帧中继基础知识总结

合集下载

帧中继知识点总结

帧中继知识点总结
(对端的IP地址) (本段的DLCI)(开启帧中继伪广播功能,切记!!!一定要敲)
4.接口下 ip add 12.1.1.1 255.255.255.0
为接口配置IP地址
3.Q933A
动态映射帧中继配置方法:1、接口下 encapsulation frame-relay
把接口封装模式改为帧中继
2. 接口下 ip add 12.1.1.1 255.255.255.0
不允许别人查询自己
3. 接口下
frame-relay map ip 12.1.1.2 102 broadcast
注意!!!!隧道源和目的必须路由可达 否则隧道建立不起来
在连接终端的接口下 frame-relay route 411 interface tunnel 0 1001
把所有帧中继流量都引向隧道接口 并且给隧道接口配置一个outputDLCI 注意隧道接口的outputDLCI两边必须一样
B.多点子接口 承继其父项物理接口的所有属性 配置一模一样
int serial 1/2.250 multipoint 创建一个多点子接口
2.interface s1/2.2 point-to-point 创建一个帧中继点到点子接口
3.子接口下 no frame-relay inverse-arp
no arp frame-relay
帧中继子接口 A.点到点子接口 用于解决DV在星型拓扑中HUB点的水平分割问题
1.主接口下 encapsulation frame-relay
no frame-relay inverse-arp
no arp frame-relay
4.连接终端的接口下 frame-relay intf-type dce 将接口制定为帧中继DCE接口

11-帧中继技术

11-帧中继技术

接的一种途径。
帧中继是进入带宽范围从56Kbps到1.544Mbps的广域分组交换网 的用户接口。
概述
帧中继网络环境下的设备可以分为两大类,即数据终端设备(DTE )和数据电路终端设备(DCE)。
虚电路和DLCI
虚电路有两种,一种是永久性虚电路(PVC),一种是交换型虚电 路(SVC)。
更新分组丢包率高等问题,
帧中继子接口
子接口可以解决多点帧中继网络中距离矢量路由协议和水平侵害所 引起的问题,
帧中继子接口
子接口以支持下列连接类型:
点到点
多点
配置帧中继
Router(config-if)#
encapsulation frame-relay [ietf] 配置封装协议
为扩展)。关键的帧中继LMI扩展包括全局寻址、虚拟电路状态消
息和多播(multicasting)。
CISCO:Cisco、Digital和Northern Telecom定义,自动协商失败后默认 的LMI类型,状态信息通过DLCI 0传送。 ANSI:ANSI标准T1.617定义,最常用的LMI类型,通过DLCI1023传送。 Q933A:定义为ITU-T Q.933的LMI类型,状态信息通过DLCI 0传送。
常用拓扑
星型(Star/hub-and-spoke) 全互连(Full-mesh) 部分互连(Partial-mesh):
反向ARP
反向 ARP是根据源设备 MAC 地址通过广播获取 IP地址的过程的 地址解析协议 反向ARP(Inverse ARP,InARP)实质上是用于非广播多路访问网
Router(config-subif)#
frame-relay interface-dlci dlci 配置DLCI号

CCNP中文文档之帧中继介绍

CCNP中文文档之帧中继介绍

帧中继介绍1.什么是帧中继帧中继(Frame-relay,FR)是面向连接的第二层协议,它和X.25类似。

X.25有三层构成:physical、Data-Link,Packet对应于OSI的下三层,X.25是有纠错机制,可靠性高,但带宽有限。

Frame-relay比X.25有效,是X.25的替代者。

帧中继在用户设备(DTE)和网络设备(帧中继交换机)之间提供一个数据包交换数据的通信接口,帧中继是典型的包交换技术。

同样带宽的Frame-relay通信费用比专线要低,帧中继允许用户设备在帧中继交换网络比较空闲的时候以高于ISP所承诺的速率进行传输。

2.帧中继的合理性随着网络的发展,用户经常需要租用线路把分散在各地的用户设备连接起来。

如图示topoly1 假设要把4个不同城市的公司分支连接,如采用DDN专线点到点连接,则一共需6条物理线路,每台设备上要拉3对物理线路,同时每个路由器需有3个串口和声母连接。

如要实现全互联的点数为n,则专线数量为nx(n-1)/2这样会带来3个问题:(1)当网络迅速发展时,专线数量会急剧膨胀,物理线路铺设费用会大大增加。

(2)路由器串行接口数量也会增加。

(3)扩展性能差,需增加新的连接时,要增加新的硬件设备和线路。

帧中继的出现解决以上的问题,网络中的每个节点只通过一条线路连接到帧中继云上,线路的代价大大减低,每个路由器也只需要一个串行接口了。

ISP只需要配置他们的帧中继交换机,在两个用户设备之间增加一条PVC接口,无须更改硬件设备。

3.帧中继帧格式帧中继是一种W AN数据包交换协议,它运行在OSI的物理层和数据链路去上。

包交换是一种W AN交换方法,使网络设备共享一条链路将数据包发向目的设备。

帧中继帧格式。

如图topoly2Flag:标志帧的开始或结束,01111110 (7E)帧中继头部:包含地址位和各种控制位数据:用户的数据FCS:帧校验位4.帧中继术语永久虚电路(PVC):虚电路是永久建立的链路,由ISP在其帧中继交换机静态配置交换表实现。

帧中继知识

帧中继知识

【如何用路由器模拟帧中继交换机?】物理连接:所有的DCE接口都接到模拟成帧中继交换的路由器上。

因为在实际工程中clockrate是由局端,像电信这样的部门来确定的。

局端的终端服务器通过异步口连接到模拟成帧中继交换的路由器的console口。

配置实现:首先在全局配置模式下打:router(config)#frame-relay switching//启动帧中继交换功能然后进入接口配置模式router(config-if)#en fr//接口封装帧中继,命令全称:encapsulation frame-relay。

这里没有打封装类型,就是缺省的cisco类型。

另外还可以是ietf的。

router(config-if)#frame lmi-type ansi//配置帧中继LMI封装类型。

lmi(local management interface)本地管理接口,运用在路由器和帧中继交换机之间。

是数据传输一种信令标准。

它有三种封装方法:cisco,ansi,q933a,缺省封装类型,自然是cisco类型。

但它是由Cisco,StrataCom,Nortel,DEC联合制定的。

ansi(American National Standards Institute)美国国家标准学会,始建立于1918年,标准涉及电工、建筑、日用品、制图、材料试验等技术领域。

q933a是国际电联(International Telecommunication Union)的标准。

ITU-T (The ITU Telecommunication Standardization Sector )ITU-T是国际电信联盟电信标准化部门,成立于1993年,它的前身是国际电报和电话咨询委员会(CCITT)。

router(config-if)#frame-relay intf-type dce//配置帧中继接口类型,有dce,dte,还有nni选择。

帧中继技术知识点课件.

帧中继技术知识点课件.
1-4-பைடு நூலகம்1帧中继技术
帧中继技术
由于光纤信道的大量使用,快速分组交换(Fast Packet Switching, FPS)应运而生,快速分组交换 的目标是通过简化通信协议来减少中间节点对分 组的处理,发展高速的分组交换机,以获得高的 分组吞吐量和小的分组传输时延,适应当前高速 传输的需要。 帧中继(Frame Relay, FR)是快速分组交换网的 一种,它是以X.25交换技术为基础,摈弃其中繁 琐过程,改造了原帧结构,获得了良好的性能。 分组交换在源端到目的端的每一步中都要进行复 杂的处理;在每一个中间节点都要对分组进行存 储,并检查数据是否存在错误。
帧中继技术
采用帧中继方式的网络中各中间节点没有网络层,并 且数据链路层也只有一般网络的一部分(但增加了路 由功能),中间节点只进行差错检测,检出的错误帧 直接丢弃,无需回送确认帧。

帧中继基础知识总结

帧中继基础知识总结

帧中继基础知识总结版本V1.0密级☐开放☑内部☐机密1帧中继基本配置1.1帧中继交换机帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置。

配置示例:frame-relay switchinginterface s0/1encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号frame-relay route 103 interface s0/3 301no shutdown1.2环境1 主接口运行帧中继(Invers-arp)FRswitch(帧中继交换机)的配置:frame-relay switchinginterface s0/1 // 连接到R1的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号no shutdowninterface s0/2 // 连接到R2的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 201 interface s0/1 102no shutdownR1的配置如下:interface serial 0/0ip addressencapsulation frame-relay// 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdownR2的配置如下:interface serial 0/0ip addressencapsulation frame-relayno shutdown在FRswitch上查看PVI(验证配置):FRswitch#show frame-relay routeInput Intf Input Dlci Output Intf Output Dlci StatusSerial0/1 102 Serial0/2 201 activeSerial0/2 201 Serial0/1 102 active在R1上查看帧中继映射R1#show frame-relay mapSerial0/0 (up): ip dlci 102(0x66,0x1860), dynamic,broadcast,, status defined, activeR1#pingType escape sequence to abort.Sending 5, 100-byte ICMP Echos to , timeout is 2 seconds:!!!!!1.3环境2 主接口运行帧中继(静态映射)FRswitch的配置同上,这里不再赘述上述案例是终端路由器采用动态invers-arp获取帧中继相关映射信息,本例采用静态建立映射的方式进行配置。

帧中继(FR)

帧中继(FR)
计算机网络互联技术
帧中继(FR)
主讲:罗海波
情景描述


A公司总部在北京,并且分别在深圳和上海 设立了分公司。由于业务的需要,要求实 现公司内部之间的计算机联网。 考虑成本因素,公司选择租用帧中继线路。
任务学习引导


一、什么是帧中继 二、帧中继特点 三、帧中继术语 四、帧中继的常用命令
一、什么是帧中继<2>

电路交换:


1)、采用的是静态分配策略,经面向连接建立连接。 2)、通信双方建立的通路中任何一点出现故障,就会中断通话,必须重 新拨号建立连接,方可继续。 3)、线路的传输效率往往很低,造成通信线路资源的极大浪费。 4)、由于各异的计算机和终端的传输数据的速率个不相同,采用电路交 换就很难相互通信。
四、帧中继的常用命令<1>

(1)指定帧中继封装格式

encapsulation frame-relay cisco|ietf
frame-relay interface-dlci dlci DLCI号取值16~991,由服务商提供。 Frame-relay map protocol-type protocol-address dlci [broadcast] [ietf][cisco] frame-relay lmi-type cisco|ansi|q933a Show interface serial-number
一、什么是帧中继<1>


帧中继(Frame Relay, FR)是一种用于连接计算机 系统的面向分组的通信方法,也是面向连接的第二 层传输协议,帧中继是典型的分组交换技术。 用户经常需要租用线路把分散在各地的网络连接起 来,如果采用点到点的专用线路(例如 DDN), ISP 需要给每个地方的路由器拉 4对物理线路,同时 每个路由器需要有 4 个串口。而使用帧中继每个路 由器只通过一条线路连接到帧中继云上,线路的代 价大大减低,每个路由器也只需要一个串行接口而 且允许用户在帧中继交换网络比较空闲的时候以高 于 ISP 所承诺的速率进行传输。

数据通信工程(二)帧中继(FR)技术

数据通信工程(二)帧中继(FR)技术
吉林通信行业职业技能鉴定中心
帧中继的层次结构
吉林通信行业职业技能鉴定中心
2.寻址方式 2.寻址方式
帧中继采用统计复用技术,它以虚电路 帧中继采用统计复用技术,它以虚电路为每一帧提 虚电路为每一帧提 供地址信息。 供地址信息。每一条链路和每一个物理端口可容纳许多 虚电路。用户之间通过虚电路连接。每一帧帧头的DLCI 虚电路。用户之间通过虚电路连接。每一帧帧头的DLCI 含有地址信息。 含有地址信息。 目前大部分帧中继网只是提供永久虚电路(PVC), 目前大部分帧中继网只是提供永久虚电路(PVC),每 只是提供永久虚电路(PVC) 一个节点机都有PVC路由表,当帧进入网络时, PVC路由表 一个节点机都有PVC路由表,当帧进入网络时,节点机通 DLCI值识别帧的去向 DLCI只具有本地意义 值识别帧的去向。 只具有本地意义, 过DLCI值识别帧的去向。DLCI只具有本地意义,它并非 指终点的地址, 指终点的地址,而只是识别用户与网络间以及网络与网 络间的逻辑连接 虚电路段) 逻辑连接( 络间的逻辑连接(虚电路段)。帧中继的虚电路是由多段 DLCI的逻辑连接而构成的端到端的逻辑信道 的逻辑连接而构成的端到端的逻辑信道。 DLCI的逻辑连接而构成的端到端的逻辑信道。
吉林通信行业职业技能鉴定中心
端口 B
输入DLCI 76
输出DLCI 84 B的转发表
端口 路由器2
源 由 路 器 R s 下 跳 一 R n 接 口 FR1 IP路 表 由 F R 节 机1 点
F R 节 机3 点
F R 节 机2 点
头 部 帧 头DLCI
数 据 数 据 帧 尾
吉林通信行业职业技能鉴定中心
吉林通信行业职业技能鉴定中心
4、在链路层完成统计复用、帧透明传输和错误检测,但不提 链路层完成统计复用、帧透明传输和错误检测, 供发现错误后的重传操作。省去了帧编号、流量控制、 供发现错误后的重传操作。省去了帧编号、流量控制、应 答和监视等机制,大大节省了帧中继交换机的开销, 答和监视等机制,大大节省了帧中继交换机的开销,提高 了网络吞吐量、降低了通信时延。 了网络吞吐量、降低了通信时延。 5、交换单元-帧的信息长度比分组长度要长,预约的最大帧 交换单元-帧的信息长度比分组长度要长, 长度至少要达到1600字节 字节/ 长度至少要达到1600字节/帧,适合封装局域网的数据单 元。 6、提供一套合理的带宽管理和防止拥塞的机制,使用户有效 提供一套合理的带宽管理和防止拥塞的机制 带宽管理和防止拥塞的机制, 地利用预约的带宽,即承诺的信息传送速率(CIR),还 地利用预约的带宽,即承诺的信息传送速率(CIR),还 ), 允许用户的突发数据占用未预定的宽度, 允许用户的突发数据占用未预定的宽度,以提高网络资源 的利用率。 的利用率。 7、与分组交换一样,帧中继采用面向连接的交换技术。可以 与分组交换一样,帧中继采用面向连接的交换技术 面向连接的交换技术。 提供SVC(交换虚电路) PVC(永久虚电路)业务, 提供SVC(交换虚电路)和PVC(永久虚电路)业务,但 目前已应用的帧中继网络中,只采用PVC业务 业务。 目前已应用的帧中继网络中,只采用PVC业务。

帧中继简介

帧中继简介

7
DLCI Local Significance
Chicago New York 128.1.2.11/24
DLCI 20 DLCI 50 DLCI 25
DLCI 50
DLCI 20 -> 128.1.2.11 DLCI 50 -> 128.1.2.12
128.1.2.12/24 Orlando
Using one of the following methods, a DLCI can be used as the MAC address of a remote host ARP INARP Static Mapping
8பைடு நூலகம்
链路管理 帧中继链路管理协议主要完成用户与网络的通讯,
链路管理 帧中继链路管理协议主要完成用户与网络的通讯,通过交换一系列信息完成用户与网络链路的建立。 目前,福建省宽带网支持的帧中继链路管理协议主要有以下三种:ANSI(T1.617 Annex D),CCITT Q.922,LMI REV1。
23
Spicey#show frame-relay pvc PVC Statistics for interface Serial0 (Frame Relay DTE) Active Inactive Deleted Static Local 1 0 0 0 Switched 0 0 0 0 Unused 0 0 0 0 DLCI = 140, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0 input pkts 83 output pkts 87 in bytes 8144 out bytes 8408 dropped pkts 0 in FECN pkts0 in BECN pkts 0 out FECN pkts 0 out BECN pkts0 in DE pkts 0 out DE pkts 0 out bcast pkts 41 out bcast bytes 3652 pvc create time 01:31:50, last time pvc status changed 01:28:28

帧中继基本原理

帧中继基本原理

4.4.1 帧中继基本原理帧中继(Frame Relay,FR)技术是在OSI 第二层上用简化的方法传送和交换数据单元的一种技术。

帧中继技术是在分组技术充分发展,数字与光纤传输线路逐渐替代已有的模拟线路,用户终端日益智能化的条件下诞生并发展起来的。

帧中继仅完成OSI 物理层和链路层核心层的功能,将流量控制、纠错等留给智能终端去完成,大大简化了节点机之间协议;同时,帧中继采用虚电路技术,能充分利用网络资源,因而帧中继具有吞吐量高、时延低、适合突发性业务等特点。

作为一种新的承载业务,通过RFC1490协议,把网络层的IP 数据包封装成数据链路层的帧中继帧,帧中继的用户接口速率最高为34Mbit/s ,它目前在中、低速率网络互联的应用中被广泛使用。

帧中继技术适用于以下两种情况:(1) 用户需要数据通信,其带宽要求为64kbit/s-34Mbit/s ,而参与通信的各方多于两个的时候使用帧中继是一种较好的解决方案;(2) 当数据业务量为突发性时,由于帧中继具有动态分配带宽的功能,选用帧中继可以有效地处理突发性数据。

1 帧中继业务帧中继业务是在用户-网络接口(UNI)之间提供用户信息流的双向传送,并保持原顺序不变的一种承载业务。

用户信息流以帧为单位在网络内传送,用户-网络接口之间以虚电路进行连接,对用户信息流进行统计复用。

帧中继网络提供的业务有两种:永久虚电路和交换虚电路。

永久虚电路是指在帧中继终端用户之间建立固定的虚电路连接,并在其上提供数据传送业务。

交换虚电路是指在数据传送前,两个帧中继终端用户之间通过呼叫建立虚电路连接,网络在建好的虚电路上提供数据信息的传送服务,终端用户通过呼叫清除操作终止虚电路。

目前已建成的帧中继网络大多只提供永久虚电路业务。

帧中继永久虚电路业务模型如图2-1所示。

FR 网络FR网络FR 网络FRAD :帧中继组装和拆分 PVC :永久虚电路 LAN :局域网图2-1 永久虚电路业务模型2 帧中继的基本功能帧中继在OSI 第二层以简化的方式传送数据,仅完成物理层和链路层核心层的功能,智能化的终端设备把数据发送到链路层,并封装在LAPD 帧结构中,实施以帧为单位的信息传送。

帧中继(FR)详解

帧中继(FR)详解

帧中继(FR)详解⼀、什么是帧中继(FR)帧中继技术是在开放系统互联(OSI)第⼆层上⽤简化的⽅法传送和交换数据单元的⼀种技术。

OSI共有七层:物理层、数据链路层、⽹络层、传送层、会话层、表⽰层和应⽤层。

帧中继仅完成OSI的物理层和链路层核⼼功能,将流量控制、纠错等功能留给智能化的终端设备去完成。

这样⼤⼤地简化了节点之间的协议;⼜帧中继采⽤虚电路技术,能充分地利⽤⽹络资源,使帧中继具有延时⼩、吞吐量⼤、适合突发性业务等优点。

图3.1 OSI模型和帧中继模型帧中继技术的特点:1,帧中继技术主要⽤于传递数据信息,它将数据信息以满⾜帧中继协议的帧的形式有效地进⾏传送。

2,帧中继传送数据信息所使⽤的传输链路是逻辑连接,⽽不是物理连接。

在⼀个物理连接上可以复⽤多个逻辑连接,使⽤这种⽅式可实现带宽复⽤及动态分配带宽。

3,帧中继协议简化了X.25的第三层功能,使⽹络功能的处理⼤⼤地简化,提⾼了⽹络对信息处理的效率。

只采⽤物理层和链路层的两级结构,在链路层中仅保留其核⼼的⼦集部分。

4,在链路层完成统计复⽤、帧透明传输和错误检测,但不提供发现错误后的重传操作,省去了帧编号、流量控制、应答和监视等机制,⼤⼤节省了交换机的开销,提⾼了⽹络吞吐量、降低了通信时延。

⼀般FR⽤户的接⼊速率在64kbps~2Mbps之间,近期FR的速率已提⾼到(8~10)Mbps,今后将达到45Mbps。

5,交换单元——帧的信息长度远⽐分组长度要长,预约的最⼤帧长度⾄少要达到1600字节/帧,适合于封装局域⽹(LAN)的数据单元。

6,提供⼀套合理的带宽管理和防⽌阻塞的机制,⽤户有效地利⽤预先约定的带宽,即承诺的信息速率(CIR),并且还允许⽤户的突发数据占⽤未预定的带宽,以提⾼整个⽹络资源的利⽤率。

7,与分组交换⼀样,FR采⽤⾯向连接的交换技术,可以提供SVC(交换虚电路)业务和PVC(永久虚电路)业务,但⽬前已应⽤的FR⽹络中,只采⽤PVC业务。

帧中继技术基础

帧中继技术基础

帧中继技术基础数据通信技术的发展数据通信就是进行数据传输和数据交换,把数据源发送的数据信息从一个地方通过传输信道交换设备传送到另一个地方的数据接收设备中,也就是数据信息在发送设备和接收设备之间进行信息传递。

数据通信网是为提供数据通信业务而提供的媒体,随着通信技术的不断发展,数据通信网的交换技术有:电路方式、分组方式、帧方式、和信元方式等。

电路方式是传递信息最简单的方式。

电路方式之一是基于公众交换电话网(PSTN)或ISDN电路交换的原理,当用户要求发送数据时,交换机在主叫用户端及被叫用户端之间连接一条链路。

终端设备通过接入设备(调制解调器(MODEM)或适配器(TA))连到交换机上,经接入设备的拨号在交换机之间构成一条物理链路。

如图1-1所示。

MODEM/TA MODEM/TA图1-1 利用PSTN/ISDN进行数据通信示意图这种方式属于预分配电路资源系统,即在一次接续中,电路资源预先分配给一对用户固定使用,不管该用户是否有数据在链路中传递,电路一直被这一对用户占用,其它用户无法插入该链路中。

只有该对用户使用完后把该链路释放,其它用户才能使用。

另一种电路方式是采用专线,即数字数据网(DDN)。

DDN一般向用户提供专用数据传递链路,如图1-2所示。

DDN图1-2利用专线联接方式进行数据通信电路方式的主要特点是为通信的两端建立物理连接,它有如下优点:①信息传输时延小,因为它是一个固定物理连接,信息传输的时延也是固定的。

②电路是“透明”的。

发送端和接收端传递的信息并没有限制在某一个协议下,只要终端设备认可,任何协议的信息都可以传递。

③信息传递的吞吐量大。

可以根椐信息量的大小来选择信息的传递带宽。

它的缺点是资源比较浪费。

基于PSTN或ISDN电路方式至少要占用一路话路,即64Kbps。

如果传递的信息不到64Kbps,占用的带宽也不能减小,其它用户也不能享用。

基于DDN的电路方式虽然可以根据需要分配带宽,但对信道的占用也是半永久性的,用户一旦租用,即使没有信息传递,其带宽也不能由其它用户享用,因此,DDN一般用于对实时性和可靠性要求较高的业务。

计算机网络原理 帧中继交换

计算机网络原理  帧中继交换

计算机网络原理帧中继交换
帧中继(Frame Relay)是以分组交换技术为基础的高速分组交换技术。

它利用数字系统的低误码率和高传输速率的特点,为用户提供质量更高的快速分组交换服务,是一种用于连接计算机系统的面向分组的通信方法。

1.帧中继的基本原理
帧中继是X.25在新的传输条件下的发展,它对X.25协议进行了简化和改进。

帧中继省略了X.25中的分组层,即网络层,以链路层帧为基础,实现多条逻辑链路的统计复用和转换。

由于帧中继省略了网络层,避免了网络层的报文分组和重装的消耗,而且帧中继允许最大帧长在1K字节以上,取消了网络层分组长度的限制,这种灵活性也保证了网络的高吞吐量。

帧中继保留了X.25链路层的HDLC帧格式,但不采用HDLC的平衡链路接入规程LAPB(Link Access Procedure - Balanced),而是按照ISDN标准使用独立于用户数据信道的呼叫控制信令,即LAPD规程。

它能够在链路层实现链路的复用和转接,所以帧中继的层次结构中只有物理层和链路层。

与X.25相比,帧中继在操作处理上做了大量的简化。

帧中继不考虑传输差错问题,其中节点只做帧的转发操作,不需要执行接收确认和请求重发等操作,差错控制和流量控制均交由高层端系统完成,所以大大缩短了节点的时延,提高了网内数据的传输速率。

2.帧中继的应用
帧中继主要用在公共或专用网上的局域网互联以及广域网连接。

大多数公共电信局都提供帧中继服务,把它作为建立高性能的虚拟广域连接的一种途径。

帧中继是进入带宽范围从56Kbps到1.544Mbps的广域分组交换网的用户接口。

帧中继技术基础

帧中继技术基础

帧中继技术基础数据通信技术的发展数据通信就是进行数据传输和数据交换,把数据源发送的数据信息从一个地方通过传输信道交换设备传送到另一个地方的数据接收设备中,也就是数据信息在发送设备和接收设备之间进行信息传递。

数据通信网是为提供数据通信业务而提供的媒体,随着通信技术的不断发展,数据通信网的交换技术有:电路方式、分组方式、帧方式、和信元方式等。

电路方式是传递信息最简单的方式。

电路方式之一是基于公众交换电话网(PSTN)或ISDN电路交换的原理,当用户要求发送数据时,交换机在主叫用户端及被叫用户端之间连接一条链路。

终端设备通过接入设备(调制解调器(MODEM)或适配器(TA))连到交换机上,经接入设备的拨号在交换机之间构成一条物理链路。

如图1-1所示。

图1-1 利用PSTN/ISDN进行数据通信示意图这种方式属于预分配电路资源系统,即在一次接续中,电路资源预先分配给一对用户固定使用,不管该用户是否有数据在链路中传递,电路一直被这一对用户占用,其它用户无法插入该链路中。

只有该对用户使用完后把该链路释放,其它用户才能使用。

另一种电路方式是采用专线,即数字数据网(DDN)。

DDN一般向用户提供专用数据传递链路,如图1-2所示。

图1-2利用专线联接方式进行数据通信电路方式的主要特点是为通信的两端建立物理连接,它有如下优点:①信息传输时延小,因为它是一个固定物理连接,信息传输的时延也是固定的。

②电路是“透明”的。

发送端和接收端传递的信息并没有限制在某一个协议下,只要终端设备认可,任何协议的信息都可以传递。

③信息传递的吞吐量大。

可以根椐信息量的大小来选择信息的传递带宽。

它的缺点是资源比较浪费。

基于PSTN或ISDN电路方式至少要占用一路话路,即64Kbps。

如果传递的信息不到64Kbps,占用的带宽也不能减小,其它用户也不能享用。

基于DDN的电路方式虽然可以根据需要分配带宽,但对信道的占用也是半永久性的,用户一旦租用,即使没有信息传递,其带宽也不能由其它用户享用,因此,DDN 一般用于对实时性和可靠性要求较高的业务。

帧中继

帧中继

帧中继帧中继线路是中小企业常用的广域网线路,其通信费用较低。

由于帧中继技术的一些特殊性使得帧中继的配置较为复杂,特别是在帧中继上运行路由协议时更是如此。

作为入门,对帧中继的理解应着重放在DLCI、PVC、帧中继映射和子接口等概念上。

1 帧中继简介1.1 什么是帧中继帧中继(Frame Relay, FR)是面向连接的第二层传输协议,帧中继是典型的包交换技术。

相比而言,同样带宽的帧中继通信费用比DDN 专线要低,而且允许用户在帧中继交换网络比较空闲的时候以高于ISP 所承诺的速率进行传输。

1.2 帧中继的合理性用户经常需要租用线路把分散在各地的网络连接起来,如图1(1),如果采用点到点的专用线路(例如DDN),ISP 需要给每个地方的路由器拉4对物理线路,同时每个路由器需要有 4 个串口。

而帧中继网络拓扑如1(2)所示,每个路由器只通过一条线路连接到帧中继云上,线路的代价大大减低,每个路由器也只需要一个串行接口了。

图1(1)用专线连接用户设备(2)帧中继网络拓扑1.3 DLCI图2 帧中继网络DLCI(Data Link Circiut Identification,数据链路连接标识符)实际上就是帧中继网络中的第2 层地址。

如图2,当路由器R1 要把数据发向路由器R2(IP为123.123.123.2)时,路由器R1 可以用DLCI=102 来对IP 数据包进行第2 层的封装。

数据帧到了帧中继交换机,帧中继交换机根据帧中继交换表进行交换:从S1 接口收到一个DLCI 为102 的帧时,交换机将把帧从S2 接口发送出去,并且发送出去的帧的DLCI 改为201。

这样路由器R2 就会接收到R1 发来的数据包。

而当路由器R2 要发送数据给R1(IP 为123.123.123.1)时,路由器R2 可以用DLCI=201 来对IP 数据包进行第2 层的封装,数据帧到了帧中继交换机,帧中继交换机同样根据帧中继交换表进行交换:从S2 接口收到一个DLCI为201 的帧时,交换机将把帧从S1 接口发送出去,并且发送出去的帧的DLCI 改为102。

帧中继基础

帧中继基础

通过公用通信交换机到达帧中继网络的入口点
当由网络传送的全部帧满足FCS有效校验时,可以 保持信息的完整性。 用户接入通路的数据速率,决定了端点用户把多大 的数据量(最大速率)送入网络中 在时间间隔Tc期间,一个用户可能向网络提供的最 大承诺数据总量,在呼叫建立时商定。 在时间间隔Tc期间,用户能超出Bc的最大允许的数 据总量,在呼叫建立时商定。
帧中继的技术 基础
传送的有误帧
Page 9
Lucent Technologies Proprietary
帧中继技术术语
重复传送的帧
Lucent Technologies
Bell Labs Innovations
在下面两种情况下,把一个特定目的地用户接 收的帧D定义为重复的帧: a. D不是源点用户产生的 b. D与先前传送到那个目的地用户的帧完全 相同。 假定一个帧序列的正确顺序为F1、F2、…、Fn, 如果被传送的帧Fi在Fi+1、 Fi+1 、…、Fn任何 帧之后到达目的地,则把Fi定义为失序。 当在一个特定的越限时间内,一个被传送的帧 没有传到指定的目的地用户,并且网络对未送 达负责时,则称该帧为失帧。 从一个源点传送到目的地用户以外的其它某个 目的地用户的帧。


帧中继协议简化了X.25的第三层功能,使网络节点的处理大 大简化,提高了网络对信息处理的效率。
在链路层完成统计复用、帧透明传输和错误检测,但不提供 错误后的重传操作。 交换单元,即帧的信息长度可变,预约的最大长度至少要达 到1600字节/帧,适合于封装局域网的数据单元 提供一套合理的带宽管理和防止阻塞的机制。
Page 13
Lucent Technologies Proprietary

现代交换--4帧中继讲解

现代交换--4帧中继讲解
DLCI 的值用于标识永久虚电路(PVC)、呼叫控 制或管理信息。使一个用户在牺牲其他用户利益 的前提下垄断网络资源概率最小
数据链路连接标识符 DLCI 只具有本地意义。
8
7
6
5
4
3
2
1
标志(F)(01111110)
DLCI
C/R EA0
DLCI
FECN BECN DE EA1
信息 (I)
8
7
6
5
4
3
2
1
标志(F)(01111110)
DLCI
ቤተ መጻሕፍቲ ባይዱ
C/R EA0
DLCI
FECN BECN DE EA1
信息
(I)
FCS(2字节)
数据链路标识(DLCI)主要用来标识同一通 路上不同的虚电路连接;
数据链路连接标识符 DLCI DLCI 字段的长度一般为10 bit(采用默认值 2 字节地址字段),但也可扩展为 16 bit(用 3 字节地址字段),或 23 bit(用 4 字节地址字 段),这取决于扩展地址字段的值。
3)呼叫控制协议
呼叫释放消息也有3个:disconnect(),release(),
release complete().释放过程如图4.20(b).
注意!虽然帧中继的标准有关于SVC的上述信令过程,但由 于目前应用的帧中继中都为PVC,而PVC并无呼叫建议和释 放过程。因此,SVC的建立的释放放在实际中并没有应用。 帧中继中的信令主要是PVC的管理功能。
DLCI
C/R EA0
DLCI
FECN BECN DE EA1
信息
(I)
FCS
X.25帧格式相比,帧中继的帧格式中没有控制 字段(C),这就意味着帧中继只有单一的数据帧,而 无其它的控制帧,从而简化了协议。并且,帧中继 的帧格式中也没有提供用于差错处理和流控的相应 字段,这说明帧中继网络不提供差错处理和流控功 能。

帧中继基础知识总结

帧中继基础知识总结

帧中继基础知识总结版本V1.0密级☐开放☑内部☐机密类型☐讨论版☐测试版☑正式版1帧中继基本配置1.1帧中继交换机帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置。

配置示例:frame-relay switchinginterface s0/1encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号frame-relay route 103 interface s0/3 301no shutdown1.2环境1 主接口运行帧中继(Invers-arp)FRswitch(帧中继交换机)的配置:frame-relay switchinginterface s0/1 // 连接到R1的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号no shutdowninterface s0/2 // 连接到R2的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 201 interface s0/1 102no shutdownR1的配置如下:interface serial 0/0ip address 192.168.12.1 255.255.255.252encapsulation frame-relay// 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdownR2的配置如下:interface serial 0/0ip address 192.168.12.2 255.255.255.252encapsulation frame-relayno shutdown在FRswitch上查看PVI(验证配置):FRswitch#show frame-relay routeInput Intf Input Dlci Output Intf Output Dlci StatusSerial0/1 102 Serial0/2 201 activeSerial0/2 201 Serial0/1 102 active在R1上查看帧中继映射R1#show frame-relay mapSerial0/0 (up): ip 192.168.12.2 dlci 102(0x66,0x1860), dynamic,broadcast,, status defined, activeR1#ping 192.168.12.2Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 192.168.12.2, timeout is 2 seconds:!!!!!1.3环境2 主接口运行帧中继(静态映射)FRswitch的配置同上,这里不再赘述上述案例是终端路由器采用动态invers-arp获取帧中继相关映射信息,本例采用静态建立映射的方式进行配置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

帧中继基础知识总结版本V1.0密级☐开放☑内部☐机密类型☐讨论版☐测试版☑正式版1帧中继基本配置1.1帧中继交换机帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置。

配置示例:frame-relay switchinginterface s0/1encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号frame-relay route 103 interface s0/3 301no shutdown1.2环境1 主接口运行帧中继(Invers-arp)FRswitch(帧中继交换机)的配置:frame-relay switchinginterface s0/1// 连接到R1的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号no shutdowninterface s0/2// 连接到R2的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 201 interface s0/1 102no shutdownR1的配置如下:interface serial 0/0ip address 192.168.12.1 255.255.255.252encapsulation frame-relay// 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdownR2的配置如下:interface serial 0/0ip address 192.168.12.2 255.255.255.252encapsulation frame-relayno shutdown在FRswitch上查看PVI(验证配置):FRswitch#show frame-relay routeInput Intf Input Dlci Output Intf Output Dlci StatusSerial0/1 102 Serial0/2 201 activeSerial0/2 201 Serial0/1 102 active在R1上查看帧中继映射R1#show frame-relay mapSerial0/0 (up): ip 192.168.12.2 dlci 102(0x66,0x1860), dynamic,broadcast,, status defined, activeR1#ping 192.168.12.2Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 192.168.12.2, timeout is 2 seconds:!!!!!1.3环境2 主接口运行帧中继(静态映射)FRswitch的配置同上,这里不再赘述上述案例是终端路由器采用动态invers-arp获取帧中继相关映射信息,本例采用静态建立映射的方式进行配置。

R1的配置:interface serial 0/0ip address 192.168.12.1 255.255.255.252encapsulation frame-relayno frame-relay inverse-arp// 关闭动态inverse-arp,可选frame-relay map ip 192.168.12.2 102 [broadcast]// 建立静态帧中继映射,注意,这里是低端的IP到本地DLCI的映射// 使用该命令,建立的PVC将不支持广播(如此,依赖广播或组播运行的动态路由协议跑在此链路上就可能存在问题),可在该条命令后增加broadcast关键字,使PVC支持广播。

R2的配置:interface serial 0/0ip address 192.168.12.2 255.255.255.252encapsulation frame-relayno frame-relay inverse-arp// 关闭动态inverse-arp,可选frame-relay map ip 192.168.12.1 201 [broadcast]查看R1的帧中继映射:R1#show frame-relay mapSerial0/0 (up): ip 192.168.12.2 dlci 102(0x66,0x1860), static,broadcast,CISCO, status defined, active注意,采用静态FR映射,建立的PVC如果不加broadcast关键字,则链路不支持广播。

由于帧中继网络是NBMA(非广播型多路访问)网络,因此无法支持广播,但帧中继提供一种机制来模拟广播,基本上是采用向每条PVC发送一个该帧的拷贝来实现。

许多动态路由协议均需要广播或组播传输机制的,RIP、EIGRP、OSPF等,因此如果在帧中继上运行这几种协议,就可能会出现问题,这时候就需要使用到上面的特性,具体的操作方式是在map语句后加上broadcast关键字。

frame-relay map ip 192.168.12.1 201 broadcast1.4环境3 主接口运行帧中继(部分互联模型)该拓扑为hub&spoke模型(星形拓扑结构),R1 S0/0口连接到FRswitch的s0/1;R2 S0/0连接到FRswitch的s0/2,R3的s0/0连接到FRswitch的S0/3;FRswitch的配置如下:frame-relay switchinginterface s0/1// 连接到R1的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201frame-relay route 103 interface s0/3 301no shutdowninterface s0/2// 连接到R2的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 201 interface s0/1 102no shutdowninterface s0/3// 连接到R3的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 301 interface s0/1 103no shutdownR1的配置如下:interface serial 0/0ip address 192.168.123.1 255.255.255.0encapsulation frame-relayframe-relay map ip 192.168.123.2 102 broadcastframe-relay map ip 192.168.123.3 103 broadcastR2的配置如下:interface serial 0/0ip address 192.168.123.2 255.255.255.0encapsulation frame-relayframe-relay map ip 192.168.123.1 201 broadcastR3的配置如下:interface serial 0/0ip address 192.168.123.3 255.255.255.0encapsulation frame-relayframe-relay map ip 192.168.123.1 301 broadcast注意:上述环境,由于是星形拓扑,R1作为中心路由器,一个物理接口同时承载了两条PVC。

在这种环境中运行距离矢量路由协议,就会存在问题。

R2、R3的路由更新传递给R1并不存在问题,换句话说R1能够学习到R2、R3的路由(可在R2、R3上开设loopback接口并做宣告),但R2\R3却无法学习到彼此的路由,您应该已经想到了问题的关键,没错,水平分割原理,解决办法之一,就是关闭R1 serial0/0口的水平分割,关闭方法如下:RIP:no ip split-horizonEIGRP:no ip split-horizon eigrp as号码关闭水平分割固然能解决路由传递的问题,但是却存在一定的隐患,毕竟水平分割原则是距离矢量路由协议用以防止路由环路的办法。

解决这个问题的另一个更加有效的办法是,更换帧中继拓扑,使用子接口来实现上述需求。

PS:关于帧中继环境下各种动态路由协议的运行及存在的问题,请查看《帧中继环境下动态路由协议的运行》文档,需要文档的SPOTOer请向讲师索取。

或访问.net搜索1.5点到点子接口运行帧中继注意拓扑结构及IP编址的变化,本拓扑R1采用p2p子接口分别与R2、R3建立PVC,一旦如此变更,R1、R2之间的链路为一个独立网段;R1、R3之间的链路为另一个独立的网段。

对于此种解决方案,借助帧中继,路由器可使用一个物理接口同时承载多条PVC,同时也可以很好的避免水平分割引起的路由更新问题,只不过,需要在IP编址上有所注意。

本例FRswitch的配置同上,不再赘述R1配置如下:interface Serial0/0encapsulation frame-relayno shutdowninterface Serial0/0.12 point-to-point// 创建p2p帧中继子接口ip address 192.168.12.1 255.255.255.252frame-relay interface-dlci 102 // 标识本地DLCI号,也可使用map ip 映射no shutdowninterface Serial0/0.13 point-to-pointip address 192.168.13.1 255.255.255.252frame-relay interface-dlci 103no shutdownR2的配置如下:interface serial 0/0ip address 192.168.12.2 255.255.255.252encapsulation frame-relayframe-relay map ip 192.168.12.1 201 broadcastR3的配置如下:interface serial 0/0ip address 192.168.13.2 255.255.255.252encapsulation frame-relayframe-relay map ip 192.168.13.1 301 broadcast2帧中继综合问题2.1什么是PVC?PVC叫虚电路,其实有点类似管道的概念,这条管道是没有岔口的,从一个口闷头走,会从另一个口出来,而这两个出入口分别有DLCI进行标示。

相关文档
最新文档