六年级分数简便运算常见题型(供参考)

合集下载

六年级数学上册:分数混合运算及简便运算专项练习(含答案)

六年级数学上册:分数混合运算及简便运算专项练习(含答案)

六年级数学上册:分数混合运算及简便运算专项练习(含答案)一、分数混合运算。

(1)×0.9=(2)×1.8×=(3)×2.5=(4)×22=(5)×1.5=(6)4.2×12×=(7)×4.5+1.2×1.2=(8)×2.4=(9)×2.1=(10)×3.5×=二、怎么算简便就怎么算。

(11)×2.3-×2.3=(12)101×=(13)×99+=(14)()×28=(15)4.2×()=(16)19×=(17)3.5×=(18)×2.1×30=(19)39×=(20)2.5×=三、解答题。

21、一台割草机,每小时能割草1.5吨,小时能割草多少吨?22、一个长方体的长是米,宽是米,高是米,它的体积是多少立方米?23、一辆汽车每小时行105千米,从甲地到乙地行驶了小时,那么甲乙两地相距多少千米?24、某企业平均每天用水11吨,开展节水活动后,每天比原来节约用水。

照这样计算,6月份共节约用水多少吨?参考答案一、分数混合运算。

(1)×0.9=×0.9=(2)×1.8×=×(1.8×)=×2=(3)×2.5=60×2.5=150(4)×22=×22=1(5)×1.5=×1.5=3.5(6)4.2×12×=4.2×(12×)=4.2×2=8.4(7)×4.5+1.2×1.2 =0.6+1.44=2.04(8)×2.4==(9)×2.1 (10)×3.5×二、怎么算简便就怎么算。

最新六年级数学上册分数简便计算

最新六年级数学上册分数简便计算

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

第三种:乘法分配律的逆运算 例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

第四种:添加因数“1” 例题:1)759575⨯- 2)9216792⨯- 3)23233117233114+⨯+⨯涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

第五种:数字化加式或减式 例题:1)16317⨯2)19718⨯ 3)316967⨯涉及定律:乘法分配律逆向运算基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

第六种:带分数化加式 例题:1)4161725⨯ 2)351213⨯ 3)135127⨯涉及定律:乘法分配律基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

六年级奥数分数乘法的巧算

六年级奥数分数乘法的巧算

分数乘法简便运算分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:11474135⨯⨯ 256153⨯⨯ 3266831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算; 第二种:乘法分配律的应用例题:127)27498(⨯+ 24)41101(⨯+ 316)2143(⨯+第三种:乘法分配律的逆运算例题:1213115121⨯+⨯ 261959565⨯+⨯ 3751754⨯+⨯第四种:添加因数“1”例题:1759575⨯- 29216792⨯- 323233117233114+⨯+⨯涉及定律:乘法分配律逆向运算基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算;第五种:数字化加式或减式例题:116317⨯219718⨯ 3316967⨯将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化; 第六种:带分数化加式例题:14161725⨯ 2351213⨯ 3135127⨯基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算;第七种:乘法交换律与乘法分配律相结合例题:1247174249175⨯+⨯ 21981361961311⨯+⨯ 31381137138137139⨯+⨯基本方法:将各项的分子与分子或分母与分母互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算;注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换;不能分子和分母互换,也不能出现一组中的其中一个分子或分母和另一组乘式中的分子或分母进行互换;分数简便运算课后练习一能简算的简算共32题,满分96错误!× 错误!+错误!× 错误! 17× 错误! 错误!错误!+错误!×32 错误!× 错误!×16错误!+ 错误!× 错误! 44-72×错误! 52×214×10 ×51+51× )325(61-⨯32+43-21×12 46×4544 125×41×24 42×65-74 69765⨯⨯32+21×76 53×914-94×53 2008×错误! 错误!+ 错误!+ 错误!×错误!149×14×92 错误!×错误!×错误! 12× 错误!- 错误! 错误!×错误!+错误!× 错误!36×错误! 错误!-错误!×错误! 错误!- 错误!× 错误! 错误!-×错误!43×52+43× 257×101-257 508310019⨯⨯ 95739574⨯+⨯。

小学六年级数学上册分数简便计算分类练习

小学六年级数学上册分数简便计算分类练习

分数简便运算常见题型第一种:连乘——乘法交换律的应用涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯第二种:乘法分配律的应用涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+第三种:乘法分配律的逆运算涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯第四种:添加因数“1”涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

例题:1)759575⨯- 2)9216792⨯- 3)23233117233114+⨯+⨯第五种:数字化加式或减式涉及定律:乘法分配律逆向运算 基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

例题:1)16317⨯ 2)19718⨯ 3)316967⨯第六种:带分数化加式涉及定律:乘法分配律基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

例题:1)4161725⨯ 2)351213⨯ 3)135127⨯第七种:乘法交换律与乘法分配律相结合涉及定律:乘法交换律、乘法分配律逆向运算基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。

分数乘法简便运算专项练习题

分数乘法简便运算专项练习题

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+2)20)4152(⨯- 3) ()1819776⨯+⨯涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

第三种:乘法分配律的逆运算(提取公因数) 例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

第四种:添加因数“1” 例题:1)759575⨯- 2)9292167+⨯ 3)23233117233114-⨯+⨯涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

第五种:数字化加式或减式 例题:1)201620152017⨯2)201720161998⨯ 3)13534136⨯涉及定律:乘法分配律逆向运算基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

第六种:带分数化加式 例题:1)513226⨯2)815341⨯ 3)135127⨯涉及定律:乘法分配律 基本方法:将带分数转化为整数部分和分数部分相加的形式,还可以转化成整数和带分数相加的形式,目的是便于约分。

六年级上学期数学 分数除法的简便运算 完整版题型训练+课后练习

六年级上学期数学 分数除法的简便运算 完整版题型训练+课后练习

六年级上学期数学分数除法的简便运算完整版题型训练+课后练习分数除法的巧算知识点梳理:1)乘积为1的两个数互为倒数。

2)在分数的除法运算中,除以一个数就等于乘以这个数的倒数。

3)乘法交换律用字母表:a×b=b×a,乘法结合律用字母表:a×b×c=(a×b)×c,乘法分配律用字母表:(a+b)×c=a×c+b×c。

4)运算性质:①减法的运算性质:a-(b+c)=a-b-c;②除法的运算性质:a÷(b×c)=a÷b÷c。

例题讲解】例题1:分数除法-带分数frac{1\frac{13}{24}}{\frac{37}{27}}=\frac{1\frac{1}{21}} {\frac{112}{216}}=\frac{216}{112}=2$例题2:分数除法-带分数和小数frac{2\frac{3}{7}}{0.5}=1\frac{2}{3}\div1.5=0.75\div2=\fra c{2}{3}\times\frac{1}{2}=\frac{1}{3}$a-(b-c)=a-b+c$,$a\div(b\div c)=a\times(c\div b)$。

frac{8}{15}\div0.2=\frac{8}{15}\times5=2\frac{2}{3}$巩固1:分数除法-带分数frac{xxxxxxxx1}{3}\div\frac{12}{xxxxxxx}=xxxxxxxx1\tim es\frac{xxxxxxx}{12}=xxxxxxxx5625$巩固2:分数除法-带分数和小数frac{2\frac{2}{5}}{1.2}=1\frac{3}{5}\div1.2=1\frac{3}{5}\t imes\frac{5}{6}=\frac{7}{12}$frac{1}{5}\div\frac{2}{10}=1\frac{2}{5}\div2=\frac{7}{10} $巩固3:分数乘法的简便运算-连乘frac{7}{8}\times\frac{5}{11}\times24=\frac{7}{11}\times\fr ac{5}{8}\times24=\frac{35}{22}$1\times1)\times(19\times17)=323$巩固4:分数除法的简便运算—连除frac{5253}{6}\div3\div\frac{68}{8}=\frac{5253}{6}\div\fra c{68}{8}\div3=\frac{292}{17}$巩固5:乘法中运算定律的应用24\times(\frac{5}{6}+\frac{7}{8})=24\times\frac{9}{8}=27 $frac{101}{4}\times\frac{4}{25}=101\times\frac{1}{25}=4.0 4$巩固6:除法计算中运算定律的运用frac{515}{8}-2)\div8\times1.5=\frac{515}{8}\div8\times1.5-2\times1.5=3.$frac{5}{24}+\frac{7}{12}-\frac{2}{3})\times48\div\frac{55}{8}+\frac{8}{1}\times\frac{1}{ 8}=\frac{1}{4}\times48\div\frac{55}{8}+1=1.6$例题7:解方程(1)frac{22}{13}x-16=\frac{x}{3}-\frac{4}{5}$frac{22}{13}x-\frac{x}{3}=\frac{16}{1}+\frac{4}{5}$ frac{32}{39}x=\frac{84}{5}$x=\frac{819}{40}$解方程(2)将分数化为通分后,得到:frac{2x}{15}+\frac{7x}{510}=x$化简后得到:frac{17x}{510}=\frac{2x}{15}$两边同时乘以$510$,得到:17x\cdot15=2x\cdot510$化简后得到:x=\frac{510}{23}$因此,方程的解为$\frac{510}{23}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档