、____________.
04.已知点A(2a+3b,-2)与点B(8,3a+2b)关于x轴对称,那么a+b=__________.
05.已知a<0,那么点P(-a2-2,2-a)关于原点对称的点在第________象限.
06.已知点P1(a-1,5)在第一、三象限角平分线上,点P2(2,b-8)在第二、四象限角平分线上,那么(-a+b)2020=___________.
【例2】假设点P(a,b)在第四象限,那么点Q(―a,b―1)在()
A.第一∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,应选C.
【变式题组】
01.假设点G(a,2-a)是第二象限的点,那么a的取值范围是()
A.a<0B.a<2C.0<a<2B.a<0或a>2
(2)以A、B为相邻两个极点的正方形的边长为_________;
2020--2021学年人教版七年级数学下册阶段性培优复习训练卷 含答案
2021年人教版七年级下册阶段性培优复习训练卷一.选择题1.下列说法中正确的是()A.带根号的数是无理数B.无理数不能在数轴上表示出来C.无理数是无限小数D.无限小数是无理数2.在实数:3.14159,,1.010010001…(每相隔1个就多1个0),,π,中,无理数的个数有()A.1个B.2个C.3个D.4个3.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若=()2,则a=b D.若=,则a=b4.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+5.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个6.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.47.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm8.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90°D.β=α+γ9.已知二元一次方程组,用加减消元法解方程组正确的是()A.①×5﹣②×7B.①×2+②×3C.①×3﹣②×2D.①×7﹣②×5 10.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.B.C.D.11.如图,一个动点P在平面直角坐标系中按箭头所示方向作折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),……,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2019,0)B.(2019,1)C.(2019,2)D.(2020,1)12.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)二.填空题13.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C 的坐标为.14.已知二元一次方程组,则8x+7y=.15.若关于x,y的二元一次方程组的解互为相反数,则k的值为.16.如图所示是用一张长方形纸条折成的,如果∠1=100°,那么∠2=.三.解答题17.已知点P(2x﹣6,3x+1),求下列情形下点P的坐标.(1)点P在y轴上;(2)点P到x轴、y轴的距离相等,且点P在第二象限;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.18.如图,已知∠ACB+∠A+∠ADE=180°,∠1=∠2,CD⊥AB于D,问AB与FH是否垂直?并说明理由.19.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.20.如图,已知A(﹣2,0),B(4,0),C(2,4),D(0,2)(1)求三角形ABC的面积;(2)设P为坐标轴上一点,若S△APC=S△ABC,求P点的坐标.21.在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.23.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.24.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.参考答案一.选择题1.解:A、如=2,不是无理数,故本选项错误;B、无理数都能在数轴上表示出来,故本选项错误;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确;D、如1.33333333…,是无限循环小数,是有理数,故本选项错误;故选:C.2.解:1.010010001…(每相隔1个就多1个0),π是无理数,故选:B.3.解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=﹣3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.4.解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选:A.5.解:如图,∵DC∥EF,∴∠BCD=∠BFE,∵EG∥BC,∴∠EFB=∠GEF,∵DC∥EF,∴∠EMD=∠GEF=∠GMC,∵DH∥EG,∴∠EMD=∠CDH,∵DH∥EG∥BC,∴∠CDH=∠DCB.∴与∠DCB相等的角的个数为5.故选:D.6.解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.7.解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.8.解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.9.解:二元一次方程组,用加减消元法解方程组①×3﹣②×2或①×7+②×5.故选:C.10.解:由题意可得,,故选:A.11.解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2017次运动后,动点P的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P的纵坐标为:2017÷4=504余1,故纵坐标为四个数中第1个,即为1,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:C.12.解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n结束的有n2个点,第2025个点是(45,0),∴2019个点的坐标是(45,6);故选:A.二.填空题13.解:∵点C在x轴上方,y轴左侧,∴点C在第二象限,∵点C距离x轴2个单位长度,距离y轴3个单位长度,∴点C的横坐标为﹣3,纵坐标为2,∴点C的坐标为(﹣3,2).故答案为:(﹣3,2).14.解:,①+②得:8x+7y=25,故答案为:25.15.解:因为关于x,y的二元一次方程组的解互为相反数,所以x+y=0,方程组,②﹣①,得x﹣y=2,解方程组,得,将x=1,y=﹣1代入①得,1﹣2=k﹣1,解得k=0.故答案为:0.16.解:∵长方形的对边是平行的,∠1=100°,∴∠3=180°﹣∠1=180°﹣100°=80°,∴2∠2=180°﹣80°=100°,∴∠2=50°.故答案为:50°.三.解答题17.解:(1)∵点P(2x﹣6,3x+1),且点P在y轴上,∴2x﹣6=0,∴x=3,∴3x+1=10,∴点P的坐标为(0,10);(2)∵点P(2x﹣6,3x+1),点P到x轴、y轴的距离相等,且点P在第二象限,∴2x﹣6=﹣(3x+1),∴2x﹣6+3x+1=0,∴x=1,∴2x﹣6=﹣4,3x+1=4,∴点P的坐标为(﹣4,4);(3)∵点P(2x﹣6,3x+1)在过点A(2,﹣4)且与y轴平行的直线上,∴2x﹣6=2,∴x=4,∴3x+1=13,∴点P的坐标为(2,13).18.解:AB与FH垂直,理由如下:∵∠ACB+∠A+∠ADE=180°,∠ACB+∠A+∠B=180°,∴∠ADE=∠B,∵CD⊥AB,∴∠2+∠ADE=90°,∵∠1=∠2,∴∠1+∠B=90°,∴∠BHF=90°,即AB与FH垂直.19.解:(1)AD∥BC,理由是:∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,∵∠D=100°,∴∠D+∠BCD=180°,∴AD∥BC.(2)∵AD∥BC,∠ACB=40°,∴∠DAC=∠ACB=40°,∵∠BAC=70°,∴∠DAB=∠DAC+∠BAC=40°+70°=110°,∴∠EAD=180°﹣∠DAB=180°﹣110°=70°.20.解:(1)∵A(﹣2,0),B(4,0),C(2,4),∴AB=2+4=6,∴S△ABC=×(4+2)×4=12;(2)当P在x轴上时,设P点坐标为(m,0),|m+2|×4=×12,解得m1=1,m2=﹣5,当P在y轴上时,设P点坐标为(0,n),∵D(0,2),∴PD=|n﹣2|,∴|n﹣2|×(2+2)=,解得n1=﹣1,n2=5所以P点坐标为(﹣5,0)或(1,0)或(0,﹣1)或(0,5).21.解:(1)点B表示的数是﹣2.(2)点C表示的数是2﹣.(3)由题可得:A表示,B表示﹣2,C表示2﹣,∴OA=,OB=﹣2,OC=|2﹣|=﹣2.∴OA+OB+OC==3﹣4.22.解:(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8﹣6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.23.解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;24.解:(1)∵+(b﹣3)2=0,(c﹣4)2≤0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4;(2)由(1)知:OA=2,OB=3,∴S四边形ABOP=S△AOP+S△AOB=AO•|x P|+AO•OB=﹣m+=﹣m+3,(3)∵B(3,0),C(3,4),∴BC⊥x轴,∴S△ABC=BC•x B=×4×3=6,∴﹣m+3=6,m=﹣3,则当m=﹣3时,四边形ABOP的面积与△ABC的面积相等,此时P(﹣3,).。
七年级数学下培优试卷
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √9D. π2. 若a、b是实数,且a + b = 0,则a和b的关系是()A. a和b都是正数B. a和b都是负数C. a和b互为相反数D. a和b互为倒数3. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)4. 下列函数中,是二次函数的是()A. y = 3x + 2B. y = x^2 - 4x + 3C. y = 2x^3 - 5D. y = x^2 + 2x - 15. 一个长方体的长、宽、高分别是a、b、c,则其体积V为()A. V = abcB. V = a + b + cC. V = ab + bc + caD. V = (a + b + c)^26. 若一个数的平方根是-3,则这个数是()A. 9B. -9C. 3D. -37. 下列各式中,不是等式的是()A. 2x + 3 = 7B. 5 - 3 = 2C. 4(x - 2) = 8D. 3a = 68. 下列各组数中,不是同类项的是()A. 3x^2, -5x^2B. 2xy, -4xyC. 5a^3, -7a^3D. 3x, -2x9. 在一次函数y = kx + b中,若k > 0,则函数图象()A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、三、四象限D. 经过第一、二、三、四象限10. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 非等腰三角形二、填空题(每题5分,共50分)1. 若a、b是实数,且a - b = 5,则a + b的值为______。
2. 在直角坐标系中,点B(4,-2)关于x轴的对称点是______。
3. 二次函数y = x^2 - 4x + 3的顶点坐标是______。
七年级(下)数学培优试题(一)含答案
七年级(下)数学培优试题(一)含答案一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意)1。
下列各式计算正确的是( )A 。
3332x x x ⋅=B .235()x x =C .358x x x +=D .444()xy x y =2。
下列能用平方差公式计算的是( )A 。
)y x )(y x (-+-B 。
)x 1)(1x (---C 。
)x y 2)(y x 2(-+D 。
)1x )(2x (+-3.如图1,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为( ) A 。
65º B 。
70º C 。
97º D 。
115º4.2011世界园艺博览会在西安浐灞生态区举办,这次会园占地面积为418万平方米,这个数据用科学记数法可表示为(保留两个有效数字)( ) 图1A 。
4。
18×106平方米B 。
4.1×106平方米C 。
4。
2×106平方米 D. 4。
18×104平方米5.某校组织的联欢会上有一个闯关游戏:将四张画有含30°的直角三角形、正方形、等腰三角形、平行四边形这四种图形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形就可以过关,那么翻一次就过关的概率是( )A 。
1/4B 。
1/2C . 1/3 D.16。
如图2,一块实验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →AB →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A.转过90° B 。
转过180° C.转过270° D 。
转过a b c d2 4 1360°7. 如图3所示,在△ABC 和△DEF 中,BC ∥EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( ).A 4B .5C 。
人教版七年级数学培优试卷
人教版七年级数学培优试卷一、选择题(30分)1.直角梯形ABCD 在直角坐标系中的位置如图,若AD=5,A 点坐标为(-2,7),则D 点坐标为( )A.(2,2)B.(2,12)C.(3,7) D (7,7)2. 在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--, B .(25)--, C .(25)-, D .(25)-,3.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43C.34D.34-4.如图,用8块相同的长方形地砖拼成一个矩形,则每个长方形地砖的面积是( ).A.200cm 2B.300 cm 2C.600 cm 2D.2400 cm 25. 如图,矩形ABCD 的边长为16,宽为12,BD=20,沿着对角线BD 剪开,得两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m ,周长最小为n ,则m+n 的值为( )A.120B.128C.136D.1446、如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的。
若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm ,求甲的容积为何?( )A 1280cm 3B 2560cm 3C 3200cm 3D 4000cm 340cm 甲 乙二、填空题(30分)7.如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=740,那么吸管与易拉罐下部夹角∠2= 度. 8.如果2|2|(3)0x x y -+-+=,那么2()x y +的值为 .9.若1233211115,7,x y z x y z x y z++=++=++=则 . 10.如图△ABC 中,∠A=800,剪去∠A 后,得到四边形BCED ,则∠1+∠2= .11. 如图,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是 cm 2.12.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°三、解答题(60分)13.已知,A 、B 、C 、O 四点的坐标分别是(5,3)(5,4)(6,2)(0,0),(1)请建立平面直角坐标系并画出四边形ABCO(2)求出四边形ABCO 的面积14.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队8700元;乙、丙两队合做10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的23,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说时理由.15.深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准,沪杭磁悬浮线建成后,分为中心城区段与郊区段两部分,其中中心城区段的长度为60千米,占全长的40%,沪杭磁悬浮列车的票价预定为0.65元/千米~0.75元/千米,请你估计沪杭磁悬浮列车全程预定票价的范围.16.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元,若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益大?。
人教版七年级数学下册 期末试卷培优测试卷
人教版七年级数学下册 期末试卷培优测试卷一、选择题1.如图,直线1l 截2l 、3l 分别交于A 、B 两点,则1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A . B . C . D . 3.在平面直角坐标系中,点P (﹣5,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个5.将一副三角板按如图放置,如果230∠=︒,则有4∠是( )A .15°B .30°C .45°D .60°6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③ B .①②④ C .①③④ D .②③④7.如图所示,长方形ABCD 中,点E 在CD 边上,AE ,BE 与线段FG 相交构成∠α,∠β,则∠1,∠2,∠α,∠β之间的关系是( )A .∠1+∠2+180°=∠α+∠βB .∠α+∠2=∠β+∠1C .∠α+∠β=2(∠1+∠2)D .∠1+∠2=∠a ﹣∠β8.如图,在平面直角坐标系中,长方形ABCD 的各边分别平行于x 轴或y 轴,一物体从点A (-2,1)出发,沿矩形ABCD 的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )A .(﹣2,1)B .(﹣2,﹣1)C .( 2,﹣1)D .( 2,1)二、填空题9.16的算术平方根是 _____.10.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____.11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.对于有理数x、y,当x≥y时,规定x※y=y x;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______.15.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n,则A2021的坐标是___________.三、解答题17.计算(1)31252724+-+(2)22|21|--18.求下列各式中x的值:(1)23126x-=(2)()3180x--=19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.如图,在平面直角坐标系中,∆ABC的顶点C的坐标为(1,3).点A、B分别在格点上.(1)直接写出A、B两点的坐标;(2)若把∆ABC向上平移3个单位,再向右平移2个单位得∆A'B'C',画出∆A'B'C';(3)若∆ABC内有一点M(m,n),按照(2)的平移规律直接写出平移后点M的对应点M'的坐标.21.请回答下列问题:<,那么a=,b=;(1)17介于连续的两个整数a和b之间,且a b(2)x是172+的小数部分,y是171-的整数部分,求x=,y=;(3)求()-的平方根.17yx二十二、解答题22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a,小数部分为b,求213+-的值.a b二十三、解答题23.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C =又∵∠EAB +∠BAC +∠DAC =180°∴∠B +∠BAC +∠C =180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.25.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中H ABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】1.B解析:B【分析】根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.2.B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选:B.【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P(﹣5,4)位于第二象限.故选:B.本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.4.B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.C【分析】根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.【详解】解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,∵230∠=︒,∴∠1=60°,∴∠1=∠E,∴AC∥DE,∴∠4=∠C=45°.故选:C.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确;∵116的算术平方根是14,∴④正确;正确的是②③④,故选:D.【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.A【分析】根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得12180αβ∠+∠+︒=∠+∠.【详解】解:∵在长方形ABCD中AD//BC,∴∠AFG+∠BGF=180°,又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β,∠+∠+︒=∠+∠.∴12180αβ故选:A.【点睛】本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键.8.C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.【详解】解:由图可得,长方形的周长为2×(1×2+2×2)=12,∵2022=16解析:C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.【详解】解:由图可得,长方形的周长为2×(1×2+2×2)=12,∵2022=168×12+6,∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,∴从A点开始按逆时针运动6秒到达了C点,∴经过2022秒后,物体所在位置的坐标为(2,-1).故选:C.【点睛】本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.二、填空题9.2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去解析:2【详解】∵,4的算术平方根是2,∴ 2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错. 10.【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.【详解】解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,∴,解得:,则=.故解析:1 16【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 11.4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .解析:4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .12.50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF 平分∠CEG ,∴∠CEG =2∠CEF ,又∵AB ∥CD ,∴∠2=∠CEF =(180°−∠1)=50°,解析:50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF 平分∠CEG ,∴∠CEG =2∠CEF ,又∵AB ∥CD ,∴∠2=∠CEF =12(180°−∠1)=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系. 13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 15.(2,0)【分析】根据x 轴上点的坐标的特点y=0,计算出m 的值,从而得出点P 坐标.【详解】解:∵点P (2m+4,3m+3)在x 轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x 轴上点的坐标的特点y=0,计算出m 的值,从而得出点P 坐标.【详解】解:∵点P (2m+4,3m+3)在x 轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P 的坐标为(2,0),故答案为(2,0).16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A 2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =x=±;∴3x--=(2)解:∵()3180∴()318x-=x-=∴12x=.∴3【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1),;(2)见解析;(3).【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M (m ,n )向上平移3个单位,再向右平移解析:(1)(1,1)A --,(4,2)B ;(2)见解析;(3)(2,3)M m n '++.【分析】(1)根据原点的位置确定点的坐标即可;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',连接,,A B C '''即可;(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到M '的坐标.【详解】(1)根据原点的位置确定点的坐标,则(1,1)A --,(4,2)B ;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',(1,1),(4,2),(1,3)A B C --,(1,2),(6,5),(3,6)A B C '''∴,在图中描出点,,A B C ''',连接,,A B C ''',∆A 'B 'C '即为所求.(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 ∴(2,3)M m n '++.【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.21.(1)4;b =(2)−4;3(3)±8【分析】((1)由16<17<25,可以估计的近似值,然后就可以得出a ,b 的值;(2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即解析:(1)4;b =(24;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵45,∴6+2<7,由此整数部分为64,∴x −4,∵4<5,∴3-1<4,∴y =3;4;3(3)当x 4,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.二十二、解答题22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.二十三、解答题23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D=∠FCD ,∠B=∠BCF ,然后根据已知条件即可得到结论;解析:(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.25.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH ,HF ,再证明AO=OG=2,可得结论. ②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M +∠N =142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
人教版七年级数学下册 期末试卷培优测试卷
人教版七年级数学下册 期末试卷培优测试卷一、选择题1.16的平方根是() A .4±B .4C .2±D .22.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A .B .C .D .3.平面直角坐标系中,点()1,0A -在( ) A .x 轴的正半轴B .x 轴的负半轴C .y 轴的正半轴D .y 轴的负半轴4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A .0个 B .1个C .2个.D .3个5.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒6.下列结论正确的是( ) A .64的平方根是4± B .18-没有立方根C .立方根等于本身的数是0D .332727-=-7.如图,已知//AB CD ,BC 平分ABE ∠,64BED ∠=︒,则C ∠的度数是( )A .26︒B .32︒C .48︒D .54︒8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____. 10.点()2,1M -关于y 轴的对称点的坐标为______.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.将一副直角三角板如图放置(其中60A ∠=︒,45F ∠=︒),点E 在AC 上,//ED BC ,则AEF ∠的度数是______.13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.14.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____ 15.如图,在平面直角坐标系中,已知点(,0)A a ,(,)C b c ,连接AC ,交y 轴于B ,且3125a =-,23(7)0b c -+-=,则点B 坐标为__.16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.三、解答题17.计算:(1)232 (222312127(6)(5)-- 18.求下列各式中的x 的值: (1)2810x -=; (2)()3164x -=.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程. 理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ). ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.已知点A (-2,3),B (4,3),C (-1,-3). (1)在平面直角坐标系中标出点A ,B ,C 的位置; (2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离; (4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.21.阅读下面文字,然后回答问题.给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为2.420.4-=;2的整数部分为1,小数部分可用21-表示;再如,﹣2.6的整数部分为﹣3,小数部分为()2.630.4---=.由此我们得到一个真命题:如果2x y =+,其中x 是整数,且01y <<,那么1x =,21y =-.(1)如果7a b =+,其中a 是整数,且01b <<,那么a =______,b =_______; (2)如果7c d -=+,其中c 是整数,且01d <<,那么c =______,d =______; (3)已知37m n +=+,其中m 是整数,且01n <<,求m n -的值; (4)在上述条件下,求()a m a b d ++的立方根.二十二、解答题22.如图用两个边长为18cm 的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm 2?请说明理由.二十三、解答题23.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 25.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.26.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .【参考答案】一、选择题 1.A 解析:A 【分析】如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作a x ±=±. 【详解】解:16的平方根是16=4±. 故选A . 【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D 【分析】根据平移的性质即可得出结论. 【详解】解:A 、能通过其中一个三角形平移得到,不合题意; B 、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D.【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.3.B【分析】根据坐标轴上点的坐标特征对点A(-1,0)进行判断.【详解】解:∵点A的纵坐标为0,∴点A在x轴上,∵点A的横坐标为-1,∴点A在x轴负半轴上.故选:B.【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.4.C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.【详解】解:①对顶角相等,原命题是真命题;②两直线平行,同位角相等,不是真命题;③两点之间,线段最短,原命题不是真命题;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题.故选:C.【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B 【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数. 【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒, ∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒,∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒; ∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒; 故选:B . 【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数. 6.D 【分析】根据平方根与立方根的性质逐项判断即可得. 【详解】A 8=,8的平方根是4±,此项错误;B 12-,此项错误;C 、立方根等于本身的数有0,1,1-,此项错误;D 、3273,3-=--,=故选:D . 【点睛】本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键. 7.B 【分析】利用平行线的性质,角平分线的定义即可解决问题. 【详解】解:∵//AB CD ,64BED ∠=︒,BC 平分ABE ∠, ∴64ABE ∠=︒,11643222ABC EBC ABE ∠=∠=∠=⨯︒=︒,∵//AB CD , ∴32C ABC ∠=∠=︒, 故选:B .【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标) ∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.-1 【分析】根据非负数的性质,求出a 、b 的值,再进而计算所给代数式的立方根.解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.10.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点2,1解析:()【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数M-关于y轴的对称点的坐标为()2,1.∴点()2,12,1故答案为:()【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.11.90°过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n ︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED ∥BC ,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,解析:165【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,∴∠DEC=∠ACB=30°∴∠CEF=∠DEF-∠DEC =45°-30°=15°,∴∠AEF=180°-∠CEF=165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD,∴∠1=∠BAD=110°,由折叠可得,∠2=∠BAD=×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB//CD,∴∠1=∠BAD=110°,由折叠可得,∠2=12∠BAD=12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.15.【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出.【详解】解:(1),,,,,,,.如图,连接,设,,,解析:358(0,)【分析】 由立方根及算术平方根、完全平方式求出,,a b c ,的值,得出A ,C 两点的坐标,连接OC ,设OB x =,根据三角形AOC 的面积可求出x 的值,则答案可求出.【详解】解:(1)3125a =-,30b -=,70c -=5a ∴=-,3b =,7c =,(5,0)A -,(3,7)C ,5OA ∴=.如图,连接OC ,设OB x =,(3,7)C ,15717.52AOC S ∆∴=⨯⨯=, AOC AOB COB S S S ∆∆∆=+,115317.522xx ∴+⨯=, 358x ∴=, ∴点D 的坐标为358(0,),故答案是:358(0,).【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答.16.(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A(-2,3),B(4,3),∴AB=4-(-2)=6;(3)∵C(-1,-3),∴C到x轴的距离为3,到直线AB的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP 与三角形ABC 同底等高,即为所求∴P (0,-3);同理当P 在AB 的上方还有一个到AB 距离是6的点满足要求,即P (0,9); ∴P (0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)2,;(2)﹣3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)22;(2)﹣3,33)74)3【分析】(1(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算3的大小,分别求得,m n 的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可.【详解】(1) ∴23<,a b =+,2,2a b ∴==,故答案为:22,;(2)23<32∴-<<-, 7c d -=+,3,(3)3c d ∴=-=-=故答案为:﹣3,3;(3)23<,536∴<+,3m n =+,∴5,352m n ==,∴5m =,2n =,∴)527m n -=-=(4)5,2,2,3m a b d ====∴()2522327a m a b d ++=+⨯+=, 27的立方根为3,即()a m a b d ++的立方根为3.【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm 2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm 2),所以大正方形的边长为6cm ,设截出的长方形的长为3b cm ,宽为2b cm ,则6b 2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm 2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.二十三、解答题23.(1)见解析;(2)∠PEQ+2∠PFQ =360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD ;(2)如图2中,∠PEQ+2∠PFQ =360°.作EH//AB .理由平行线解析:(1)见解析;(2)∠PEQ +2∠PFQ =360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB //CD ;(2)如图2中,∠PEQ +2∠PFQ =360°.作EH //AB .理由平行线的性质即可证明;(3)如图3中,设∠QPF =y ,∠PHQ =x .∠EPQ =z ,则∠EQF =∠FQH =5y ,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP ∥OG ∥EF ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∴∠OPQ =∠GOP +∠PQF ,∴∠OPQ =140°﹣∠POQ +∠PQF ;如图4,当点P 在线段GF 的延长线上时,过点P 作PN ∥OG ,∴NP ∥OG ∥EF ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴140°﹣∠POQ =∠OPQ +∠PQF .【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-.【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.26.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.。
【精选】人教版数学七年级下册 期末试卷培优测试卷
【精选】人教版数学七年级下册 期末试卷培优测试卷一、解答题1.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)2.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.3.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 4.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?5.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论. 8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.10.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .(1)如图1,若点D 在边BC 上, ①补全图形; ②求证:A EDF ∠=∠.(2)点G 是线段AC 上的一点,连接FG ,DG .①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系.三、解答题11.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.12.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.13.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.14.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.15.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .【参考答案】一、解答题1.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.2.(1) ;(2)① ;② 【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=, ∵//AD BC , ∴4'B FC a ∠=∠=, 180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠,11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭,又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠, ''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒. 【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.3.(1)见解析;(2)当点E 在CA 的延长线上时,∠BED=∠D-∠B ;当点E 在AC 的延长线上时,∠BED=∠BET-∠DET=∠B-∠D ;(3) 【分析】(1)如图1中,过点E 作ET ∥AB .利用平行解析:(1)见解析;(2)当点E 在CA 的延长线上时,∠BED =∠D -∠B ;当点E 在AC 的延长线上时,∠BED =∠BET -∠DET =∠B -∠D ;(3)()12m n n-【分析】(1)如图1中,过点E 作ET ∥A B .利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E 在CA 的延长线上时,如图2-2中,当点E 在AC 的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD =∠ABM +∠CDM ,∠BFD =∠ABF +∠CDF ,由此解决问题即可. 【详解】解:(1)证明:如图1中,过点E 作ET ∥A B .由平移可得AB ∥CD ,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m =2x +2y ,∴x +y =12m , ∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 4.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.5.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1, ∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥解析:(1)∠A +∠C =90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠A +∠AOB =90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,//,BG CN∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠,DH 平分EDF ∠, 132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.10.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF ;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG +∠EDG =∠DGF ;②∠AFG -∠EDG =∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF +∠AFD =180°,∠A +∠AFD =180°,进而得出∠EDF =∠A ;(2)①过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG +∠EDG =∠FGH +∠DGH =∠DGF ;②过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG -∠EDG =∠FGH -∠DGH =∠DGF .【详解】解:(1)①如图,②∵DE ∥AB ,DF ∥AC ,∴∠EDF +∠AFD =180°,∠A +∠AFD =180°,∴∠EDF =∠A ;(2)①∠AFG +∠EDG =∠DGF .如图2所示,过G 作GH ∥AB ,∵AB ∥DE ,∴GH ∥DE ,∴∠AFG =∠FGH ,∠EDG =∠DGH ,∴∠AFG +∠EDG =∠FGH +∠DGH =∠DGF ;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.三、解答题11.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C∠=∠+∠+∠,理由详见解析;(2)A D B C∠+∠=∠+∠,理由详见解析:(3)①1902D A∠=︒+∠;②360°;(4)124E∠=︒;=14F∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C∠=∠+∠+∠.理由如下:如图1,BDE B BAD∠=∠+∠,CDE C CAD∠=∠+∠,BDC B BAD C CAD B BAC C∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.12.(1)①45°;②∠F =a ;(2)∠F+∠H 的值不变,是定值180°.【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=∠CAE ,∠ACF=∠ACB ,依据∠CAE 是△ABC解析:(1)①45°;②∠F =12a ;(2)∠F +∠H 的值不变,是定值180°. 【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=12∠CAE ,∠ACF=12∠ACB ,依据∠CAE 是△ABC 的外角,可得∠B=∠CAE-∠ACB ,再根据∠CAD 是△ACF 的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.13.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠的大小不变.DAE∠=14°理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 14.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.15.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。
人教版数学七年级下册 期末试卷培优测试卷
人教版数学七年级下册 期末试卷培优测试卷一、选择题1.16的算术平方根是() A .4B .4-C .2D .2-2.下列图案中,是通过下图平移得到的是( )A .B .C .D .3.如果点P (1-2m ,m )的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行 ③点到直线的垂线段叫做点到直线的距离 ④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行. A .5个B .4个C .3个D .2个5.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:①ACB E ∠=∠;②DF 平分ADC ∠;③BFD BDF ∠=∠;④ABF BCD ∠=∠中,正确的有( )A .1个B .2个C .3个D .4个6.下列说法中正确的是( ) ①1的平方根是1;②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A .①④B .②④C .②③D .②⑤7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60° 8.若点(1,3)++M k k 在x 轴上,则点M 的坐标为( )A .(4,0)B .(0,3)-C .(2,0)-D .(0,2)-二、填空题9.8116的算术平方根是__________. 10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.12.如图,直线AB ,CD 相交于点E ,//DF AB .若100AEC ∠=︒,则D ∠等于_____.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.15.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.三、解答题17.计算:(13981- (223427(3)-- (32(23) (4353325+18.求满足下列各式的未知数x . (1)2(1)16x +=.(2)31(6)322x -=.19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.如图,三角形ABC 在平面直角坐标系中,(1)请写出三角形ABC 各点的坐标;(2)将 三角形ABC 经过平移后得到三角形A 1B 1C 1,若三角形ABC 中任意一点M (a ,b )与三角形A 1B 1C 1的对应点的坐标为M 1(a -1,b +2),写出A 1B 1C 1的坐标,并画出平移后的图形;(3)求出三角形ABC 的面积. 21.计算:(1239(6)27-- (2)﹣12+(﹣2)3×31127()89--;(3)已知实数a 、b 1a -﹣1|=0,求a 2017+b 2018的值.(45的整数部分为a 51的小数部分为b ,求2a+3b 的值.二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD 的面积为______,边长AD 为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B 与数轴上的1-重合.以点B 为圆心,BC 边为半径画圆弧,交数轴于点E ,则点E 表示的数是______; (3)变式拓展:①如图4,给定55⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直.尺和圆规....表示面积为13的正方形边长所表示的数.二十三、解答题23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.24.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数; (Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数. 25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A.【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.3.B【分析】互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限. 【详解】解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数 ∴120m m -+= 解得m =1∴1-2m =1-2×1=-1,m =1 ∴点P 坐标为(-1,1) ∴点P 在第二象限 故选B . 【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.B 【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可. 【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件; ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确; ③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度; ④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内. 故选B . 【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义. 5.B 【分析】根据平行线的性质求出ACB E ∠=∠,根据角平分线定义和平行线的性质求出ABF CBF ADC EDC ∠=∠=∠=∠,推出//BF DC ,再根据平行线的性质判断即可.【详解】 ∵//BC DE ,∴ACB E ∠=∠,∴①正确; ∵//BC DE , ∴ABC ADE ∠=∠,∵BF 平分ABC ∠,DC 平分ADE ∠,∴12ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠,∴ABF CBF ADC EDC ∠=∠=∠=∠, ∴//BF DC , ∴BFD FDC ∠=∠,∴根据已知不能推出ADF CDF ∠=∠,∴②错误;③错误; ∵ABF ADC ∠=∠,ADC EDC ∠=∠, ∴ABF EDC ∠=∠, ∵//DE BC , ∴BCD EDC ∠=∠,∴ABF BCD ∠=∠,∴④正确; 即正确的有2个, 故选:B . 【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键. 6.B 【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断. 【详解】解:1的平方根是±1,故说法①错误; 5是25的算术平方根,故说法②正确; (-4)2的平方根是±4,故说法③错误; (-4)3的立方根是-4,故说法④正确; 0.1是0.01的一个平方根,故说法⑤错误; 综上,②④正确, 故选:B . 【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.C 【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可. 【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°, ∴∠EHB =∠EFH +∠E =25°+30°=55°, ∵AB ∥CD ,∴∠HGD =∠EHB =55°. 故选C . 【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.C 【分析】点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标. 【详解】 解:∵在轴上 ∴ ∴ ∴∴点的坐标为 故选:C 【点睛】本题考查平面直角坐标系中,坐标解析:C 【分析】点(1,3)++M k k 在x 轴上,则纵坐标为零,列式计算,得到k 的值,从而代入横坐标得到点M 的坐标. 【详解】解:∵(1,3)++M k k 在x 轴上 ∴30k += ∴3k =- ∴13+1=2k +=-- ∴点M 的坐标为(2,0)- 故选:C 【点睛】本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键.二、填空题 9.【分析】直接利用算术平方根的定义得出答案. 【详解】 解:,的算术平方根是:. 故答案为:. 【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:32【分析】直接利用算术平方根的定义得出答案.【详解】解:94=,∴的算术平方根是:32. 故答案为:32. 【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键.10.【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答.【详解】点关于轴的对称点的坐标是,故答案为:.【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不 解析:(4,3)-【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答.【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-,故答案为:(4,3)-.【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=12(∠A+∠ABC)=12∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD-∠EBC=12∠A+∠EBC-∠EBC=12∠A=12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BE解析:80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BEC=80°.故答案为:80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3=== 解析:12,201721 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 15.(-4,0)或(6,0)【分析】设P (m ,0),利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图,设P (m ,0),由题意: •|1-m|•2=5,∴m=-4或6,∴P (-4解析:(-4,0)或(6,0)【分析】设P (m ,0),利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图,设P (m ,0),•|1-m|•2=5,由题意:12∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、2021,2解析:()【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,÷=⋯,202145051A坐标是(2021,2).故点2021故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.三、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.18.(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或.(2),,解得.解析:(1)3x =或5x =-;(2)10x =【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以12,再根据立方根的定义直接开立方即可求解.【详解】解:(1)14x +=±,即14x +=或14x +=-,解得3x =或5x =-.(2)3(6)64x -=, 64x -=,解得10x =.【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)A (-2,-2),B (3,1),C (0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的△A1B1C1如下图所示:;(3)111545313247222ABCS= =⨯-⨯⨯-⨯⨯-⨯⨯.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 ()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101 ;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.24.(1)证明见解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.【分析】(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得142CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.【详解】(1)12//,115l l ADC ∠=︒,18065BAD ADC ∴∠=︒-∠=︒,又115ABC ∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(2)(Ⅰ)12//,30l l ACD ∠=︒,30BAC ACD ∴∠=∠=︒,MAC BAC ∠=∠,30MAC ∴∠=︒,由(1)已得:65BAD ∠=︒,35DAC BAD BAC ∴∠=∠-∠=︒,35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,142CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,MAC BAC ∠=∠,5BAC x ∴∠=,由(1)已得:65BAD ∠=︒,65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,解得5x =︒,525BAC x ∴∠==︒,又12//l l ,25ACD BAC ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵ AD 平分∠ BAC ,AE 平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 26.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于1;理由如下:2∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优小测1一.选择题(共16小题,每题3分,共48分)1.下列说法不正确的是()A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数2.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④2题3题4题3.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,有四个相同的小长方形和两个相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.B.﹣C.D.2m﹣3n5.在同一平面内,若∠A与∠B的两边分别垂直,且∠A比∠B的3倍少40°,则∠A的度数为()A.20°B.55°C.20°或125°D.20°或55°6.如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠CBE+∠D=90°;④∠DEB=2∠ABC,其中正确的有()A.1个B.2个C.3个D.4个7.定义运算a⊗b=a(b﹣1),下面给出了关于这种运算的四个结论:①2⊗(﹣1)=﹣4;②a⊗b=b⊗a;③若a+b=1,则a⊗a=b⊗b;④若b⊗a=0,则a=0或b=1.其中正确结论的序号是()A.②④B.②③C.①④D.①③8.如图,点A,B的坐标分别为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为()A.2B.3C.4D.59.如图,在平面直角坐标系xO1y中,点A的坐标为(1,1).如果将x轴向上平移3个单位长度,将y 轴向左平移2个单位长度,交于点O2,点A的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,﹣3)D.(3,4)8题9题12题10.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q不在第()象限.A.一B.二C.三D.四11.小明要用40元钱买A、B两种型号的口罩,两种型号的口罩必须都买,40元钱全部用尽,A型每个6元,B型口罩每个4元,则小明的购买方案有()种.A.2种B.3种C.4种D.5种12.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.813.若3x+5y+6z=5,4x+2y+z=2,则x+y+z的值等于()A.0B.1C.2D.不能求出14.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km15.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0B.2C.4D.616.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.1016题17题二.填空题(共6小题,每题3分,共18分)17.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长2b的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为.18.在数轴上点A对应的数为﹣2,点B是数轴上的一个动点,当动点B到原点的距离与到点A的距离之和为6时,则点B对应的数为.19.如果关于x的不等式组的整数解仅为1,2,3,那么适合这个不等式的整数a,b组成的有序数对(a,b)个数为.20.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣3p+5)⊕11=11,则p的取值范围是.21.当x=3时,代数式px3+qx+1的值为2019,则当x=﹣3时,代数式px3+qx+1的值是.22.若对于某一范围内的x的任意值,|1﹣2x|+|1﹣3x|+…+|1﹣10x|的值为定值,则这个定值为.一.选择题(共16小题)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 二.填空题(共6小题)17. 18. 19.20. 21. 22.三.解答题(共8小题,共60分)23.(满分6分)对于四个数“﹣6,﹣2,1,4”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□﹣□”的结果最小;②“□×□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.24.(满分6分)如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?25.(满分8分)【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表示的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表示的数.【应用拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达终点时,两个点运动同时停止.当A、P、Q三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.26.(满分8分)如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.(1)∠CAF=°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.27.(满分6分)点P(x,y)在第三象限,且x+y=﹣8,点A的坐标为(6,0).设△OP A的面积为S.(1)当点P的横坐标为﹣5时,试求△OP A的面积.(2)试判断△OP A的面积是否能大于24,并说明理由.28.(满分6分)魔术大师夏尔•巴比耶90岁时定义了一个魔法三角阵,三角阵中含有四个区域(三个“边区域”和一个“核心区域”,如图1中的阴影部分),每个区域都含有5个数,把差相同的连结九个正整数填进三角阵中,每个区域的5个数的和必须相同.例如:图2中,把相差为1的九个数(1至9)填入后,三个“边区域”及“核心区域”的数的和都是22,即6+1+9+2+4=22,4+2+8+3+5=22,5+3+7+1+6=22,2+9+1+7+3=22(1)操作与发现:在图3中,小明把差为1的连续九个正整数(1至9)分为三组,其中1、2、3为同一组,4、5、6为同一组,7、8、9为同一组,把同组数填进同一花纹的△中,生成了一个符合定义的魔法三角阵,且各区域的5个数的和为28,请你在图3中把小明的发现填写完整.(2)操作与应用:根据(1)发现的结果,把差为8的连续九个正整数填进图4中,仍能得到符合定义的魔法三角阵,且各区域的5个数的和为2019.①设其中最小的数为x,则最大的数是;(用含x的式子表示).②把图4中的9个数填写完整,并说明理由.29.(满分10分)随着全国疫情防控取得阶段性进展,各学校在做好疫情防控工作的同时积极开展开学准备工作.为方便师生返校后测体温,某学校计划购买甲、乙两种额温枪.经市场调研得知:购买1个甲种额温枪和2个乙种额温枪共需700元,购买2个甲种额温枪和3个乙种额温枪共需1160元.(1)求每个甲种额温枪和乙种额温枪各多少元;(2)该学校准备购买甲、乙两种型号的额温枪共50个;其中购买甲种额温枪不超过15个.请设计出最省钱的购买方案,并求出最低费用.30.(满分10分)操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图,在平面直角坐标系中,对正方形ABDC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′D′C′及其内部的点,其中点A,B的对应点分别为A′,B′,已知正方形ABDC 内部的一个点F经过上述操作后得到的对应点F′与点F重合,请求出点F的坐标.。