遥感图像处理 图像配准、图像裁剪 实验报告

合集下载

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。

实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。

本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。

实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。

2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。

3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。

4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。

实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。

通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。

这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。

在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。

二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。

图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。

我国情况较为特殊,往往需要自定义坐标系。

所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。

1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。

根据每台电脑安装的路径以及版本不同而略有不同。

以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。

(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。

)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。

1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言:遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。

本实验旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。

一、图像预处理图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校正等操作。

在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。

接着,我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得到了显著提高。

最后,我们进行了几何校正,通过对图像进行旋转和缩放,使得图像的几何形状与实际地理位置相符合。

二、图像分类图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,将其划分为不同的地物类型。

在本实验中,我们使用了监督分类方法,首先选择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不同的地物类型进行关联。

接着,我们对整个图像进行分类,将图像中的每个像素都划分为相应的地物类型。

最后,我们对分类结果进行了验证,通过与实地调查结果进行对比,验证了分类的准确性和可靠性。

三、图像融合图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的图像融合成一幅高质量的图像。

在本实验中,我们选择了两幅具有不同波段的卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。

融合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱分辨率,可以提供更全面和准确的地物信息。

四、图像变化检测图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。

在本实验中,我们选择了两幅具有不同时间的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。

通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实习报告姓名:学号:联系方式:日期:一、实习要求(一)掌握使用ENVI进行各种图像基本操作;(二)熟练运用ENVI中工具进行图像图像校正、裁剪拼接、融合及图像增强处理;二、实习操作过程与实现结果(一)辐射校正及大气校正1、辐射校正(1)选择File->open,选择Landset8武汉数据中的‘’文件。

(2)选择T oolbox->Radiometric Correction->Radiometric Calibration工具,选择要校正的‘LC8LGN00_MTL_MultiSpectral’多光谱数据,设置定标参数(存储格式:BIL;单位转换“Scale Factor”的设置,单击Apply FLAASH Settings得到相应的参数),得到辐射定标后的结果。

2、大气校正(1)选择Toolbox->Radiometric Correction->Atmospheric Correction Module->FLAASH Atmospheric Correction工具;打开工具后设置参数:在FLAASH Atmospheric Correction Module Input Parameters 面板中如图设置各项参数;点击apply运行大气校正。

(2)大气校正运行结果(二)图像裁剪与拼接1、15米全色波段图像裁剪拼接(1)选择File->open,选择‘县界.shp’‘LC8LGN00_MTL’及‘LC8LGN00_MTL’文件。

(2)选择Toolbox->Regions of Interest->Subset Date from ROIs 工具;双击打开后input file面板选择38区段15米分辨率文件,input ROIs面板选择‘县界’文件。

点击‘OK’,38区段文件裁剪后如图。

(3)重复(2)中工具选择步骤;双击打开后在input file 面板选择39区段15米分辨率文件,在input ROIs面板选择‘县界’文件。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)3.图像拼接处理(Mosaic Imgaes)4.生成三维地形表面(3D Surfacing)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

遥感影像处理中的图像配准技术研究

遥感影像处理中的图像配准技术研究

遥感影像处理中的图像配准技术研究遥感影像作为一种远程获取地球表面信息的手段,已经广泛应用于农业、林业、城市规划、地质勘探等领域。

在遥感影像处理中,图像配准技术是非常重要的一步,它可以将不同时间、不同角度、不同分辨率、不同传感器获取的遥感影像精确地拼接起来,为后续的数据分析和信息提取提供准确的基础。

图像配准技术的基本概念图像配准是指将不同图像空间中的图像通过一系列变换,使得它们在相同的空间坐标系中具有相似的几何特征和像素值。

图像配准技术可以分为点匹配和区域匹配两大类。

点匹配是指在两幅图像中找出对应的特征点,通过计算这些特征点的坐标变换关系来进行图像配准。

常用的特征点匹配方法有SIFT、SURF和ORB等。

这些方法利用图像中的局部不变性特征点,在不同的图像中寻找出携带相同信息的点,然后通过点匹配对图像进行配准。

区域匹配是指在两幅图像中找出特征区域,以此来进行配准。

常用的区域匹配方法有基于互相关的方法和基于相位相关的方法。

其中基于互相关的方法是最简单的区域匹配方法,它利用图像中的像素值相似度进行匹配,并通过计算变换矩阵把两幅图像对齐。

基于相位相关的方法则是通过将图像转换到频域进行滤波、反变换等处理,从而实现图像配准。

图像配准技术在遥感影像处理中的应用在遥感影像处理中,图像配准技术是非常重要的一步。

由于遥感影像分辨率不同,光学成像区域不同等因素的影响,所获取的遥感影像之间存在较大的差异,必须经过配准才能拼接成一幅完整的图像。

同时,配准后的遥感影像还需要通过遥感影像处理技术来进行分析和提取信息。

图像配准技术在遥感影像处理中的应用广泛,其中最为常见的是农业、林业和城市规划等领域的应用。

在农业领域中,图像配准技术可用于对不同时间或不同角度获得的遥感影像进行配准,从而得出关于植物的生长状态、地面覆盖率等信息。

在林业领域中,图像配准技术可用于不同时间、不同季节甚至不同年份获得的遥感影像进行比较,从而了解森林变化、伐木状况等情况。

遥感影像裁剪实验报告

遥感影像裁剪实验报告

一、实验目的1. 掌握遥感图像几何校正的基本方法和步骤;2. 掌握图像拼接的原理,以及两幅图像拼接的时候需要的条件,掌握拼接技术;3. 学习通过 ERDAS 进行遥感图像规则分幅裁剪,不规则分幅裁剪和掩膜处理。

二、实验内容1. 规则分幅裁剪:根据行列号、左上角和右下角两点坐标、图像文件、ROI 矢/量文件等获取矩形裁剪范围,进行规则裁剪。

2. 不规则分幅裁剪:通过手动绘制裁剪范围和外部矢量数据裁剪图像两种方法进行不规则裁剪。

3. 掩膜处理:对全州县东山瑶族自治乡七宝坑研究区TM影像进行掩膜处理,提取研究区信息。

三、实验步骤1. 规则分幅裁剪:(1)打开ENVI软件,选择File>Open Image File,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)选择Import File,导入裁剪范围数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

2. 不规则分幅裁剪:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用鼠标绘制裁剪范围或导入外部矢量数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

3. 掩膜处理:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用掩膜工具对研究区进行掩膜处理。

(4)在ENVI主菜单栏中选择File>Save As,保存掩膜后的图像。

四、实验结果与分析1. 规则分幅裁剪:成功获取124-42双牌幅TM影像数据的矩形裁剪范围,裁剪后的图像符合预期。

遥感图像配准实验报告

遥感图像配准实验报告
[实验数据处理及成果]
用SPOT校正TM数据,附操作过程截图和校正后TM影像图片
[体会及建议]
通过本次试验熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。在实验过程中移动光标,查看坐标值,要小心谨慎注意地图坐标和经纬度之间的关系。以免出现错误。
(2)通过计算机操作与地理知识的结合增强对地理学科的兴趣,为以后继续从事相关工作奠定基础。
(3)树立地理学思想,理解并掌握地理学科的学习、实践的方法。
二、实验内容
遥感图像的几何校正,IHS融合方法。
三、实验准备
(1)IHS融合: IHS融合法是比较常用的一种融合方法。其基本原理是首先将空间分辨率
较低的三个多光谱影像变换到IHS彩色空间,得到明度(I),色别(H)和饱和度(S)三个分量;然后将高空间分辨率影像进行对比度拉伸,达到与I分量具有相同的均值和方差;再将处理后的高空间分辨率影像替换I分量,作IHS逆变换后就得到融合后的影像。
篇三:遥感实验报告
实验报告(实验一)
[实验名称]ENVI窗口的基本作
[实验目的与内容]
实验目的
熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。实验内容
1、熟悉遥感图像处理软件ENVI的窗口基本操作。2、查看影像信息和像元信息。3、距离测量与面积测量。
[实验数据处理及成果]
遥感图像配准实验报告
篇一:遥感图像处理实验报告
《遥感数字图像处理》
实习报告
学院:环境与资源学院
班级:地理1002
学号:周颖智
姓名:20101171
西南科技大学环境与资源学院遥感实习…………………......2

ENVI遥感图像处理实验二——图像常规处理2

ENVI遥感图像处理实验二——图像常规处理2

遥感图像预处理实习实习内容:遥感图像的裁剪、镶嵌与几何校正1、在实际的工作中,为何经常需要对影像进行裁剪与镶嵌操作?在ENVI软件平台如何实现影像的裁剪与镶嵌,以一示例详细叙述裁剪与镶嵌的具体操作步骤。

由于遥感卫星是在一个预先设计的轨道上运行,星载传感器沿着轨道在地面上的轨迹按一定宽度垂直于运行方向进行扫描,在实际工作中有时需要分析的地区并不完全处在同一幅图像内,这时候需要把多景相邻遥感图像拼接成一个大范围无缝的图像,即图像镶嵌,而图像剪裁的目的则是将研究之外的区域去除。

一、图像裁剪:(1)规则分幅裁剪a)在主菜单中,选择File ——Open Image File,打开裁剪图像bhtmref.img。

b)在主菜单中,选择File——Save File as——ENVI Standard,弹出NewFile Builder对话框。

c)在New File Builder对话框中,单击Import File按钮,弹出Create NewFile Input File对话框。

d)在Create New File Input File对话框中,选中Select Input File列表中的裁剪图像,单击Spatial Subset按钮。

e)在Select Spatial Subset对话框中,单击Image按钮,弹出Subset ByImage对话框。

f)在Subset By Image对话框中,可以通过输入行列数确定剪裁尺寸并按住鼠标左键拖动图像中的红色矩形框确定剪裁区域,或直接用鼠标左键按红色边框拖动来确定剪裁尺寸以及位置,单击OK按钮。

g)在Select Spatial Subset对话框中可以看到剪裁区域信息,单击OK按钮。

h)在Create New File Input File对话框中,可以通过Spectral Subset按钮选择输出波段子集,单击OK按钮。

i)选择输出路径及文件名或者选择Memory直接在窗口上显示,单击OK按钮,完成规则分幅裁剪过程。

遥感图像处理 图像配准、图像裁剪 实验报告

遥感图像处理 图像配准、图像裁剪 实验报告

Lab3 geometric correction and projection transformation of remotely sensed dataObjective :The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments.实验过程:一、envi中图像配准1、根据控制点的坐标对图像进行配准1)加载中山陵地形图2) 选择map 菜单下的registration菜单,选择select gcps:image to map设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—843)开始配准依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:点击add point,完成对控制点的编辑4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存2、图像到图像的配准1)加载全色波段影像作为待配准的影像将配准好的地形图作为基准图,全色影像作为要配准的图像在两幅图像上选择5个同名地物点进行配准点击show list 查看误差,不断调整误差直至所有误差在1以内二、erdas中的配准1、打开erdas,将zsl.tiff格式的数据导为erdas.img2、viewer中打开刚刚保存的图像,选择data preparation中的配准image geometric correction点击select viewer,点击下图层,选择polynomial多项式模型点击ok,修改投影Set projection from GCP tool,选择手动输入“keyboard”将4个图廓点的坐标输入表格display,保存图像,并加载,对配准后的图像进行投影修改3、图到图的配准以刚刚配准好的地形图为基准,加载多光谱图像选择data preparation中的配准image geometric correction选择地形图作为基准面,多光谱图像为待配准影像将相同点的坐标输入表格,并调整误差4、图像裁剪创建感兴趣区域,AOI下Tools创建一个任意形状的区域后,双击保存区域。

遥感图像处理实验报告_2

遥感图像处理实验报告_2

遥感图像处理实验报告班级 11资环姓名学号实验专题实验室 F楼机房成绩评定教师签字专题一: DEM图像进行彩色制图 (2)(叙述制图过程并把自己处理结果加载到本文档里)专题二: TM与SPOT数据融合 (3)(叙述该过程并处理结果加载到本文档里。

注意用两种方法融合的过程)专题三: 航片的配准与镶嵌 (4)(叙述该过程并处理结果加载到本文档)专题四: 切取某研究区域的操作 (5)(具体要求:卫星影象叠加, 选择其中三波段彩色合成, 采用ROI切取研究区)专题五: 地图制图的方法 (6)(主要是快速制图。

并任选一样例加载制图后结果)专题六: 使用ENVI进行三维曲面的浏览与飞行 (7)(叙述该过程并处理结果加载到本文档里)专题七: 监督分类试验(任选一种监督分类方法, 并叙述 (8)(其过程将其结果加载到本档里)。

实验专题: 专题一: DEM图像进行彩色制图1.加载一幅DEM的灰度图像, 使用系统默认的IDL颜色表来调整屏幕的颜色表。

2.给生成的彩色图像添加图名、格网、比例尺、灰度条、等高线及数值等信息。

3、调整位置, 保存图像。

结果如下图1、实验专题: 专题二: TM与SPOT数据融合2、主图象窗口选择Transform > Image Sharpening > HSV, 从一个打开的彩色图像中选择三个波段进行变换。

3、对原DEM图像进行拉伸处理。

3.将HSV图像重新转换为RGB图像。

分别对应H-R,S-G,拉伸图像-B。

4.加载最终图像, 并保存结果。

结果如图所示:1、实验专题: 专题三: 航片的配准与镶嵌2、加载两幅图像, 其中一幅作为base image, 一幅作为warp image。

3、在主菜单Registration里的Select GCP(Ground Control Points)来选择地面控制点, 并调整误差。

4、执行图像—地图配准。

5、图像镶嵌。

执行Map> Mosaicking > Pixel Based。

遥感图片的处理实验报告

遥感图片的处理实验报告

遥感图片的处理实验报告******大学测绘工程***专业《遥感原理及应用》实验报告班级:学号:姓名:指导老师 :实验室:1实验一 ENVI 视窗的基本操作一、实验的目的初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。

二、实验软件与数据软件:Envi遥感图像处理软件。

数据:重庆地区UTM第八波段数据。

三、实验方法与步骤Envi软件的主菜单:此菜单包含基本工具。

四、实验体会与建议体会:初步了解了ENVI 的主要功能和各个模块,ENVI 用户界面由小部件(widgets) 或控件(controls) 构成。

小部件是 GUI 的组装部件––––它们允许你通过点击、输入文本、或选择,以与程序交互。

选项由菜单组成,这些菜单由小部件构成。

选择某个菜单项可以弹出一个对话框,它要求用户输入和交互。

建议:好多基本操作还是不太会,也不知道该怎么下手去做,要是有具体操作手册、操作步骤就会好多了。

2实验二遥感图像的几何校正一、实验的目的通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义二、实验软件与数据软件:Envi遥感图像处理软件。

数据:重庆地区UTM第八波段数据以及未经校核的重庆地区jpg图片。

三、实验方法与步骤1、显示图像文件。

首先在 ERDAS 图标面板中点击viewer图表两次,打开两个视窗(viewer1/viewer2),并将两个视窗平铺放置,如下:ERDAS图表面板菜单条:session—title viewers然后,在viewer 1中打开需要校正的lantsat图像:重庆城区.jpg2、选择校正与镶嵌菜单下的校正图像选取控制点3单击Show List按钮查看所选控制点的信息43、在控制点选择窗口中选择options菜单,再选择warp file,选择输出校正后的图像文件。

遥感影像处理实验报告(3篇)

遥感影像处理实验报告(3篇)

第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。

遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。

本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。

二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。

2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。

3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析:对分类结果进行分析,评估分类精度。

三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。

- 确保影像数据具有较好的质量和分辨率。

2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。

- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。

- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。

3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。

- 对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。

- 对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析- 对分类结果进行分析,评估分类精度。

- 分析分类结果中存在的问题,并提出改进措施。

四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。

2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。

3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言遥感技术作为一种获取地球表面信息的重要手段,已经在农业、环境、城市规划等领域得到广泛应用。

本实验旨在通过遥感图像处理,探索图像处理算法的应用效果,并分析其在实际应用中的潜力。

一、图像预处理图像预处理是遥感图像处理的第一步,其目的是消除图像中的噪声、增强图像的对比度和清晰度。

在本实验中,我们使用了直方图均衡化和中值滤波两种常见的图像预处理方法。

直方图均衡化是一种通过调整图像像素的灰度分布来增强图像对比度的方法。

通过对图像的灰度级进行重新分配,使得图像的灰度分布更加均匀,从而使得图像的细节更加清晰。

实验结果显示,直方图均衡化对于遥感图像的对比度增强效果显著。

中值滤波是一种常见的图像去噪方法,其原理是通过计算像素点周围邻域的中值来替代该像素点的值,从而消除图像中的噪声。

在本实验中,我们使用了3x3的中值滤波器对遥感图像进行滤波处理。

实验结果表明,中值滤波能够有效地去除图像中的椒盐噪声和高斯噪声,使得图像更加清晰。

二、图像分类图像分类是遥感图像处理的核心任务之一,其目的是将遥感图像中的像素点按照其特征分类到不同的类别中。

在本实验中,我们使用了支持向量机(SVM)算法进行图像分类。

支持向量机是一种常用的机器学习算法,其通过构建一个最优超平面来实现分类。

在图像分类中,我们将遥感图像中的每个像素点看作一个数据样本,其特征由像素的灰度值和纹理信息组成。

通过对训练样本进行学习,支持向量机能够建立一个分类模型,从而对测试样本进行分类。

实验结果显示,支持向量机在遥感图像分类中表现出较高的准确性和鲁棒性。

通过调整支持向量机的参数,我们可以得到不同的分类结果。

此外,支持向量机还能够处理高维数据和非线性分类问题,使其在遥感图像处理中具有广泛的应用前景。

三、图像变换图像变换是遥感图像处理中的重要环节,其目的是将图像从一个空间域转换到另一个空间域,从而提取图像中的特征信息。

在本实验中,我们使用了小波变换和主成分分析两种常见的图像变换方法。

ENVI遥感图像配准实验报告

ENVI遥感图像配准实验报告

ENVI遥感图像配准一、实验目的:1、掌握ENVI软件的基本操作和对图像进行基本处理,包括打开图像,保存图像。

2、初步了解图像配准的基本流程及采用不同校准及采样方法生成匹配影像的特点。

3、深刻理解和巩固基本理论知识,掌握基本技能和动手操作能力,提高综合分析问题的能力。

二、实验原理(1)最邻近法最邻近法是将最邻近的像元值赋予新像元。

该方法优点是输出图像仍然保持原来图像的像元值,简单,处理速度快。

缺点就是会产生半个像元位置偏移,可能造成输出图像中某些地物的不连贯。

适用于表示分类或某种专题的离散数据,如土地利用,植被类型等。

双线性内插方法是使用临近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。

该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值,在后来的波谱识别分类分析中,会引起一些问题。

示意图:由梯形计算公式:故同理最终得:三次卷积内插法是一种精度较高的方法,通过增加参与计算的邻近像元的数目达到最佳的重采样结果。

使用采样点到周围16邻域像元距离加权计算栅格值,方法与双线性内插相似,先在Y 方向内插四次(或X 方向),再在X 方向(或Y 方向)内插四次,最终得到该像元的栅格值。

该方法会加强栅格的细节表现,但是算法复杂,计算量大,同样会改变原来的栅格值,且有可能会超出输入栅格的值域范围。

适用于航片和遥感影像的重采样。

作为对双线性内插法的改进,即“不仅考虑到四个直接邻点灰度值的影响,还考虑到各邻点间灰度值变化率的影响”,立方卷积法利用了待采样点周围更大邻域内像素的灰度值作三次插值。

其三次多项式表示为:我们可以设需要计算点的灰度值f(x,y)为:其中:计算后可得出:(4)算法比较示意图:三、实验内容:1、熟练使用ENVI软件的基本操作和对图像进行基本处理,包括打开图像,保存图像。

2、初步了解学会图像处理的基本流程。

3、手动选择控制点,对所给的两幅图像bldr_tm.img和bldr_sp.img 进行精确配准。

遥感图像处理实习报告

遥感图像处理实习报告

遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。

为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。

通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。

一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。

二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。

这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。

(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。

通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。

(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。

我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。

(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。

我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。

(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。

通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。

(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。

遥感图像处理实习报告

遥感图像处理实习报告

遥感图像处理实习报告
为了完成本次遥感图像处理实习,我首先学习了遥感图像的基本原理和常见处理方法。

然后,我熟悉了常用的遥感图像处理软件,掌握了遥感图像的预处理、分类和变化检测等基本处理流程。

在实习过程中,我参与了实际的遥感图像处理项目,负责对航拍图像进行预处理和分类。

通过我对图像的分析和处理,最终得到了清晰而准确的分类结果,并成功完成了项目任务。

在实习中,我还学习了遥感图像的变化检测方法,包括基于像元的变化检测和基于目标的变化检测。

通过对多时相遥感图像的处理和分析,我掌握了如何从图像中提取出目标的变化信息,并将其应用于实际的环境监测和资源管理中。

总的来说,这次遥感图像处理实习让我对遥感图像的处理流程和方法有了更深入的了解,也提高了我在图像处理方面的实际操作能力。

通过这次实习,我不仅学到了专业知识,还提高了团队合作能力和解决问题的能力,对我的个人发展有着重要的推动作用。

【报告】遥感图像处理实验报告

【报告】遥感图像处理实验报告

【关键字】报告遥感图像处理实验报告篇一:遥感数字图像处理实验报告设计重庆交通大学遥感数字图像处理实验报告实验课程:数字图像处理实验名称:设计所有遥感数字图像处理的实验班级:实验一:遥感图像合成和显示增强一、目的和要求1. 目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的差异。

2. 要求熟练根据图像中的地物特征进行合成显示、拉伸、图像均衡化等显示增强操作。

理解直方图的含义,能熟练利用直方图进行多波段的图像显示拉伸增强处理。

2、实验内容1. 图像的彩色合成显示2. 图像的基本拉伸方法3. 图像均衡化方法4. 图像规定化三、实验步骤四、实验体会实验二:遥感图像的几何精纠正一、目的和要求1.目的使用多项式方法对TM遥感图像进行几何精纠正。

2.要求能熟练根据地图、GPS测点数据或具有投影的图像对遥感图像进行几何精纠正。

能够正确地选择几何纠正中的各种参数。

能够对纠正结果进行评估。

掌握几何精纠正的基本方法和操作要点。

能够自定义地图投影并进行图像的投影转换。

2、实验内容1. 对TM图像进行几何精纠正。

2. 自定义地图投影。

3. 转换图像的投影。

三、实验步骤四、实验体会实验三:图像变换一、目的和要求1.目的掌握图像变换的基本操作方法,对比变换前后图像差异,理解不同变换方法之间的区别。

2.要求能够根据图像的特征设定傅里叶变换的滤波器,消除图像中的条纹。

能够解释主成分变换后的图像,利用主成分变换消除图像中的噪声。

能够利用KT变换结果进行图像合成、解释地物信息。

熟练利用代数运算产生不同的波段组合。

利用彩色变换进行图像的合成和融合。

能够解释变换后的图像,并根据工作目的选择合适的图像变换方法。

2、实验内容1. SPOT图像的傅里叶变换。

2. TM图像的主成分变换。

3. TM图像的代数变换。

4. ETM 图像的彩色变换。

三、实验步骤四、实验体会篇二:遥感图像处理实验报告格式遥感图像处理班级:学号:姓名:指导教师:实验报告目录一、实验目的 (3)2、实验时间 (3)三、实验地点 (3)四、实验内容 (3)1.图像j50e023013和j50e024013的校正 (3)2.校正后图像的裁剪 (3)3.图像裁剪后的拼接 (5)4.图像pinjie校正spot图像 (7)5.校正后的spot图像校正图像etm+ (10)6.校正后图像的融合 (12)7.融合图像的分类 (13)五、实验体会 (14)一、实验目的:(1)了解遥感软件的基本结构,并能熟练地运用该软件处理遥感数据。

遥感图像处理实验报告_图像配准

遥感图像处理实验报告_图像配准

遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的掌握ENVI的图像配准与几何校正工具使用方法。

二:实验内容通过ENVI的图像配准与几何校正工具,将两副同一地区不同传感器的图像进行配准。

手动选择GCPs,输出配准后的图像和GCPs的误差信息。

三:实验平台Windows XP Professional SP3ENVI4.5四:实验步骤1:启动ENVI4.5,选择File->Open Image File,打开文件westconcordaerial.png2:在Available Bands List对话框中,选择Load RGB,打开westconcordaerial.png的三个显示窗口3:在Available Bands List对话框中,选择New Display,重复步骤1-2;打开westconcordorthophoto.png的三个显示窗口4:在ENVI4.5工具栏中,选择Map->Registration->Select GCPs: Image to Image5:在弹出的Image to Image Registration对话框中,在Base Image列表中,选定Display #1作为参考影像,在Warp Image列表中,选定Display #2作为待纠正影像6:点击OK按钮,弹出Ground Control Points Selection对话框7:在参考影像与待纠正影像的Zoom显示窗口,分别将十字丝待定至对应的特征地物点作为控制点(GCP),然后在Ground Control Points Selection对话框中按下Add Point 按钮。

重复上述操作,添加足够多的控制点。

8:在Ground Control Points Selection对话框中,点击Show List按钮,可弹出Image to Image GCP list对话框,列出了在步骤7中选定的GCP列表及相应的误差信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lab3 geometric correction and projection transformation of remotely sensed data
Objective :
The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments.
实验过程:
一、envi中图像配准
1、根据控制点的坐标对图像进行配准
1)加载中山陵地形图
2) 选择map 菜单下的registration菜单,选择select gcps:image to map
设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—84
3)开始配准
依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:
点击add point,完成对控制点的编辑
4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像
修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存
2、图像到图像的配准
1)加载全色波段影像作为待配准的影像
将配准好的地形图作为基准图,全色影像作为要配准的图像
在两幅图像上选择5个同名地物点进行配准
点击show list 查看误差,不断调整误差直至所有误差在1以内
二、erdas中的配准
1、打开erdas,将zsl.tiff格式的数据导为erdas.img
2、viewer中打开刚刚保存的图像,选择data preparation中的配准image geometric correction
点击select viewer,点击下图层,选择polynomial多项式模型
点击ok,修改投影
Set projection from GCP tool,选择手动输入“keyboard”
将4个图廓点的坐标输入表格
display,保存图像,并加载,对配准后的图像进行投影修改
3、图到图的配准
以刚刚配准好的地形图为基准,加载多光谱图像
选择data preparation中的配准image geometric correction
选择地形图作为基准面,多光谱图像为待配准影像
将相同点的坐标输入表格,并调整误差
4、图像裁剪
创建感兴趣区域,AOI下Tools
创建一个任意形状的区域后,双击保存区域。

选择dataprep----subset image
Viewer中加载保存的图像。

相关文档
最新文档