完全平方公式培优训练题
平方差完全平方公式(培优)
平方差完全平方公式•选择题(共1小题)二.填空题(共3小题)2. (2011?湛江)多项式 2x 2- 3X +5是 _____________________ 次3. (2010?毕节地区)写出含有字母 x , y 的四次单项式 ____________________ .(答案不唯一,只要写出一个)4. ( 2004?南平)把多项式 2x 2- 3X +X 3按x 的降幕排列是 _ _5. (1999?内江)配方:X 2+4X +=(X + ) 2 配方:x 2-x+ =(x-1) 22三.解答题(共小题) 5.计算:(1)(x - y ) (x+y ) (x 2+y 2) (2) (a - 2b+c ) ( a+2b - c )6 .计算:1232 - 124 X 122 .7 .计算:2004 2tfi)4 2- 2005X20038. (x - 2y+z ) (- x+2y+z ).9 .运用乘法公式计算.(1) (x+y ) 2-(x -y ) 2;(2) (x+y - 2) (x - y+2);(3) X ;(4) .10 .化简:(m+n - 2) ( m+n+2).11 . (x - 2y - m ) (x - 2y+m )12 .计算(1) (a - b+c - d ) (c- a - d - b );(2) (x+2y ) (x - 2y ) (x 4- 8x 2/+16y 4).13 .计算:20082- 20072+20062- 20052+…+22- 12.14 .利用乘法公式计算:◎ ( a - 3b+2c ) (a+3b - 2c )② 472 - 94 X 27+272.1. (1999?烟台) F 列代数式I ,比逹,普,其中整式有( A . 1个B . 2个 C. 3个 D. 4个项式.15 .已知:x 2 - y 2=20, x+y=4,求 x - y 的值. ______________________16 .观察下列各式:(x - 1) (x+1) =x 2 - 1; (x - 1) (x 2+x+1) =x 3- 1 ; (x - 1) (x 3+x 2+x+1) =x 4- 1 …(1) _______________________________________________________________________________ 根据上面各式的规律得:(x - 1) (x m -1+x m -2+x m -3+…+x+1) = ______________________________________________________ ;(其中n 为正整数);(2) 根据这一规律,计算 1+2+22+23+24+…+268+269的值.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22 - 1) ( 22+1) (24+1) = (24 - 1) (24+1) =28 - 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)-( 364+1).19 . (2012?黄冈)已知实数 x 满足x 丄=3,则x 2丄的值为 ___________________________20 . (2007?天水)若a 2 - 2a+仁0.求代数式 /+~丄^的值.21 . (2009?佛山)阅读材料:把形如 ax 2+bx+c 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配 方法的基本形式是完全平方公式的逆写,即 a 2±2ab+b 2= (a ± b ) 2.例如:(x - 1) 2+3、(x - 2) 2+2X 、(*X -2) 2疔x 2是x 2 - 2x+4的三种不同形式的配方(即"余项”分别是常数项、 一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1) 比照上面的例子,写出 x 2- 4x+2三种不同形式的配方;(2) 将a 2+ab+b 2配方(至少两种形式);(3) 已知 a 2+b 2+c 2 - ab - 3b - 2c+4=0,求 a+b+c 的值.22 . (2004?太原)已知实数 a 、b 满足(a+b ) 2=1, (a - b ) 2=25,求 a 2+b 2+ab 的值.2 +,223 . (2001?宁夏)设 a - b=- 2,求 一的值.24 .已知(x+y ) 2=49, (x - y ) 2=1,求下列各式的值:(1) x 2+y 2; (2) xy .25 .已知x+丄=4,求x --------- 的值.26 .已知:x+y=3, xy=2,求 x 2+y 2 的值.27.已知 a+b=3, ab=2,求 a 2+b 2, (a - b ) 2 的值.28 .若 x+y=2,且(x+2) (y+2) =5,求 x 2+xy+y 2 的值.18.门讨)⑴肖〔吟)(吟)(1+盘)29 -宀11x+1=0,求x2+;的值•求下列各式的值: (1)(2)平方差完全平方公式参考答案与试题解析一.选择题(共1小题)1 . (1999?烟台)下列代数式2x2+x- 2,齢21? F3 2 _ n卩十卩,其中整式有3 2VA. 1个B. 2个C. 3个D. 4个考点:整式.分析:解决本题关键是搞清整式的概念,紧扣概念作出判断.解答:解:整式有X2+x-2竺共22八个. 故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.二.填空题(共3小题)2. (2011?湛江)多项式2x2- 3X+5是二次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2-3x+5是二次三项式.故答案为:二,点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.3. (2010?毕节地区)写出含有字母x, y的四次单项式科•(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式屮所有字母因数的指数和••• x3y, x2y2, xy3等都是四次单项式. 解答:解:根据四次单项式的定义,x2y2,x3y, xy3 等都符合题意(答案不唯—A).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4. (2004?南平)把多项式2x2-3X+X3按x的降幕排列是x^Zx2—3x考点:多项式.分析:按照x 的次数从大到小排列即可.解答:解:按x的降幕排列是x3+2x2—3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26 小题)5.计算:(1)(x—y) (x+y) (x2+y2)(2)(a—2b+c) ( a+2b- c)考点:平方差公式;完全平方公式.分析:(1) (x—y)与(x+y)结合,可运用平方差公式,其结果再与(x2+y2)相结合,再次利用平方差公式计算;( 2 )先运用平方差公式,再应用完全平方公式.解答:解:( 1 )( x—y)( x+y)( x2+y2),=( x2—y2)( x2+y2),=x4—y4;( 2)( a—2b+c) ( a+2b—c),2—( 2b—c)2,=a=a2—4b2+4bc—点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.平方差公式:(a+b) (a- b) =a2- b2.完全平方公式:(a± b)2=a2± 2ab+b2.6 •计算:1232- 124 X 122 .考点:平方差公式.分析:先把124 X 122 写成(123+1)X(123- 1), 利用平方差公式计算,去掉括号后再合并即可.解答:解:1232- 124X 122,=1232-(123+1) (123-1),=1232-( 1232 -12),=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键.7 •计算:2004 20042- 2005X2003考点:平方差公式.分析:观察可得:2005=2004+1 ,2003=2004 - 1, 将其写成平方差公式代入原式计算可得答案.解答:解:2004 12004 2 - 2005 X 2003200420042 - (2004+13 X (2004-1)20042004 2 - 2004 2+1=2004.点评:本题考查平方差公式的实际运用,注意要构造成公式的结构形式,利用公式达到简化运算的目的.8. (x- 2y+z) (-x+2y+z).考点:平方差公式.专题:计算题.分析:把原式化为[Z+(x- 2y) ][z -(x-2y)],再运用平方差公式计算.解答:解:(x- 2y+z) (-x+2y+z), =[Z+ (x-2y) ][z -(x- 2y)], =£- ( x-2y )2, =£-( x2- 4xy+4y ),=z2- Y+4xy - 4y2.点评:本题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量.9 •运用乘法公式计算.(1)(x+y) 2-(x-y) 2;(2)(x+y- 2) (x- y+2);(3)x;(4).考点:平方差公式.专题:计算题.分析:(1) (x+y) 2-(x-y) 2可以利用平方差公式进行计算;( 2)( x+y- 2 )(x- y+2)转化成[x+( y- 2) ][x -( y- 2) ]的形式,利用平方差公式以及完全平方公式进行计算;(3 )x可以转化成( 80-)( 80+)的形式,利用平方差公式计算;(4)可以转化为( 20-) 2进行简便计算.解答:解:(1) (x+y)2-( x- y) 2=( x+y+x- y)( x+y- x+y),=4xy;(2)( x+y- 2)(x- y+2),=[x+( y- 2) ][x -( y- 2) ],=x2-y2+4y- 4;(3 )x,=(80-)(80+),=;( 4) =( 20-)2=400 - 2 X 20X + ,点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10 .化简:(m+n- 2)(m+n+2).考点:平方差公式.分析:把(m+n)看作整体,m+n是相同的项,互为相反项是- 2 与2,然后利用平方差公式和完全平方公式计算即可.解答:解:( m+n- 2)( m+n+2 ),=( m+n) 2- 22,22=m +n +2mn- 4. 点评:本题主要考查了平方差公式的应用.运用平方差公式( a+b)( a - b) =a2- b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11. (x - 2y - m) (x—2y+m)考点:平方差公式.专题:计算题.分析:把x- 2y 当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:( x- 2y- m )(x- 2y+m),=( x- 2y) 2- m2,2- 4xy+4y2-=x2.m点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a—b+c—d) (c—a - d - b);(2) (x+2y) (x—2y) (x4—8x2/+l6y4) •考点:平方差公式.专题:计算题.分析:根据平方差公式以及完全平方公式即可解答本题.解答:解:( 1 )原式=([ c—b—d) +a][( c—b—d)—a] =( c—b—d) 2—a2 =c2+b2+d2+2bd—2bc—2cd—a2,(2 )T x4—8x2y2+16y4=( x2—4y2) 2•••原式=(x2—4y2)( x2—4y2)2=( x2—4y2) 3=( x2) 3—3( x2) 2( 4y2) +3x2?(4y2) 2—( 4y2)3=x6—12x4y2+48x2y4—64y6.点评:本题考查了平方差公式以及完全平方公式的运用,难度适中.13 .计算:20082—20072+20062—20052+ (22)12.考点:平方差公式.分析:分组使用平方差公式,再利用自然数求和公式解题.解答:解:原式=( 20082—20072)+(20062-20052) + …+(22- 12),=( 2008+2007 )( 2008 - 2007) +( 2006+2005)( 2006- 2005) +(2+1)(2- 1),=2008+2007+20 06+2005+… +2+1,=2017036.本题考查了平方差公式的运用,注意分组后两数的差都为1 ,所有两数的和组成自然数求和.14 .利用乘法公式计算:◎ ( a- 3b+2c) (a+3b- 2c)②472- 94 X 27+272.点评:考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94 写成2X 47 后,可用完全平方公式计算.解答:解:①原式=[a -( 3b- 2c)][a+( 3b - 2c) ]=a2 -( 3b- 2c)2=9b2+12bc-4c2;②原式=472- 2X 47X 27+272=(47- 27)2=400.点评:本题考查了平方差公式,完全平方公式,熟记公式是解题的关键.①把(3b - 2c) 看作一个整体是运用平方差公式的关键;②把94写成2X 47是利用完全平方公式的关键.15 .已知:x2- y2=20, x+y=4,求x - y 的值. _5考点:平方差公式.分析:本题是平方差公式的应用.解答:解:a2- b2=(a+b) (a- b), x2- y2= (x+y) ( x -y) =20 把x+y=4代入求得x- y=5.点评:运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.把x+y=4代入求得x- y的值,为5.16 .观察下列各式:(x- 1) (x+1) =x2- 1;(x- 1) (x2+x+1) =x3- 1 ; (x- 1) (x3+x2+x+1) =x4- 1 …(1)根据上面各式的规律得:(x- 1) (x m-1+x m-2+x m-3+…+x+1) = x m- 1 ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.考点:平方差公式.分析:(1 )认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;(2 )先根据上面的式子可得:1+x+x2+x3+ …+x°= (x n+1- 1 ) + ( x- 1 ),从而得出1+2+22+…+268+269= (?69+1-1) r2-1), 再进行计算即可.解答:解:(1) ( x- 1 )(x m-1+x m-2+x m- 3+…+x2+x+1) =x m-1;(2 )根据上面的式子可得:2 31+x+x +x + …+宀(x n+1- 1 ) 十(X- 1 ),••• 1+2+22+…+268+269= (269+1-1)-( 2 - 1)=270- 1 .点评:本题考查了平方差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:题目化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22- 1) ( 22+1) (24+1) = (24- 1) (24+1) =28- 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)・・・(364+1).考点:平方差公式.分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.解答:解:原式J (3-1) (3+1)(32+1) (34+1)(38+1)(364+1), (4分)丄(32 - 1)(32+1)(34+1)(38+1)(364+1),丄(34- 1)1(34+1) (38+1)(364+1),丄(38- 1)1(38+1)(364+1),二(364- 1 )(364+1), (8分)=1(3128-=(31). ( 10 分) 本题主要考查了平方差公式,关键在于把(3+1)化简为(3 - 1) (3+1)的形式,点评:考点:专题:分析:平方差公式.计算题.由平方差公式,(1+2)(1 -丄)2 =1 —2寺(1-解答: 丄22--,依此类推,从而得出结果.解:原式=(1 - 丄22(1 +18.)(1=1(1 + ;)考点: 完全平方公式.专题: 计算题.分析: 将x+ —=3两边平方, 然后移项即可得出答案.解答: 解:由题意得,1 o x+—=3,两边平方得:«+2+ :=9,故 x 2+ ° =7.X 故答案为:7.点评: 此题考查了完 全平方公式的知识,掌握完全点评: (1+二)24-■).1210-■)210=1-本题考查了平 方差公式的反 复应用,是基础 知识要熟练掌 握.(1+(1+(1+(1+19 . (2012?黄冈)已知实数 x 满足二=3,则x 2+ °的值为 7平方公式的展开式的形式是解答此题的关键,属于基础题.20 . (2007?天水)若a2- 2a+仁0.求代数式/+~岂的值•考点:完全平方公式.分析:根据完全平方公式先求出a的值,再代入求出代数式的值.解答:解:由a2-2a+1=0 得(a -1)2=0,••• a=1;把a=1代入a4+—^=1+1=2故答案为:2.点评:本题考查了完全平方公式,灵活运用完全平方公式先求出a 的值,是解决本题的关键.21. (2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a± b)2.例如:(x- 1)2+3、(x-2)2+2X、(丄x-2)2芒x2是x2- 2x+4的三种不同形式的配方(即“余项”分别是常数项、2 4一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2- 4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2- ab - 3b - 2c+4=0,求a+b+c 的值.考点:完全平方公式.专题:阅读型.分析:(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2-4x+2 和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3 )通过配方后,求得a,b,c的值,再代入代数式求值. 解答:解:(1)X2- 4x+2的三种配方分别为:2- 4x+2= (x -x2) 2- 2,X2 - 4x+2=(x+ . ':) 2(2, f+4) x,x2- 4x+2= C Zx-:':)2-x2;(2)a2+ab+b2=(a+b) 2- ab,2 2a +ab+b =(F r(3)a2+b2+c2-ab - 3b -2c+4,=(a2- ab+丄b2)(4+ (上b2- 3b+3)+ (c2- 2c+1),+ (c2- 2c+1),=(a-亍b)2〒(b-2) 2+ (c- 1)2=0,从而有a-=b=0, b - 2=0,c- 1=0,即a=1, b=2, c=1,a+b+c=4.点评:本题考查了根据完全平方公式:a2± 2ab+b2=(a ± b) 2进行配方的能力.22 . (2004?太原)已知实数a、b 满足(a+b) 2=1, (a- b) 2=25,求a2+b2+ab 的值.考点:完全平方公式.分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab 转化为完全平方式(a+b) 2和ab的形式,即可求值.解答:解:•••( a+b)2=1, ( a- b)2=25,.a2+b2+2ab=1 , a2+b2-2ab=25..4ab= - 24,ab= - 6, .a2+b2+ab=(a+b) 2- ab=1 -(-6) =7.点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.23 . (2001?宁夏)设a- b=- 2,求* 严-命的值.考点:完全平方公式.分析:对所求式子通分,然后根据完全平方公式把分子整理成平方的形式,把a -b= - 2代入计算即可.解答:解:原式/ + b2- 2ab =2G-b):1 2•/ a - b_- 2 ,•••原式_(-2〉2_ 2=2 .本题考查了完全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.24 .已知(x+y) 2=49, (x- y) 2=1,求下列各式的值: (1) x2+y2; (2) xy.考点:完全平方公式.分析:根据完全平方公式把(x+y) 2 和(x- y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.解答:解:由题意知:(x+y)2_x2+y2+2xy_49①,(x- y) 2_x2+y2 -2xy_1 ②,①+②得:(x+y)2+ (x-y) 2,_x2+y2+2xy+x2+y2-2xy,_2 (x2+y2),_49+1,_50,•-x2+y2_25;①-②得:4xy_(x+y) 2-( x-y) 2=49 -1_48,• xy_12.点评:点评:25 .已知考点:分析:本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.x+-^4,求X-丄的值.解答:完全平方公式. 把已知条件两边平方求出x2+ ;的值,再X根据完全平方公式整理成(X -丄)2的形式并代入数据计算,然后进行开方运算.解:•••二4,X••• x2+ - =142 ,(x-—)X2=12,点评:26 .已知考点:--x -二= .\本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.x+y=3, xy=2,求x2+y2的值.完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:••• x+y=3,••• x2+y2+2xy=9,••• xy=2,• - x2+y2=9 -2xy=9 - 4=5.点评:本题考查了利用完全平方公式恒等变形的能力.27.已知a+b=3, ab=2,求a2+b2, (a- b) 2的值.考点:完全平方公式.分析:先把a+b=3两边平方, 然后代入数据计算即可求出a2+b2的值,根据完全平方公式把( a- b) 2展开, 再代入数据求解即可.解答:解:T a+b=3,• a2+2ab+b2=9,T ab=2,•-a2+b2=9 - 2 x 2=5;•(a-b) 2=a2- 2ab+b2=5- 2 x 2=1.点评:本题主要考查完全平方公式, 熟记公式结构是解题的关键, 整体代入思想的利用使计算更加简便.28 .若x+y=2,且(x+2) (y+2) =5,求x2+xy+y2的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把( x+2)(y+2)展开并解答:点评:29. x2考点:分析:代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出x2+xy+y2的值.解:•••( x+2)(y+2) =5,••• xy+2 (x+y)+4=5,••• x+y=2,• xy=- 3, 二x2+xy+y2=(x+y) 2- xy=22 -(-3) =7. 本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.—11x+1=0, 求x2解答: 完全平方公式. 先把x2-11x+1=0两边同除x (由题意可知X M 0),得到x+二=11,然后把该式子两边平方即可得到/+ ;的值.X 解:••• X M 0 ,• X+ 二亠,X(x+—) 2=121,本题考查了完全平方公式,关点评:键是知道隐含 条件 X M 0, x 2- 11X + 1=0两边同 除X 得到 X+二=11,利用 X 和丄互为倒数乘 积是1,利用完 全平方公式来 进行解题.完全平方公式. 本题是完全平 方公式的应用, 两数的平方和, 再加上或减去 它们积的2倍, 就构成了一个 完全平方式.使 分式中含有 x 十!的形式,代 入求值. 解:( 1) /宀 X =(X -丄)2 - 2, X =42 - 2, =14;2 30 .已+, (1)y H ;X(2)2 X I + x求下列各式的值: 14+1' 考点:分析:解答:一15'本题主要考查完全点评:平方公式,解题的关键是灵活运用完全平方公式,并利用好乘积二倍项不含字母是常数的特点.。
完整版)完全平方公式提升练习题
完整版)完全平方公式提升练习题完全平方公式提升练题一、完全平方公式1.$(\frac{a}{2}b-c)^2$2.$(x-3y-2)(x+3y-2)$3.$(x-2y)(x^2-4y^2)(x+2y)$4.若$x^2+2x+k$是完全平方形式,则$k=x+1$5.若$x^2-7xy+M$是完全平方形式,则$M=\frac{49}{4}y^2$6.若$4a^2-Nab+81b^2$是完全平方形式,则$N=8a$7.若$25x-kxy+49y$是完全平方形式,则$k=50$二、公式的逆用8.$(2x-y)^2=4x^2-4xy+y^2$9.$(3m^2+n)^2=9m^4+6m^2n+n^2$10.$x^2-xy+y^2=(x-\frac{1}{2}y)^2+\frac{3}{4}y^2$11.$49a^2-18ab+81b^2=(7a-9b)^2$12.代数式$xy-x^2-y^2$等于$(x-y)^2-x^2-y^2$三、配方思想13.若$a+b-2a+2b+2=0$,则$a=-1$14.已知$x^2+y^2+4x-6y+13=1$,求$xy=-\frac{3}{2}$15.已知$x^2+y^2-2x-4y+5=0$,求$(x-1)^2-xy=\frac{3}{4}$16.已知$x^2+y^2+xy=2(x+y)$,求代数式$\frac{x+y}{4}$17.已知$x^2+y^2+z^2-2x+4y-6z+14=0$,则$x+y+z=1$四、完全平方公式的变形技巧18.已知$(a+b)^2=16$,$ab=4$,求$(a-b)^2=8$19.已知$2a-b=5$,$ab=2$,求$4a^2+b^2-1=44$20.已知$x-\frac{1}{x}=6$,求$x^2+\frac{1}{x^2}=37$21.已知$x^2+3x+1=0$,求$(1) x^2+\frac{1}{x^2}$,$(2) x^4+\frac{1}{x^4}$五、利用乘法公式进行计算22.$992-98\times100=-806$23.$(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{4^2})=\frac{3}{4}$六、“整体思想”在整式运算中的运用24.当代数式$x^2+3x+5=7$时,求代数式$3x^2+9x-2=18$25.已知$a=\frac{1}{1\times2}\times\frac{2}{2\times3}\times\frac{3}{3\ti mes4}\times\cdots\times\frac{1999}{1999\times2000}$,$b=\frac{1}{2\times3}\times\frac{2}{3\times4}\times\frac{3}{4\ti mes5}\times\cdots\times\frac{1999}{2000\times2001}$,$c=\frac{1}{3\times4}\times\frac{2}{4\times5}\times\frac{3}{5\ti mes6}\times\cdots\times\frac{1999}{2001\times2002}$,求代数式$a^2+b^2+c^2-ab-ac-bc=\frac{1}{4003}$26、已知当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27.当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,即$32a+8b+2c=18$;当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27,即$-32a+8b-2c=35$。
(完整版)完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式30道题
完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。
所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。
2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。
所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。
3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。
所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。
4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。
所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。
5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。
6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。
7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
平方差完全平方公式(培优)
平方差完全平方公式 一.选择题(共1小题)1.(1999?烟台)下列代数式,x 2+x ﹣,,,其中整式有( ) A . 1个 B . 2个C . 3个D . 4个二.填空题(共3小题)2.(2011?湛江)多项式2x 2﹣3x+5是 _________ 次 _________ 项式.3.(2010?毕节地区)写出含有字母x ,y 的四次单项式 _________ .(答案不唯一,只要写出一个)4.(2004?南平)把多项式2x 2﹣3x+x 3按x 的降幂排列是 _________ .5.(1999?内江)配方:x 2+4x+___=(x+___)2 配方:x 2-x+ ___=(x-21)2 三.解答题(共26小题)5.计算:(1)(x ﹣y )(x+y )(x 2+y 2)(2)(a ﹣2b+c )(a+2b ﹣c )6.计算:1232﹣124×122.7.计算:.8.(x ﹣2y+z )(﹣x+2y+z ).9.运用乘法公式计算.(1)(x+y )2﹣(x ﹣y )2;(2)(x+y ﹣2)(x ﹣y+2);(3)×;(4).10.化简:(m+n ﹣2)(m+n+2).11.(x ﹣2y ﹣m )(x ﹣2y+m )12.计算(1)(a ﹣b+c ﹣d )(c ﹣a ﹣d ﹣b );(2)(x+2y )(x ﹣2y )(x 4﹣8x 2y 2+16y 4).13.计算:20082﹣20072+20062﹣20052+…+22﹣12.14.利用乘法公式计算:①(a ﹣3b+2c )(a+3b ﹣2c )②472﹣94×27+272.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值._________16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上面各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)= _________ ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).18..19.(2012?黄冈)已知实数x满足x+=3,则x2+的值为_________ .20.(2007?天水)若a2﹣2a+1=0.求代数式的值.21.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.22.(2004?太原)已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.23.(2001?宁夏)设a﹣b=﹣2,求的值.24.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.25.已知x+=4,求x﹣的值.26.已知:x+y=3,xy=2,求x2+y2的值.27.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.28.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.29.x2﹣11x+1=0,求x2+的值.30.已,求下列各式的值:(1);(2).平方差完全平方公式参考答案与试题解析一.选择题(共1小题)1.(1999?烟台)下列代数式,x2+x﹣,,,其中整式有()A.1个B.2个C.3个D.4个考点:整式.分析:解决本题关键是搞清整式的概念,紧扣概念作出判断.解答:解:整式有x2+x﹣,共2个.故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.二.填空题(共3小题)2.(2011?湛江)多项式2x2﹣3x+5是二次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2﹣3x+5是二次三项式.故答案为:二,三.点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.3.(2010?毕节地区)写出含有字母x,y的四次单项式x2y2.(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式中所有字母因数的指数和∴x3y,x2y2,xy3等都是四次单项式.解答:解:根据四次单项式的定义,x2y2,x3y,xy3等都符合题意(答案不唯一).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4.(2004?南平)把多项式2x2﹣3x+x3按x的降幂排列是x3+2x2﹣3x .考点:多项式.分析:按照x的次数从大到小排列即可.解答:解:按x的降幂排列是x3+2x2﹣3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26小题)5.计算:(1)(x﹣y)(x+y)(x2+y2)(2)(a﹣2b+c)(a+2b﹣c)考点:平方差公式;完全平方公式.分析:(1)(x﹣y)与(x+y)结合,可运用平方差公式,其结果再与(x2+y2)相结合,再次利用平方差公式计算;(2)先运用平方差公式,再应用完全平方公式.解答:解:(1)(x﹣y)(x+y)(x2+y2),=(x2﹣y2)(x2+y2),=x4﹣y4;(2)(a﹣2b+c)(a+2b﹣c),=a2﹣(2b﹣c)2,=a2﹣4b2+4bc﹣c2.点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.平方差公式:(a+b)(a﹣b)=a2﹣b2.完全平方公式:(a±b)2=a2±2ab+b2.6.计算:1232﹣124×122.考点:平方差公式.分析:先把124×122写成(123+1)×(123﹣1),利用平方差公式计算,去掉括号后再合并即可.解答:解:1232﹣124×122,=1232﹣(123+1)(123﹣1),=1232﹣(1232﹣12),=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键.7.计算:.考点:平方差公式.分析:观察可得:2005=2004+1,2003=2004﹣1,将其写成平方差公式代入原式计算可得答案.解答:解:,=,=,=2004.点评:本题考查平方差公式的实际运用,注意要构造成公式的结构形式,利用公式达到简化运算的目的.8.(x﹣2y+z)(﹣x+2y+z).考点:平方差公式.专题:计算题.分析:把原式化为[z+(x﹣2y)][z﹣(x﹣2y)],再运用平方差公式计算.解答:解:(x﹣2y+z)(﹣x+2y+z),=[z+(x﹣2y)][z﹣(x﹣2y)],=z2﹣(x﹣2y)2,=z2﹣(x2﹣4xy+4y2),=z2﹣x2+4xy﹣4y2.点评:本题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量.9.运用乘法公式计算.(1)(x+y)2﹣(x﹣y)2;(2)(x+y﹣2)(x﹣y+2);(3)×;(4).考点:平方差公式.专题:计算题.分析:(1)(x+y)2﹣(x﹣y)2可以利用平方差公式进行计算;(2)(x+y﹣2)(x﹣y+2)转化成[x+(y﹣2)][x﹣(y﹣2)]的形式,利用平方差公式以及完全平方公式进行计算;(3)×可以转化成(80﹣)(80+)的形式,利用平方差公式计算;(4)可以转化为(20﹣)2进行简便计算.解答:解:(1)(x+y)2﹣(x﹣y)2=(x+y+x﹣y)(x+y﹣x+y),=4xy;(2)(x+y﹣2)(x﹣y+2),=[x+(y﹣2)][x﹣(y﹣2)],=x2﹣y2+4y﹣4;(3)×,=(80﹣)(80+),=;(4)=(20﹣)2=400﹣2×20×+,=.点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10.化简:(m+n﹣2)(m+n+2).考点:平方差公式.分析:把(m+n)看作整体,m+n是相同的项,互为相反项是﹣2与2,然后利用平方差公式和完全平方公式计算即可.解答:解:(m+n﹣2)(m+n+2),=(m+n)2﹣22,=m2+n2+2mn﹣4.点评:本题主要考查了平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11.(x﹣2y﹣m)(x﹣2y+m)考点:平方差公式.专题:计算题.分析:把x﹣2y当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:(x﹣2y﹣m)(x﹣2y+m),=(x﹣2y)2﹣m2,=x2﹣4xy+4y2﹣m2.点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a﹣b+c﹣d)(c﹣a﹣d﹣b);(2)(x+2y)(x﹣2y)(x4﹣8x2y2+16y4).考点:平方差公式.专题:计算题.分析:根据平方差公式以及完全平方公式即可解答本题.解答:解:(1)原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=c2+b2+d2+2bd﹣2bc﹣2cd﹣a2,(2)∵x4﹣8x2y2+16y4=(x2﹣4y2)2∴原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=(x2)3﹣3(x2)2(4y2)+3x2?(4y2)2﹣(4y2)3=x6﹣12x4y2+48x2y4﹣64y6.点评:本题考查了平方差公式以及完全平方公式的运用,难度适中.13.计算:20082﹣20072+20062﹣20052+…+22﹣12.考点:平方差公式.分析:分组使用平方差公式,再利用自然数求和公式解题.解答:解:原式=(20082﹣20072)+(20062﹣20052)+…+(22﹣12),=(2008+2007)(2008﹣2007)+(2006+2005)(2006﹣2005)+(2+1)(2﹣1),=2008+2007+2006+2005+…+2+1,=2017036.点评:本题考查了平方差公式的运用,注意分组后两数的差都为1,所有两数的和组成自然数求和.14.利用乘法公式计算:①(a﹣3b+2c)(a+3b﹣2c)②472﹣94×27+272.考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94写成2×47后,可用完全平方公式计算.解答:解:①原式=[a﹣(3b﹣2c)][a+(3b﹣2c)]=a2﹣(3b﹣2c)2=9b2+12bc﹣4c2;②原式=472﹣2×47×27+272=(47﹣27)2=400.点评:本题考查了平方差公式,完全平方公式,熟记公式是解题的关键.①把(3b﹣2c)看作一个整体是运用平方差公式的关键;②把94写成2×47是利用完全平方公式的关键.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值. 5考点:平方差公式.分析:本题是平方差公式的应用.解答:解:a2﹣b2=(a+b)(a﹣b),x2﹣y2=(x+y)(x﹣y)=20把x+y=4代入求得x﹣y=5.点评:运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.把x+y=4代入求得x﹣y的值,为5.16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上面各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)= x m﹣1 ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.考点:平方差公式.分析:(1)认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;(2)先根据上面的式子可得:1+x+x2+x3+…+x n=(x n+1﹣1)÷(x﹣1),从而得出1+2+22+…+268+269=(269+1﹣1)÷(2﹣1),再进行计算即可.解答:解:(1)(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x2+x+1)=x m﹣1;(2)根据上面的式子可得:1+x+x2+x3+…+x n=(x n+1﹣1)÷(x﹣1),∴1+2+22+…+268+269=(269+1﹣1)÷(2﹣1)=270﹣1.点评:本题考查了平方差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).考点:平方差公式.分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(364+1),(38+1)(4分)=(32﹣1)(32+1)(34+1)(38+1)(364+1),=(34﹣1)(34+1)(38+1)(364+1),=(38﹣1)(364+1),(38+1)=(364﹣1)(364+1),(8分)=(3128﹣1).(10分)点评:本题主要考查了平方差公式,关键在于把(3+1)化简为(3﹣1)(3+1)的形式,18..考点:平方差公式.专题:计算题.分析:由平方差公式,(1+)(1﹣)=1﹣,(1﹣)(1+)=1﹣,依此类推,从而得出结果.解答:解:原式=(1﹣)(1+)(1+)(1+)(1+)=(1﹣)(1+)(1+)(1+)=(1﹣)(1+)(1+)=(1﹣)(1+)=1﹣.点评:本题考查了平方差公式的反复应用,是基础知识要熟练掌握.19.(2012?黄冈)已知实数x满足x+=3,则x2+的值为7 .考点:完全平方公式.专题:计算题.分析:将x+=3两边平方,然后移项即可得出答案.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.点评:此题考查了完全平方公式的知识,掌握完全平方公式的展开式的形式是解答此题的关键,属于基础题.20.(2007?天水)若a2﹣2a+1=0.求代数式的值.考点:完全平方公式.分析:根据完全平方公式先求出a的值,再代入求出代数式的值.解答:解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.点评:本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.21.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.考点:完全平方公式.专题:阅读型.分析:(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.解答:解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.点评:本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.22.(2004?太原)已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.考点:完全平方公式.分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab转化为完全平方式(a+b)2和ab的形式,即可求值.解答:解:∵(a+b)2=1,(a﹣b)2=25,∴a2+b2+2ab=1,a2+b2﹣2ab=25.∴4ab=﹣24,ab=﹣6,∴a2+b2+ab=(a+b)2﹣ab=1﹣(﹣6)=7.点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.23.(2001?宁夏)设a﹣b=﹣2,求的值.考点:完全平方公式.分析:对所求式子通分,然后根据完全平方公式把分子整理成平方的形式,把a﹣b=﹣2代入计算即可.解答:解:原式==,∵a﹣b=﹣2,∴原式==2.点评:本题考查了完全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.24.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.考点:完全平方公式.分析:根据完全平方公式把(x+y)2和(x﹣y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.解答:解:由题意知:(x+y)2=x2+y2+2xy=49①,(x﹣y)2=x2+y2﹣2xy=1②,①+②得:(x+y)2+(x﹣y)2,=x2+y2+2xy+x2+y2﹣2xy,=2(x2+y2),=49+1,=50,∴x2+y2=25;①﹣②得:4xy=(x+y)2﹣(x﹣y)2=49﹣1=48,∴xy=12.点评:本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.25.已知x+=4,求x﹣的值.考点:完全平方公式.分析:把已知条件两边平方求出x2+的值,再根据完全平方公式整理成(x﹣)2的形式并代入数据计算,然后进行开方运算.解答:解:∵,∴,∴x2+=14,∵(x﹣)2=x2+﹣2=12,∴x﹣=.点评:本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.26.已知:x+y=3,xy=2,求x2+y2的值.考点:完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:∵x+y=3,∴x2+y2+2xy=9,∵xy=2,∴x2+y2=9﹣2xy=9﹣4=5.点评:本题考查了利用完全平方公式恒等变形的能力.27.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.考点:完全平方公式.分析:先把a+b=3两边平方,然后代入数据计算即可求出a2+b2的值,根据完全平方公式把(a﹣b)2展开,再代入数据求解即可.解答:解:∵a+b=3,∴a2+2ab+b2=9,∵ab=2,∴a2+b2=9﹣2×2=5;∴(a﹣b)2=a2﹣2ab+b2=5﹣2×2=1.点评:本题主要考查完全平方公式,熟记公式结构是解题的关键,整体代入思想的利用使计算更加简便.28.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把(x+2)(y+2)展开并代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出x2+xy+y2的值.解答:解:∵(x+2)(y+2)=5,∴xy+2(x+y)+4=5,∵x+y=2,∴xy=﹣3,∴x2+xy+y2=(x+y)2﹣xy=22﹣(﹣3)=7.点评:本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.29.x2﹣11x+1=0,求x2+的值.考点:完全平方公式.分析:先把x2﹣11x+1=0两边同除x(由题意可知x≠0),得到x+=11,然后把该式子两边平方即可得到x2+的值.解答:解:∵x≠0,∴x+,(x+)2=121,∴x2+2+,∴x2+.点评:本题考查了完全平方公式,关键是知道隐含条件x≠0,x2﹣11x+1=0两边同除x得到x+=11,利用x和互为倒数乘积是1,利用完全平方公式来进行解题.30.已,求下列各式的值:(1);(2).考点:完全平方公式.分析:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.使分式中含有的形式,代入求值.解答:解:(1),=(x﹣)2﹣2,=42﹣2,=14;(2),=,=,=.点评:本题主要考查完全平方公式,解题的关键是灵活运用完全平方公式,并利用好乘积二倍项不含字母是常数的特点.。
完全平方公式专项练习50题(有答案)ok
13. 20022;
14. 15.
992-98×100; 49×51-2499.
2
16.(x-2y) (x+2y)-(x+2y) 17.(a+b+c) (a+b-c) 18.(2a+1) -(1-2a)
2 2 2 2
31.已知 a b 6, ab 4 ,求 a b 3a b ab 的值。
2 2 2 2
32. 已知 x y 2 x 4 y 5 0 ,求
2 2
1 ( x 1) 2 xy 的值。 2
33.已知 x
1 1 6 ,求 x 2 2 的值。 x x
专项练习:
1.(a+2b)2 2.(3a-5)2 3.. (-2m-3n)2 4. (a2-1)2-(a2+1)2
5.(-2a+5b)2
1 2 2 ab - c)2 2 3 7.(x-2y) (x2-4y2) (x+2y) 2 8.(2a+3) +(3a-2)2 9.(a-2b+3c-1) (a+2b-3c-1) ;
4.
(a2-1)2-(a2+1)2 =[(a2-1)+(a2+1)][(a2-1)-(a2+1)] =-4a² =4a²-20ab+25b²
5.(-2a+5b)2
6.(-
1 2 2 2 1 4 ab - c)2 = a²b 4 + ab2c+ c² 4 9 2 3 3
4 4
完全平方公式专项练习 50 题(有答案)
知识点:
完全平方公式:(a+b) 2 =a 2 +2ab+b 2 (a-b) 2 =a 2 -2ab+b 2
湘教版数学七年级下2.2.2完全平方公式培优练习(含答案)
湘教版七年级下册 2.2.2完全平方公式培优练习一、选择题1. 如图是一个正方形,分成四部分,其面积分别是a 2,ab,ab,b 2,则原正方形的边长是( ) A. a 2+b2B.a+bC.a-bD.a 2-b 22.下面各运算中,结果正确的是( ) A.2a 3+3a 3=5a6B.-a 2•a 3=a 5C.(a +b )(-a -b )=a 2-b 2D.(-a -b )2=a 2+2ab +b 23.若(2x -5y )2=(2x +5y )2+m ,则代数式m 为( ) A.-20xy B.20xy C.40xy D.-40xy 4. 若a+=7,则a 2+的值为( ) A.47B.9C.5D.515. 不论x ,y 为何有理数,x 2+y 2-10x +8y +45的值均为( )A.正数B.零C.负数D.非负数 6.已知(a+b)2-2ab=5,则a 2+b 2的值为( ) A.10 B.5 C.1 D.不能确定 7. 如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( ) A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b) D .(a +b)2=(a -b)2+4ab 8.下列运算中,正确的运算有( )①(x +2y)2=x 2+4y 2;②(a-2b)2=a 2-4ab +4b 2;③(x+y)2=x 2-2xy +y 2;④(x-14)2=x 2-12x +116.A .1个B .2个C .3个D .4个二、填空题9.已知:a -b =3,ab =1,则a 2-3ab +b 2=_____. 10. 填上适当的整式,使等式成立:(x -y )2+_____=(x +y )2.11.若a +b =4,则a 2+2ab +b 2的值为_____. 12.已知x 2-4=0,则代数式x (x +1)2- x (x 2+ x )-x -7的值是 .13.若a 2b 2+a 2+b 2+1-2ab =2ab ,则a +b 的值为_____. 14.请看杨辉三角(1),并观察下列等式(2):(1) (a +b)1=a +b ; (a +b)2=a 2+2ab +b 2; (a +b)3=a 3+3a 2b +3ab 2+b 3; (a +b)4=a 4+4a 3b +6a 2b 2+4ab 2+b 4;…(2)根据前面各式的规律,则(a +b)6=__________. 三、计算题15.计算:(a -2b +3c )(a +2b -3c ).16.已知(a +b )2=24,(a -b )2=20,求: (1)ab 的值是多少? (2)a 2+b 2的值是多少?17. (1)已知a -b =3,求a(a -2b)+b 2的值; (2)已知ab =2,a +b =5,求a 3b +2a 2b 2+ab 3的值.18.在三个整式x 2+2xy ,y 2+2xy ,x 2中,请你任意选出两个进行加(或减)法运算,使所得整式可以因式分解,并进行因式分解.参考答案:一、选择题1.D2.D3.D4.A5. A6.B7. D8.B二、填空题9.分析:应把所给式子整理为含(a-b)2和ab的式子,然后把值代入即可.解:∵(a-b)2=32=9,∴a2-3ab+b2=(a-b)2-ab=9-1=810.分析:所填的式子是:(x+y)2-(x-y)2,化简即可求解.解:(x+y)2-(x-y)2=(x2+2xy+y2)-(x2-2xy+y2)=4xy.11.分析:原式利用完全平方公式化简,将a+b的值代入计算即可求出值.解:∵a+b=4,∴a2+2ab+b2=(a+b)2=16.12.分析:分析:因为x2-4=0,∴x2=4,根据完全平方公式和单项式乘多项式的法则化简原式后,再代入求值.解:x(x+1)2-x(x2+x)–x-7=x3+2x2+x-x3-x2-x-7=x2-7.当x2-4=0时,x2=4,原式=-3.13.分析:首先把2ab移到等式的左边,然后变为a2b2+a2+b2+1-2ab-2ab=0,接着利用完全平方公式分解因式,最后利用非负数的性质即可求解.解:∵a2b2+a2+b2+1-2ab=2ab,∴a2b2+a2+b2+1-2ab-2ab=0,∴a2b2-2ab+1+a2+b2-2ab=0,∴(ab-1)2+(a-b)2=0,∴ab=1,a-b=0,∴a=b=1或-1,∴a+b=2或-2.14.解:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6三、计算题(本大题共4小题)15.分析:首先将原式变为:[a-(2b-3c)][a+(2b-3c)],然后利用平方差公式,即可得到a2-(2b-3c)2,求出结果.解:(a-2b+3c)(a+2b-3c)=[a-(2b-3c)][a+(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2+12bc-9c2.16.分析:由(a+b)2=24,(a-b)2=20,可以得到:a2+b2+2ab=24…①,a2+b2-2ab=20…②,通过两式的加减即可求解.解:∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24…①,a2+b2-2ab=20…②,(1)①-②得:4ab=4,则ab=1;(2)①+②得:2(a2+b2)=44,则a2+b2=22.17.分析:(1)首先对a(a-2b)+b2进行转化成(a -b)的形式,再利用已知条件就可以了;(2)同理可解。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
14.2完全平方公式专项训练题(含答案)
完全平方公式课时练习一、选择题(每小题5分,共30分)1. 计算(a+b )(-a-b )的结果是( )A. a-b B. -a-b C. a -2ab+b D. -a-2ab-b 2. 设(3m+2n )=(3m-2n )+P ,则P 的值是( ) A. 12mn B. 24mn C. 6mn D. 48mn3. 若x -kxy+9y 是一个完全平方式,则k 值为( ) A. 3 B. 6 C. ±6 D. ±814. 已知a +b =25,且ab=12,则a+b 的值是( ) A. 1 B. ±1 C. 7 D. ±75. 下列运算正确的是 ( )A. (a-2b) (a-2b)=a -4bB. (P-q)=P-q C. (a+2b) (a-2b)=-a-2bD. (-s-t)=s +2st+t6. 下列等式成立的是( )A. (-x-1)=(x-1)B. (-x-1) =(x+1)C. (-x+1)=(x+1)D. (x+1) =(x-1)7. 计算(a+1)(-a-1)的结果是( ) A. -a -2a-1B. a -1C. -a -1D. -a +2a-1 8. 若x+y=10,xy=24,则x +y 的值为( ) A. 52 B. 148 C. 58 D. 76 9. 计算101 等于 ( )A. 100+1B. 101×2C. 100+100×1+1D. 100+2×100+1 10. 若(a+b )2=9,(a-b )2=1,则ab 的值为( ) A. 2 B. -2 C. 8 D. -811. 若(a+b )2=36,(a-b )2=4,则a +b 的值为( ) A. 9 B. 40 C. 20 D. -2012. 化简:(m+1)-(1-m)(1+m)正确的结果是( ) A. 2m B. 2m+2 C. 2m +2m D. 0 13. 已知a+=4,则a +()的值是( ) A. 4 B. 16 C. 14 D. 1514. 设(5a+3b)=(5a-3b)+A ,则A=( ) A. 30ab B. 60ab C. 15ab D. 12ab15. 若x +y=(x+y)+A=(x-y)+B ,则A ,B 各等于( ) A. -2xy ,2xy B. -2xy ,-2xy C. 2xy ,-2xy D. 2xy ,2xy二、填空题(每小题5分,共25分)16. 计算:(-x-y )=__________17. x +y =(x+y )-__________=(x-y)+________.18. 多项式4x +1加上一个单项式后能成为一个整式的完全平方,请你写出符合条件的这个单项式是___________. 19. (a+b)(-b-a)=________20. 已知a+b=6,ab=5,则代数式a +b 的值是__________三、解答题(每题10分,共50分)21. 计算999的结果.22. 解方程2(x-1)+(x-2)(x+2)=3x(x-5) 23. 已知:x+y=3,xy=1,试求: (1)x +y 的值;(2)(x-y)的值.24. 已知a+=6,求(a-)的值.25. 已知a ,b 是有理数,试说明a +b -2a-4b+8的值是正数.第十四章第二节完全平方公式课时练习一、选择题(每小题5分,共30分)1. 计算(a+b )(-a-b )的结果是( )A. a-b B. -a-b C. a -2ab+b D. -a-2ab-b 【答案】D 【解析】解:(a +b )(-a -b )=-(a +b )(a +b )=-( a 2+2ab +b 2)=-a 2-2ab -b 2.故选D .2. 设(3m+2n )=(3m-2n )+P ,则P 的值是( ) A. 12mn B. 24mn C. 6mn D. 48mn 【答案】B【解析】解:∵(3m +2n )2=9m 2+4n 2+12mn =9m 2+4n 2-12mn +24mn =(3m -2n )2+24mn ,∴P =24mn .故选B .3. 若x -kxy+9y 是一个完全平方式,则k 值为( ) A. 3 B. 6 C. ±6 D. ±81 【答案】C【解析】解:∵x 2-kxy +9y 2是一个完全平方公式,∴x 2-kxy +9y 2=(x ±3y ) 2,∴k 应该是±6 .故选C .点睛:本题主要考查了完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解是解题关键.4. 已知a +b =25,且ab=12,则a+b 的值是( ) A. 1 B. ±1 C. 7 D. ±7 【答案】D【解析】解:∵a 2+b 2=25,ab =12,∴a 2+b 2+2ab =(a +b )2=25+2×12=49,∴a +b =±7 .故选D .5. 下列运算正确的是 ( )A. (a-2b) (a-2b)=a -4bB. (P-q)=P-q C. (a+2b) (a-2b)=-a-2b D. (-s-t)=s +2st+t 【答案】D【解析】解:A .(a -2b ) (a -2b )=a 2+4b 2-4ab ,所以本题错误;B .(p -q ) 2=p 2+q 2-2pq ,所以本题错误;C .(a +2b ) (a -2b )= a 2-4b 2, 所以本题错误;D .(-s -t ) 2=s 2+2st +t 2,本题正确. 故选D .6. 下列等式成立的是( )A. (-x-1)=(x-1)B. (-x-1) =(x+1)C. (-x+1)=(x+1)D. (x+1) =(x-1) 【答案】B【解析】解:A . (-x -1)2=(x +1) 2,所以本题错误;B . (-x -1) 2 =(x +1) 2,本题正确;C .(-x +1) 2=(x -1) 2, 所以本题错误;D . (x +1) 2 ≠(x -1) 2,所以本题错误. 故选B .7. 计算(a+1)(-a-1)的结果是( ) A. -a -2a-1B. a -1C. -a -1D. -a +2a-1 【答案】A【解析】解:(a +1)(-a -1)=- (a +1)(a +1)=-(a +1)2=-a 2-2a -1.故选A .8. 若x+y=10,xy=24,则x +y 的值为( ) A. 52 B. 148 C. 58 D. 76 【答案】A【解析】解:∵(x +y ) 2= x 2+y 2+2xy =100,∴x 2+y 2=100-2xy =100-48=52.故选A .9. 计算101 等于 ( )A. 100+1B. 101×2C. 100+100×1+1D. 100+2×100+1 【答案】D【解析】解:1012=(100+1)=1002+2×100+1.故选D . 10. 若(a+b )2=9,(a-b )2=1,则ab 的值为( ) A. 2 B. -2 C. 8 D. -8 【答案】A【解析】解:(a +b ) 2-(a -b ) 2=2ab -(-2ab )=4ab =9-1,∴ab =2.故选A .11. 若(a+b )2=36,(a-b )2=4,则a +b 的值为( ) A. 9 B. 40 C. 20 D. -20 【答案】C【解析】解:(a +b ) 2+(a -b ) 2=2 (a 2+b 2)=36+4,a 2+b 2=20.故选C .12. 化简:(m+1)-(1-m)(1+m)正确的结果是( ) A. 2m B. 2m+2 C. 2m +2m D. 0 【答案】C【解析】解:(m +1) 2 -(1-m )(1+m )=m 2+2m +1-1+m 2=2m 2+2m .故选C .点睛:本题考查了平方差公式和完全平方公式的应用,能正确运用公式展开是解此题的关键.13. 已知a+=4,则a +()的值是( ) A. 4 B. 16 C. 14 D. 15 【答案】C【解析】解:(a +)2= a 2+()2+2=16,a 2+()2=14.故选C .14. 设(5a+3b)=(5a-3b)+A ,则A=( ) A. 30ab B. 60ab C. 15ab D. 12ab 【答案】B【解析】∵(5a+3b)2=(5a −3b)2+A∴A=(5a+3b)2−(5a −3b)2=(5a+3b+5a −3b)(5a+3b −5a+3b)=60ab ,故选B.15. 若x +y=(x+y)+A=(x-y)+B ,则A ,B 各等于( ) A. -2xy ,2xy B. -2xy ,-2xy C. 2xy ,-2xy D. 2xy ,2xy 【答案】A【解析】解:∵x 2+y 2=(x +y )+A =(x -y )+B ; x 2+y 2= x 2+y 2+2xy +A = x 2+y 2-2xy +B ∴A =-2xy ,B =2xy . 故选A .点睛:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式结构及其变形是解题的关键.二、填空题(每小题5分,共25分)16. 计算:(-x-y )=__________ 【答案】x +y +2xy【解析】解:(-x -y )2=[-(x +y )] 2= x 2+y 2+2xy .故答案为:x 2+y 2+2xy .17. x +y =(x+y )-__________=(x-y)+________. 【答案】 (1). 2xy (2). 2xy【解析】解: x 2+y 2=(x +y )2-(2xy )=(x -y )2+2xy .故答案为:-2xy ,2xy .18. 多项式4x +1加上一个单项式后能成为一个整式的完全平方,请你写出符合条件的这个单项式是___________. 【答案】±4x 【解析】解: 4x 2+1=(2x +1)2-4x ;4x 2+1=(2x -1)2+4x .故答案为:±4x . 点睛:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 19. (a+b)(-b-a)=________【答案】-a-b-2ab20. 已知a+b=6,ab=5,则代数式a +b 的值是__________ 【答案】26【解析】解:∵a 2+b 2=(a +b ) 2-2ab =36-2×5=26.故答案为:26. 三、解答题(每题10分,共50分)21. 计算999的结果.【答案】998001【解析】试题分析:原式变形后,利用完全平方公式化简即可得到结果.试题解析:解:9992=(1000-1)2=10002+1-2000=998001.22. 解方程2(x-1)+(x-2)(x+2)=3x(x-5)【答案】x=【解析】试题分析:用完全平方公式和平方差公式展开后,合并即可得到结论.试题解析:解:2(x-1) 2+(x-2)(x+2)=3x(x-5)2x2+2-4x+x2-4=3x2-15x3x2-3x2-4x+15x=2x =点睛:本题考查了完全平方公式、平方差公式以及全并同类项,熟练掌握运算法则是解答本题的关键.23. 已知:x+y=3,xy=1,试求:(1)x +y的值;(2)(x-y)的值.【答案】(1)7(2)5【解析】试题分析:(1)根据,变形即可;(2)根据,整体代入即可.试题解析:解:(1)x2+y2=(x+y) 2 -2xy=9-2=7;(2)(x-y)2==9-4=5.点睛:本题考查了完全平方公式的变形运用.熟练掌握公式及其变形的方法是解题的关键.24. 已知a+=6,求(a-)的值.【答案】32【解析】试题分析:把两边平方,把利用完全平方公式展开,整理即可求解.试题解析:解:∵,∴,∴.25. 已知a,b是有理数,试说明a +b-2a-4b+8的值是正数.【答案】证明见解析【解析】试题分析:先把常数项8拆为1+4+3,再分组凑成完全平方式,从而判断它的非负性.试题解析:解:原式= a2+b2-2a-4b+8= a2+b2-2a-4b+1+4+3=(a-1)2+(b-2)2+3∵(a-1)2≥0;(b-2)2≥0;∴(a-1)2+(b-2)2+3≥3.∴a2+b2-2a-4b+8的值是正数.学.科.网...学.科.网...学.科.网...。
完全平方公式同步练习(含解析)
完全平方公式 培优练习一、选择题(本大题共8小题)1. 若x=1,,则x 2+4xy+4y 2的值是( )A .2B .4C .D .2.下面各运算中,结果正确的是( )A.2a 3+3a 3=5a 6B.-a 2•a 3=a 5C.(a +b )(-a -b )=a 2-b 2D.(-a -b )2=a 2+2ab +b 23. 若(ax +3y)2=4x 2+12xy +by 2,则a ,b 的值分别为( )A .a =4,b =3B .a =2,b =3C .a =4,b =9D .a =2,b =94. 若a+错误!未找到引用源。
=7,则a 2+错误!未找到引用源。
的值为( )A.47B.9C.5D.515. 已知多项式x 2+kx+是一个完全平方式,则k 的值为( )A .±1B .﹣1C .1D .6.已知(a+b)2-2ab=5,则a 2+b 2的值为( )A.10B.5C.1D.不能确定7. 如图,在边长为2a 的正方形中央剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4ªC .3a 2-4a -4D .4a 2-a -28.下列运算中,正确的运算有( )①(x +2y)2=x 2+4y 2;②(a-2b)2=a 2-4ab +4b 2;③(x+y)2=x 2-2xy +y 2;④(x-)2=14x 2-x +.12116A .1个B .2个C .3个D .4个二、填空题(本大题共6小题)9.已知:a -b =3,ab =1,则a 2-3ab +b 2=_____.10. 若4x 2﹣2kx+1是完全平方式,则k= .11. 若a 2+b 2=7,ab =2,则(a -b)2的结果是________.12. 已知实数a 、b 满足(a+b )2=1和(a-b )2=25,则a 2+b 213.若a 2b 2+a 2+b 2+1-2ab =2ab ,则a +b 的值为_____.14. 观察下列各式:1×3=22-1,3×5=42-1,5×7=62-1,7×9=82-1,……,请你把发现的规律用含字母n(n 为正整数)的等式表示为_________________________.三、计算题(本大题共4小题)15.计算:(3x﹣2)(2x+3)﹣(x﹣1)2; 16.已知(a +b )2=24,(a -b )2=20,求:(1)ab 的值是多少?(2)a 2+b 2的值是多少?17. 先化简,再求值:[(x﹣2y)2﹣x(x﹣4y)﹣8xy]÷4y ,其中x=﹣1,y=2.18. 我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是_________(2)现有足够多的正方形和矩形卡片,如图C:①若要拼出一个面积为(a+2b)(a+b)的矩形,则需要1号卡片_______张,2号卡片______张,3号卡片_______张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为2a2+5ab+2b2.参考答案一、选择题(本大题共8小题)1.B分析:首先用完全平方公式将原式化简,然后再代值计算.解:原式=(x+2y)2=(1+2×)2=4.故选B.2.D分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式变形后,利用完全平方公式展开得到结果,即可做出判断;D、原式利用完全平方公式展开得到结果,即可做出判断.解:A、原式=5a3,故选项错误;B、原式=-a5,故选项错误;C、原式=-(a+b)2=-a2-2ab-b2,故选项错误;D、原式=(a+b)2=a2+2ab+b2,故选项正确.故选D.3.D分析:利用完全平方公式进行展开并合并同类型后借助系数解答即可。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习专项练习:1、计算(1)(a +2b )2 (2)(3a -5)2 (3)(-2m -3n )2 (4) (a 2-1)2-(a 2+1)2 (5)(-2a +5b )2 (6)(-21ab 2-32c )2 (7)(x -2y )(x 2-4y 2)(x +2y )(8)2a +3)2+(3a -2)2 (9)(a -2b +3c -1)(a +2b -3c -1);(10)(s -2t )(-s -2t )-(s -2t )2; (11)(t -3)2(t +3)2(t 2+9)2. (12)992-98×100; (13) 49×51-2499. (14)(x -2y )(x +2y )-(x +2y )2(15)(a +b +c )(a +b -c ) (16)(2a +1)2-(1-2a )2 (17)(3x -y )2-(2x +y )2+5x (y -x )2、先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.3、.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 4、已知x -y =9,x ·y =5,求x 2+y 2的值.5、已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值6、.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值7、.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 8、已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.9、.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
10、.已知()5,3a b ab -==求2()a b +与223()a b +的值。
11、.已知6,4a b a b +=-=求ab 与22a b +的值。
完全平方公式培优练习题
完全平方公式培优练习题完全平方公式是数学中重要的一个公式,掌握它可以在求解方程和解题过程中节省大量时间,提高计算效率。
下面我将为大家列举一些完全平方公式的培优练习题,希望能够对大家的数学学习起到一定的帮助。
1. 基础练习题(1) 计算下列各式的值:(a) $(3 + \sqrt{5})^2$(b) $(4 - \sqrt{3})^2$(c) $(2 + 3\sqrt{2})(2 - 3\sqrt{2})$(d) $(5 + \sqrt{6})(5 - \sqrt{6})$(2) 计算下列各式的值,并将结果化简:(a) $(\sqrt{7} - \sqrt{3})(\sqrt{7} + \sqrt{3})$(b) $(2\sqrt{2} + 3\sqrt{5})(2\sqrt{2} - 3\sqrt{5})$(c) $(\sqrt{5} + \sqrt{6})(\sqrt{5} - \sqrt{6})$(3) 下列各式中是否包含完全平方项?如果有,请写出完全平方项。
(a) $3x^2 + 10x + 4$(b) $2a^2 - 6ab + 4b^2$(c) $5x^2 - \sqrt{2}x + 6$2. 挑战性习题(1) 求解方程 $x^2 - 11x + 28 = 0$ 的实数解。
(2) 求解方程 $2x^2 - 3\sqrt{5}x + \frac{5}{4} = 0$ 的实数解。
(3) 已知 $a$ 和 $b$ 是实数,且满足 $a^2 - 3ab + 2b^2 = 0$,求所有可能的 $(a, b)$ 组合。
(4) 已知 $x$ 和 $y$ 是正实数,且满足 $(x^2 + 2xy + y^2)(x^2 - 2xy + y^2) = 169$,求 $x$ 和 $y$ 的值。
通过以上的培优练习题,我们可以深入理解完全平方公式的运用,并提高求解方程和解题的能力。
在解题过程中,可以利用完全平方公式将一些复杂的多项式进行分解,转化为简便的计算形式,从而提高解题效率。