年产合成氨30万吨
年产30万吨合成氨工艺设计
年产30万吨合成氨工艺设计作者姓名000专业应用化工技术11-2班指导教师姓名000专业技术职务副教授(讲师)目录摘要 (4)第一章合成氨工业概述 (5)1.1氨的性质、用途及重要性 (5)1.1.1氨的性质 (5)1.1.2 氨的用途及在国民生产中的作用 (6)1.2 合成氨工业概况 (6)1.2.1发展趋势 (6)1.2.2我国合成氨工业发展概况 (7)1.2.3世界合成氨技术的发展 (9)1.3合成氨生产工艺 (11)1.3.1合成氨的典型工艺流程 (11)1.4设计方案确定 (13)1.4.1原料的选择 (13)1.4.2 工艺流程的选择 (14)1.4.3 工艺参数的确定 (14)第二章设计工艺计算2.1 转化段物料衡算 (15)2.1.1 一段转化炉的物料衡算 (16)2.2 转化段热量衡算 (24)2.2.1 一段炉辐射段热量衡算 (24)2.2.2 二段炉的热量衡算 (32)2.2.3 换热器101-C、102-C的热量衡算 (34)2.3 变换段的衡算 (35)2.3.1 高温变换炉的衡算 (35)2.3.2 低温变换炉的衡算 (38)2.4 换热器103-C及换热器104-C的热负荷计算 (41)2.4.1 换热器103-C热负荷 (41)2.4.2 换热器104-C热负荷 (42)2.5 设备工艺计算 (42)2.6 带控制点的工艺流程图及主要设备图 (46)2.7 生产质量控制 (46)2.8 三废处理 (47)摘要氨是重要的基础化工产品之一,在国民经济中占有重要地位。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
本设计是以天然气为原料年产三十万吨合成氨的设计。
近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流,技术改进主要方向是开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等方面上。
贵州某年产30万吨甲醇及合成氨项目施工组织设计
第一章总则1.1编制说明本施工组织设计主要依据**煤化工一期工程合成氨、甲醇装置建筑工程的设计图纸、经考察了解到的现场情况、业主及设计单位的有关意向和要求、现行建筑施工规范、施工手册、本企业施工过的类似工程的经验以及企业技术经济情况而编制。
1.1.1**煤化工一期工程合成氨、甲醇装置建筑工程由贵州**化工有限责任公司在贵州省**县***兴建。
1.1.2本施工组织设计的内容严格按照招标文件中对技术标的要求编制,全篇由十三部分组成,主要论述了施工总体策划部署及各分部、分项工程的施工组织、施工布置、施工方法和措施等。
1.1.3本施工组织设计在实施过程中,还将视工程的具体情况,对一些重点部位和特殊工序编制详细的施工方案和作业指导书。
1.1.4 编制单位:1.1.5 编制日期:2009年2月1.2编制目的本施工组织设计是为**煤化工一期工程合成氨、甲醇装置建筑工程施工而编制的。
编制的指导思想是:编制时为业主着想,施工时对业主负责,竣工时让业主满意,同时在经济上合理,技术上可靠的前提下,保质、保量、保工期。
1.3 编制原则本施工组织设计是指导本工程施工过程中各项生产活动的技术、经济综合性文件。
1.4编制依据1.4.1**科技股份有限公司编制的《**煤化工一期工程合成氨、甲醇装置建筑工程施工招标文件》(DWG.NO.200702-C-02-002);1.4.2由“**科技股份有限公司”设计的本工程施工图纸;1.4.3国家及贵州省相关工程建设政策、法规;1.4.4我公司类似工程的施工管理经验和技术装备状况;1.4.5我司对本工程建设地区水文地质、地理、气候条件及地下构筑物的调查了解及对遵义地区、贵州省对施工单位有关的规定和要求;1.4.6国家及行业、地方规范、标准:规范、标准、文件一览表1.4.7本企业有关施工标准和方法及作业指导书等我司已通过ISO9002质量体系及ISO14001环保体系的认证,本工程主体结构、装饰装修、设备基础及坑池、厂区总图等各分部工程施工全过程将全面按照我公司编制的质量、环境整合型程序文件中的规定运作。
年产30万吨合成氨工艺设计
合成氨是一种重要的工业原料,广泛应用于农业、化工、医药等领域。
为了满足市场需求,设计一套年产30万吨合成氨的工艺流程是非常必要的。
以下是一个关于年产30万吨合成氨工艺设计的详细描述。
1.原料合成氨的主要原料是氢气和氮气。
在设计工艺流程时,需要考虑原料的纯度和供应。
可以选用化工厂附近的气体供应公司作为原料供应商,以确保原料的质量和稳定性。
2.反应器反应器是合成氨工艺中最关键的设备之一、合成氨的主要反应是哈贡斯法,即通过高温和高压下将氮气和氢气反应生成氨气。
反应器的设计需要考虑反应温度、压力、催化剂的选择和载体的设计等因素。
3.冷凝器由于反应生成的氨气含有大量热能,需要通过冷却过程将其转化为液态。
冷凝器的设计需要考虑冷却剂的选择、冷却剂的流量和温度等因素,以确保氨气能够高效地冷凝成液体。
4.吸收器合成氨工艺中经常使用吸收器来去除氨气中的杂质,如二氧化碳等。
吸收器的设计需要考虑吸收剂的选择、吸收剂的流量和浓度等因素,以确保氨气的纯度符合要求。
5.除尘器合成氨工艺中会产生一些固体颗粒,需要通过除尘器去除。
除尘器的设计需要考虑除尘剂的选择、过滤面积和过滤速度等因素,以确保固体颗粒能够有效地被去除。
6.控制系统合成氨工艺中,需要精确控制反应温度、压力、物料流量等参数。
设计一个可靠的自动控制系统,能够对这些参数进行监控和调节,以确保工艺的稳定性和安全性。
7.能耗优化在工艺设计中,需要考虑能耗的优化,以减少生产成本和环境影响。
可以采用节能设备、优化工艺流程和回收废热等措施,减少能源的消耗。
8.安全设计合成氨是一种具有较高毒性和易燃性的化学物质,因此在工艺设计中需要重视安全性。
需要设计安全设施,如泄漏报警系统、防爆设备等,并制定严格的操作规程和应急预案,以确保工艺的安全进行。
以上是关于年产30万吨合成氨工艺设计的一个大致描述。
根据具体的实际情况和要求,还需要进行更为详细的工艺设计和设备选择。
工艺设计的关键是在保证产品质量和生产效益的基础上,实现能源节约和环境友好。
年产30万吨合成氨工艺设计
年产30万吨合成氨⼯艺设计年产30万吨合成氨⼯艺设计作者姓名000专业应⽤化⼯技术11-2班指导教师姓名000专业技术职务副教授(讲师)⽬录摘要 (4)第⼀章合成氨⼯业概述 (5)1.1氨的性质、⽤途及重要性 (5)1.1.1氨的性质 (5)1.1.2 氨的⽤途及在国民⽣产中的作⽤ (6)1.2 合成氨⼯业概况 (6)1.2.1发展趋势 (6)1.2.2我国合成氨⼯业发展概况 (7)1.2.3世界合成氨技术的发展 (9)1.3合成氨⽣产⼯艺 (11)1.3.1合成氨的典型⼯艺流程 (11)1.4设计⽅案确定 (13)1.4.1原料的选择 (13)1.4.2 ⼯艺流程的选择 (14)1.4.3 ⼯艺参数的确定 (14)第⼆章设计⼯艺计算2.1 转化段物料衡算 (15)2.1.1 ⼀段转化炉的物料衡算 (16)2.2 转化段热量衡算 (24)2.2.1 ⼀段炉辐射段热量衡算 (24)2.2.2 ⼆段炉的热量衡算 (32)2.2.3 换热器101-C、102-C的热量衡算 (34)2.3 变换段的衡算 (35)2.3.1 ⾼温变换炉的衡算 (35)2.3.2 低温变换炉的衡算 (38)2.4 换热器103-C及换热器104-C的热负荷计算 (41)2.4.1 换热器103-C热负荷 (41)2.4.2 换热器104-C热负荷 (42)2.5 设备⼯艺计算 (42)2.6 带控制点的⼯艺流程图及主要设备图 (46)2.7 ⽣产质量控制 (46)2.8 三废处理 (47)摘要氨是重要的基础化⼯产品之⼀,在国民经济中占有重要地位。
合成氨⽣产经过多年的发展,现已发展成为⼀种成熟的化⼯⽣产⼯艺。
本设计是以天然⽓为原料年产三⼗万吨合成氨的设计。
近年来合成氨⼯业发展很快,⼤型化、低能耗、清洁⽣产均是合成氨设备发展的主流,技术改进主要⽅向是开发性能更好的催化剂、降低氨合成压⼒、开发新的原料⽓净化⽅法、降低燃料消耗、回收和合理利⽤低位热能等⽅⾯上。
年产30万吨合成氨合成工段-物料衡算部分
年产30万吨合成氨合成工段设计物料衡算部分1 总论氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。
氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。
世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。
根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发[1]。
(1) 大型化、集成化、自动化, 形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。
以Uhde公司的“双压法氨合成工艺”和Kellogg 公司的“基于钌基催化剂KAAP 工艺”,将会在氨合成工艺的大型化方面发挥重要的作用。
氨合成工艺单元主要以增加氨合成转化率(提高氨净值) ,降低合成压力、减小合成回路压降、合理利用能量为主,开发气体分布更加均匀、阻力更小、结构更加合理的合成塔及其内件; 开发低压、高活性合成催化剂, 实现“等压合成”。
(2) 以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和再加工”为核心的产品结构调整,是合成氨装置“改善经济性、增强竞争力”的有效途径。
实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。
生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善。
提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。
年产30万吨合成氨工艺设计
年产30万吨合成氨工艺设计1. 引言合成氨是一种重要的化工原料,广泛应用于肥料、塑料、药品、染料等工业领域。
年产30万吨合成氨工艺设计即是针对每年生产30万吨合成氨的工艺进行设计。
本文将从原料准备、反应装置、分离装置和能源供应等方面进行详细介绍,以实现合成氨工艺的高效、稳定和可持续生产。
2. 原料准备合成氨的主要原料是氢气和氮气。
氢气可以通过蒸汽重整或煤气化产生,氮气则通常采购自外部供应商。
原料的准备过程包括氢气的制备和氮气的供应。
2.1 氢气制备氢气制备可以通过蒸汽重整法或煤气化法实现。
蒸汽重整法将天然气或液化石油气与蒸汽在热催化剂的作用下进行反应,生成氢气和一氧化碳。
煤气化法则将煤或其他含碳物质与氧气反应,生成合成气,再经过变换反应生成氢气。
2.2 氮气供应为保证合成氨工艺的稳定运行,需要从外部供应商采购足够的氮气。
氮气的供应应符合相关的质量标准,并与氢气进行充分的混合准备。
3. 反应装置合成氨的工艺主要是通过氢气和氮气的合成反应实现的。
合成反应需要在适当的温度和压力下进行,并且通常采用催化剂进行催化。
3.1 反应温度合成氨反应的温度通常在350到550摄氏度之间。
温度过高会导致催化剂烧结和氨的副反应增加,温度过低则会导致反应速率过慢。
因此,需要通过优化反应温度,以提高合成氨工艺的效率和产量。
3.2 反应压力合成氨反应通常在100到300兆帕之间的高压下进行。
增加压力可以提高氢气和氮气的折合摩尔浓度,促进反应的进行,但同时也会增加设备的压力对设备材料的要求。
因此,需要综合考虑反应速率、设备成本和安全性等因素,确定适宜的反应压力。
3.3 催化剂选择合成氨反应通常采用铁-铑催化剂。
铁对氮气的吸附和解离具有较好的催化作用,而铑可以提高催化剂的活性和稳定性。
催化剂的选择和优化是合成氨工艺设计中的关键问题,需要综合考虑催化剂的催化效率、稳定性和成本等因素。
4. 分离装置合成氨反应产生的混合物中含有大量的氨、氮气、氢气等挥发性成分,需要通过分离装置对这些成分进行分离和回收。
(完整版)年产30万吨合成氨原料气脱碳工段工艺设计毕业论文
本科毕业设计年产30万吨合成氨原料气脱碳工段工艺设计Decarbonization Process design on synthetic ammonia目录摘要 ............................................................................................................................................................ Abstract ........................................................................................................................ 错误!未定义书引言 ............................................................................................................................................................第一章总论 ....................................................................................................................................1.1 概述..........................................................................................................................1.1.1 氨的性质...................................................................................................................1.1.2 氨的用途及在化工生产中的地位 ..........................................................................1.2 合成氨的发展历史......................................................................................................1.2.1 氨气的发现...............................................................................................................1.2.2 合成氨的发现及其发展 ..........................................................................................1.2.3 世界合成氨工业发展 ..............................................................................................1.3 文献综述......................................................................................................................1.3.1合成氨脱碳................................................................................................................1.3.2合成氨脱碳的方法概述 ...........................................................................................1.4 设计的依据..................................................................................................................第二章流程方案的确定 ...............................................................................................................2.1各脱碳方法对比...........................................................................................................2.1.1化学吸收法................................................................................................................2.1.2物理吸收法................................................................................................................2.1.3物理化学吸收法........................................................................................................2.2碳酸丙烯酯(PC)法脱碳工艺基本原理 .................................................................2.2.1 PC法脱碳技术国内外现状 .....................................................................................2.2.2发展过程....................................................................................................................2.2.3技术经济....................................................................................................................第三章生产流程的简述 ...............................................................................................................3.1 气体流程......................................................................................................................3.1.1 原料气流程...............................................................................................................3.1.2 解吸气体回收流程...................................................................................................3.2液体流程.......................................................................................................................3.2.1 碳酸丙烯酯脱碳流程简述 ......................................................................................3.2.2 稀液流程循环...........................................................................................................3.3存在的问题及解决的办法 ..........................................................................................3.3.1综合分析PC法脱碳存在的主要问题有 ................................................................3.3.2解决办法....................................................................................................................第四章物料衡算和热量衡算 ....................................................................................................4.1工艺参数及指标...........................................................................................................4.1.1计算依据CO2在PC中的溶解度关系 ...................................................................4.1.2 PC的密度与温度的关系 .........................................................................................4.1.3 PC的蒸汽压 .............................................................................................................4.1.4 PC的黏度 .................................................................................................................4.2物料衡算.......................................................................................................................4.2.1各组分在PC中的溶解量 ........................................................................................4.2.2溶剂夹带量................................................................................................................4.2.3溶液带出的气量........................................................................................................4.2.4出脱碳塔净化气量....................................................................................................4.2.6 入塔液中CO2夹带量..............................................................................................4.2.7 带出气体的质量流量 ..............................................................................................4.2.8 验算吸收液中净化气中CO2的含量 .....................................................................4.2.9出塔气的组成............................................................................................................4.3热量衡算.......................................................................................................................第五章吸收塔的结构设计..........................................................................................................5.1确定吸收塔塔径及相关参数 ......................................................................................5.1.1基础数据....................................................................................................................5.1.2求取塔径....................................................................................................................5.1.3核算数据....................................................................................................................5.1.4填料层高度的计算....................................................................................................5.1.5 气相总传质单元高度 ..............................................................................................5.1.6塔附属高度................................................................................................................第六章塔零部件和辅助设备的设计与选取.....................................................................6.1 吸收塔零部件的选取..................................................................................................6.1.1筒体、封头等部件的尺寸选取 ...............................................................................6.1.2防涡流挡板的选取....................................................................................................6.1.3液体初始分布器........................................................................................................6.1.4 液体再分布器...........................................................................................................6.1.5 填料支撑装置...........................................................................................................6.1.6接管管径的确定........................................................................................................6.2 解吸塔的选取..............................................................................................................6.3贮槽的选择...................................................................................................................结论..........................................................................................................................................................致谢.......................................................................................................................... 错误!未定义书参考文献 ...............................................................................................................................................年产30万吨合成氨原料气脱碳工段工艺设计摘要:本设计为年产30万吨合成氨原料气脱碳工段工艺设计,是由指导老师指定的产量和生产规模,结合生产实习中收集的各类生产技术指标以及参考文献所提供的数据为依据而设计的。
年产30万吨合成氨脱碳工段工艺设计
合成氨脱碳工段工艺设计的目标是实现年产量为30万吨的合成氨的脱碳处理。
脱碳是通过去除氨气中的二氧化碳来净化合成氨的过程。
以下是关于合成氨脱碳工段工艺设计的详细说明。
1.工艺概述:合成氨脱碳工段的主要目标是将合成氨中的二氧化碳浓度降低到规定水平以下,以满足产品质量要求。
脱碳过程采用吸收法,通过将合成氨与吸收剂接触来去除二氧化碳。
脱碳过程是在一套多级吸收装置中进行的。
2.设备选择:在设计合成氨脱碳工段时,需选择合适的吸收装置和相应的吸收剂。
常见的吸收装置包括板式吸收器、填料吸收塔或喷雾吸收器。
在选择吸收剂时,应考虑其吸收效率和再利用性。
3.工艺流程:合成氨脱碳工段的主要流程包括氨气进料、吸收装置、二氧化碳排出以及废气处理。
具体流程如下:-氨气进料:合成氨从合成氨工段进入脱碳工段,浓度约为60-80%。
-吸收装置:合成氨与吸收剂接触,吸收剂可以是各种吸收液,如碱性溶液。
吸收装置分为多个级别,通过多级吸收可以提高脱碳效率。
-二氧化碳排出:将富二氧化碳的吸收液与空气进行反应,将二氧化碳释放出来。
常见的方法是通过加热、压缩或换热来实现。
-废气处理:二氧化碳排出后的废气需要进行处理,通常采用气体净化设备来去除废气中的污染物。
4.工艺参数:合成氨脱碳工段的工艺参数包括吸收剂浓度、吸收剂流量、吸收剂-氨气接触时间和温度等。
这些参数的选择会影响脱碳效率和能耗。
-吸收剂浓度:一般选择适当浓度的吸收液,以实现高效的气液接触。
-吸收剂流量:流量的选择需要考虑吸收装置的吸收能力和分离效果。
-吸收剂-氨气接触时间:合理的接触时间可以提高脱碳效果。
-温度:适当的温度可以促进脱碳反应的进行。
5.安全措施:在合成氨脱碳工艺设计过程中,需考虑操作安全及环境保护。
其中包括废气处理设备的选择和设计,以及设备的安全运行控制系统。
综上所述,合成氨脱碳工段工艺设计应包括吸收装置和吸收剂的选择,合理的工艺流程和参数设定,以及必要的安全措施。
只有通过完善的工艺设计和操作管理,才能实现30万吨合成氨的脱碳处理。
山西金象煤化工有限责任公司试生产报告
山西金象煤化工有限责任公司年产18万吨合成氨30万吨尿素项目试生产方案二○一一年八月二十六日目录目录一、方案编制目的----------------------------------- -1-二、工程概况--------------------------------------- -1-三、工程进展--------------------------------------- -3-四、生产准备工作----------------------------------- -4-五、试生产中可能出现的安全问题--------------------- -6-六、采取的安全对策措施---------------------------- -17-七、机械试车-------------------------------------- -23-八、投料试车-------------------------------------- -23-九、生产调度程序---------------------------------- -39-十、安全、环保、消防------------------------------ -51- 十一、事故的应急救援------------------------------ -55- 十二、试生产组织与时间---------------------------- -55-山西金象煤化工有限责任公司年产18万吨合成氨30万吨尿素项目试生产方案一、方案编制目的为了组织协调生产线各装置之间包括上下游装置之间,主要生产装置和公用工程装置之间的相互配合关系,验证工艺设计可行性,设备的可靠性,安全设施的有效性,保证化工装置顺利开车和安全、稳定、持续运转,实现合理工期,达到设计规定的各项技术经济指标和安全标准,特制定本试车方案。
二、工程概况山西金象煤化工有限责任公司年产18万吨合成氨30万吨尿素项目位于晋城市北留周村工业园区,工程项目占地面积207856平方米,总投资12.1亿元,预计产值74500万元以上,利税14412万元以上。
年产30万吨合成氨合成工段工艺设计
年产30万吨合成氨合成工段工艺设计年产30万吨合成氨合成工段工艺设计目录摘要 (I)Abstract (II)引言 (1)第一章合成氨综述 (2)1.1 氨的用途 (2)1.2 氨的性质 (2)1.2.1 氨的物理性质 (2)1.2.2 氨的化学性质 (2)1.3 合成氨的生产方法 (3)1.4 合成工艺条件的选择 (4)1.4.1操作压力 (4)1.4.2 反应温度 (4)1.4.3空速 (4)1.4.4合成塔进口气体组成 (4)1.5 合成氨工业的发展 (5)第二章合成工段工艺简介 (6)2.1 合成工段工艺流程简述 (6)2.2 工艺流程方框简图 (6)2.3 设备简述 (7)2.3.1 氨合成塔 (7)2.3.2 热交换器与废热锅炉 (7)2.3.3 冷交换器 (7)2.3.4 氨冷器 (7)第三章工艺设计计算 (8)3.1 设计要求 (8)3.2 工艺流程图 (8)3.3 物料计算 (8)3.3.1合成塔入口气体组分 (8)3.3.2 合成塔出口气体组分 (9)3.3.3 合成率 (9)3.3.4 氨分离器气液平衡计算 (9)3.3.5 冷交换器气液平衡计算 (11)3.3.6 液氨储槽气液平衡计算 (12)3.3.7 液氨储槽物料计算 (15)3.3.8 合成系统物料计算 (16)3.3.9 合成塔物料计算 (17)3.3.10 水冷器物料计算 (18)3.3.11 氨分离器物料计算 (19)3.3.12 冷交换器物料计算 (19)3.3.13 氨冷器的物料计算 (21)3.3.14 冷交换器物料计算 (23)3.3.15 液氨贮槽物料计算 (25)3.4 热量衡算 (27)3.4.1 冷交换器热量计算 (27)3.4.2 氨冷凝器热量计算 (30)3.4.3 循环机热量计算 (32)3.4.4 合成塔热量衡算 (33)3.4.5 废热锅炉热量计算: (35)3.4.6 热交换器热量计算 (36)3.4.7 水冷器热量衡算: (37)3.4.8 氨分离器热量衡算: (38)第四章设备的选型与计算 (40)4.1 设备选型 (40)4.1.1 设备简述 (40)4.1.2 流程说明 (40)4.2 合成塔设计 (40)4.2.1 合成塔筒体设计 (40)4.2.2 催化剂层设计 (41)4.2.3 下换热器 (47)4.2.4 层间换热器 (48)4.3 辅助设备选型 (49)4.3.1 废热锅炉 (49)4.3.2 热交换器 (49)4.3.3 水冷器 (49)4.3.4 冷交换器 (49)4.3.5 氨冷器I (49)4.3.6 氨冷器II (50)结论 (51)致谢 (52)参考文献 (53)附录 (54)年产30万吨合成氨合成工段工艺设计摘要:氨是一种重要的化工产品,在国民经济中有重要的作用。
30万吨合成氨项目建议书
30万吨合成氨联产尿素项目建议书湖滨区大项目办公室2006年9月27日1总论一、工艺技术状况来自厂内的焦炉煤气,压力300mmH2O柱,温度35℃,进入罗茨鼓风机,加压后依次进入两台串联的脱硫塔内与自上而下的与PDS脱硫液逆流接触,吸收气体中的H2S及部分有机硫,出塔后经气液分离器分离液体后,至焦炉气压缩工序。
吸收了H2S及部分在同硫的脱硫液进入循环槽与溶液槽反应救分钟后,由半贫液泵或富液泵打至再生液混合器,经再生喷射器与自吸空气混合,进行强化氧化反应,然后进入喷射再生槽,这硫泡沫及溶液从喷射再生槽迅速返上,在再生槽顶部,浮选出的硫泡沫自流入硫泡沫混和槽,再由空压罐压送至硫泡沫高位槽,用蒸汽加热至85℃左右,自流入熔硫釜,继续用蒸汽加热至95℃左右,不断排出清液,待浓度达到45%左右时,加热至135℃熔融后放入硫磺冷却盘,自然冷却后得副产品硫磺。
从再生槽分离出来的清液经液位调节器进入贫液槽,经贫液泵加压至0.5MPa后,分两股进入脱硫塔。
脱硫过程中所消耗的碱,以及需要补充的ADA、偏钒酸钠、PDS等试剂,均在溶液制备槽配制成溶液后,用溶液泵送反应槽或事故槽而进入系统。
当循环溶液中的硫氰酸钠及硫代硫酸钠积累到一定程度后,从贫液泵出口抽取部分溶液去回收楼提取硫氰酸钠和硫代硫酸钠。
来自贫液泵后的贫脱硫液,流入回收楼的母液槽,由母液泵定期抽入真空蒸发器用蒸汽加热浓缩,待蒸发结束后通过旋转的溜槽将料液放至真空吸滤器,热过滤除Na2CO3等杂质。
滤渣在滤渣溶解槽中用脱硫溶解后予以回收,滤液至结晶槽用夹套冷却水(冷冻水)冷至5℃左右,加入同质晶种使其结晶,最后在离心机中分离得至粗制Na2S2O3产品。
分离得到Na2S2O3的滤液(或NaCNS/Na2 S2O3>5的脱硫清液)经中间槽用压缩空气压入真空蒸发器,用蒸汽加热浓缩,待蒸发结束后,通过旋转溜槽将料液放至真空吸滤器,进一步除去Na2CO3等杂质。
滤渣同样在溶解槽内溶解后返回脱硫系统。
年产18万吨合成氨、30万吨尿素项目建议书
一、项目概况1、项目名称:年产18万吨合成氨、30万吨尿素项目2、合作方式:独资、合资、合作、贷款等均可3、建设单位:XX煤业有限责任公司及合作单位4、建设性质:新建5、建设范围:内蒙古自治区XX自治旗XX矿区6、建设内容及规模:以XX矿区丰富的褐煤资源为依托,建设年产合成氨18万吨、尿素 30 万吨的项目。
可联产轻质油4752吨/年、煤焦油 14454吨/年,氨水(16%)27720吨/年、粗酚1980吨/年7、建设期限:项目建设期为4年,即2005年4月-2008年9月。
8、投资估算及资金筹措:投资规模:总投资为147215万元,其中建设投资 138703万元,流动资金8512万元。
本项目资金来源可以是贷款、风险投资等。
9、经济评价经济评价一览表二、项目区基本情况1.地理位置XX矿区位于内蒙古自治区呼伦贝尔市XX自治旗境内的东北部,地处大兴安岭西麓。
其地理坐标是东经120°24′~120°38′、北纬49°09′~49°16′。
矿区西连海拉尔区,东接牙克石市,南临巴彦嵯岗苏木,北至海拉尔河,与陈巴尔虎旗隔河相望,南北宽约13.7Km,东西长约46.1Km,总面积385.7Km2。
XX火车站东距牙克石18Km,西距呼伦贝尔市64Km,滨州铁路线由东向西穿过XX矿区,北有301国道,铁路经过牙克石可达齐齐哈尔,哈尔滨乃至全国各地,经海拉尔可达满州里市,民航经海拉尔机场可达北京、呼和浩特等地,交通十分方便。
2.煤炭资源及煤质情况⑴资源情况XX煤业公司拥有XX矿区、扎尼河矿区、伊敏河东区、陈旗巴彦哈达矿区、莫达木吉矿区五大矿区。
煤炭储量丰富,XX矿区精查储量17.3亿吨;扎尼河矿区预计储量15.8亿吨;伊敏河东区普查储量58.4亿吨,其中详查储量6.1亿吨,精查储量2.3亿吨;巴彦哈达区预计储量49.0亿吨;莫达木吉矿区普查储量30.0亿吨。
煤田内煤层集中,赋存稳定,构造较简单,倾角小,沼气含量低,埋藏较深,适宜于井工大型机械集约化连续生产。
万吨合成氨、30万吨尿素
一、市场情况(一)产品用途尿素是一种含氮量最高的中性固体肥料,也是重要的化工原料。
农业用尿素占90%,10%用于工业。
农业上尿素可作单一肥料、复合肥料、混合肥料及微肥使用,也用作饲料添加剂。
在工业上,尿素可生产脲醛树脂、氰尿酸、氯化异氰尿酸、三羟基异氰酸酯、水合肼、盐酸氨基脲、脲烷、氨基磺酸、发泡剂AC、尿囊素等;尿素可制氨基甲酸酯、酰尿、造影显影剂、止痛剂、漱口水、甜味剂等医药品;尿素可生产石油炼制的脱蜡剂;尿素用于生产含脲聚合物,也可作纤维素产品的软化剂;尿素还可以作炸药的稳定剂,选矿的起泡剂,也可用于制革颜料生产。
(二)市场情况2000年到2006年,我国尿素产能从二、产品方案及生产规模(1)合成氨:600吨/日(中间产品),公称能力18万吨/年(2)尿素:1052吨/日,公称能力30万吨/年工厂年运行天数:330天/年、按8000小时三、工艺技术方案原料煤与水在棒磨机湿法研磨,浓度达到61%的水煤浆加压后与高压氧气一起进行部分氧化,生产出含有CO、H2的粗合成气。
合成气送到变换工段,在变换工段,大部分的CO和水蒸汽反应生成H2和CO2,变换气中的CO2和H2S等酸性气体在低温甲醇洗工段中被脱除,得到的净化气送入液氮洗工段精制,并配氮使合成气中的氢氮比达到3:1,精制气进入合成气压缩机,升压至后送入氨合成系统生产合成氨。
低温甲醇洗的CO2部分送往尿素装置,经压缩与液氨合成为尿素。
(一)气化工艺技术简介气化工艺一般分为三种类型:移动床(有时也被称为固定床),流化床和气流床。
1、固定床气化炉是最老的气化炉,它很长时间在煤气化工艺中占主要地位。
固定床煤气技术经历了固定层间歇气化法、富氧连续气化法和鲁奇加压气化法。
固定床气化炉中的氧化剂与煤的流动方向相反,通过由煤变为焦油,再到灰等一系列反应区。
当空气被作为氧化剂时,温度通常不会超过灰熔点,而纯氧气流床气化炉既可以是干灰也可以是熔渣。
由于粗煤气出口温度(400~500℃)相对较低,粗合成气中通常会有液态碳氢化合物。
合成氨发展历程
我国的合成氨工业起步于20世纪30年代。
一个是由著名爱国实业家范旭东先生创办的南京永利化学工业公司铔厂——永利宁厂,现南京化学工业公司的前身;另一个是日本占领东北后在大连开办的满洲化学工业株式会社。
其最高年产量不过50KT。
另外,上海吴蕴初的天原还有一套电解水制氢生产合成氨、硝酸的小型车间(32年吴蕴初访问Du pont购买的一套日产4t液氨的合成氨中试装置)。
整个合成氨生产从业人员约3400人,技术人员150人。
新中国成立以后,经过数十年的努力,己形成了遍及全国的、完整的合成氨工业布局。
我国拥有多种原料、不同流程的大、中、小型合成氨厂1000多个。
1999年我国合成氨产量为34.5Mt,列世界第一。
解放后,我国化学工业的发展是从建设中型氮肥厂开始的。
经历了以下几个阶段:①恢复老厂,建设新厂(新中国成立—— 1956年) 建国之初,在恢复与扩建老厂的同时,从前苏联引进了三套以煤为原料、年产5万吨合成氨配9万吨硝铵装置,创建了吉化、兰州、太原三大化工基地。
②自力更生发展中型氮肥厂(1956年—— 1965年) 56年自行设计、制造了7.5万吨合成氨系统,以川化的创建为标志。
到65年中氮投产了15家。
20世纪60年代随着石油、天然气资源的开采,64年又从英国引进了一套以天然气为原料的10万吨合成氨装置(即泸天化)。
③小氮肥的迅猛发展(1965年——1975年) 为了适应农业发展的迫切需要,58年由著名化工专家侯德榜提出了碳化法合成氨制取碳酸氢铵的新工艺。
在经历了技术关、经济关后,从20世纪60年代开始在全国各地(除西藏外)建设了一大批小型氨厂,鼎盛的1979年时最多达1540座氨厂。
④大型氮肥厂的引进和发展(1975年——至今) 20世纪70年代是世界合成氨工业大发展时期。
由于大型合成氨的优越性,1972年我国作出了引进大型合成氨装置的决定。
73年开始,首批引进了13套年产30万吨大型合成氨成套装置(其中10套为天然气为原料,建在川化、泸天化、云南、贵州等地)。
国电赤峰煤化工项目一期工程年产30万吨合成氨52万吨尿素环评报告
XX煤化工项目一期工程年产30万吨合成氨52万吨尿素环评报告(简本)—中国环境科学研究院二OO八年六月目录前言 (1)第一章总论 (3).第二章工程分析 (4)第三章自然社会环境概况 (13)第四章环境空气质量影响评价 (14)第五章地下水环境影响分析 (14)第六章噪声环境影响评价 (14)第七章固体废物、扬尘及升压站环境影响分析 (14)第八章地表水环境影响分析 (15)第九章环境风险评价 (15)/第十章环保措施及其技术、经济论证 (15)第十一章清洁生产分析 (15)第十二章污染物排放总量控制分析 (16)第十三章环境经济损益分析 (16)第十四章评价结论与建议 (16)^前言化肥是支持农业生产和保证国家粮食安全的在重要物资,由于我国人口众多,人均耕地面积少,土地肥力低,复种指数高,粮食需求大,使得化肥对农作物的贡献率高达%,超出世界水平近20%。
随着我国农业的快速发展,化肥的需求量也在逐年上升,农业部提出2015年我国氮肥需求总量为3131万吨,到2030年将增加到3679万吨。
为了保证化肥的供应,国家已经加强政策干预力度,其中包括对煤炭企业增加化肥生产用煤计划并纳入铁路运输计划。
目前国内中小氮肥企业占氮肥供应量75%以上,但由于规模小,技术设备落后,污染严重等原因,一旦失去国家扶持,绝大多数的中小氮肥企业将难以生存。
国内大型氮肥企业占氮肥供应量不足25%,部分中小型企业如果退出,大型企业将难以填补由此造成的缺口。
另外,国内有三十三套大型合成氨生产装置中只有两套是以煤为原料的,随着天然气和燃油价格的不断上涨,成本也日益增加,不利于长期发展。
根据国家相关产业政策、《国务院关于促进煤炭工业健康发展的若干意见》和《关于加强煤化工项目建设管理,促进产业健康发展的通知》(国家发改委,2006)等文件精神,国家要求煤化工产业的发展要“积极采用先进煤气化技术改造以间歇气化技术为主的化肥行业,减少环境污染,推动产业发展和技术升级”。
年产18万吨合成氨和30万吨尿素项目建议书
年产18万吨合成氨/30万吨尿素项目建议书XX重化工产业基地办公室目录一、概述 (1)二、产品用途及市场预测分析 (2)三、产品方案和生产规模 (5)四、工艺技术方案 (6)五、原辅材料及燃料供应 (13)六、建厂条件和厂址方案 (14)七、公用工程 (17)八、环境保护 (18)九、工厂组织和劳动定员 (19)十、项目实施计划 (20)十一、投资估算 (20)十二、财务评价 (22)一、概述㈠.项目名称年产18万吨合成氨、30万吨尿素项目。
㈡.建设地点XX市XX能源重化工产业基地。
㈢.项目区概况XX市XX能源重化工产业基地位于XX市的中心地带,是以XX自治旗XX矿区为中心,向东辐射到牙克石西部地带,向西辐射到海拉尔东部地带。
核心区XX矿区煤炭资源、水资源、土地资源丰富,交通方便。
牙克石和海拉尔矿产资源丰富,可为高载能产业提供原料保障。
㈣.项目建设的必要性XX市近年来以发展为主题,紧紧抓住国家实施西部大开发、振兴东北老工业基地、电力体制改革等这些难得机遇,以市场为导向,积极推进煤炭产业、煤电转化和煤炭气化及煤化工项目建设。
与此同时XX市委、市政府又做出建设XX能源重化工产业基地的重大决策,以XX矿区为核心打造新型工业化产业集群,为基地实现跨越式发展提供了良好的政策保障。
XX市煤炭资源、水资源和土地资源丰富,交通便利,完全满足项目建设的原料需求。
同时地域广阔,总面积25.3万平方公里,东与黑龙江省接壤,南与兴安盟毗邻,而XX市和兴安盟境内均无合成氨和尿素生产厂家,化肥市场广阔,且邻近的东北三省做为农业大省,目前化肥生产亦不能满足农业生产需要。
另一方面,近年来由于国家对“三农”问题的关注,导致化肥市场供不应求,因此在XX能源重化工产业基地建设合成氨及尿素生产项目不但有较好的经济效益,而且还能满足XX市及相邻地区的化肥市场的需求,有着较好的社会效益。
二、产品用途及市场预测分析㈠.合成氨的用途合成氨工业在国民经济中占有重要的地位是因为合成氨的用途广泛。
乌石化合成氨装置空压机试车方案
乌石化总厂二化肥工程30万吨/年合成氨装置工艺空气压缩机组CI,CGTI试车方案编制:杨建满审批:秦宏亮批准:万佑中标准化员:刘海锌十一化建公司新疆石化工程指挥部1996年8月目录编制说明1、概述2、准备3、各系统主要联锁动作试验4、CGTI单体试动行5、CI-CGTI机组试运行6、安全注意事项7、附录编制说明工艺空气压缩机是乌鲁木齐石化总厂二化肥装置功率较大自动化程度高,操作工艺复杂的一台大型引进离子式压缩机组,作为驱动单元――燃气透平由于利用天然气作动力燃料,易燃易爆,燃烧温度高,因而成为操作过程中预防控制的重点,基于安全试车这一最终目的,特编制目试车方案,但干度复杂的自动控制工艺决定了只能凭木简单的方案是无法满足现场要求的,对于未述及项目与操作规程详见Thomassen international bv及Naovo Pignone说明书和TCM有关资料。
本方案包括如下内容:1、概况2、准备3、各系统主要联锁动作试验4、CGTI单体试动行5、CI-CGTI机组试运行6、安全注意事项7、附录本方案编制依据:Thomassen international bv及Naovo Pignone说明书和TCM流程图HGJ231-91化学工业大、中型装置试车工作规范1、概括工艺空气压缩机组由驱动单元――CGTI和压缩单元-CI组成,前者由荷兰Thomasson公司提供,后者由意大利Pignone公司提供,主要用于工艺布置示意图如下:机组启动运行过程简述如下:(冷态启动)润滑油压建立起来后,棘轮机构运行,使启动离合器齿合,启动透平经暖机后运行,当设备达到20%转速时轴流压缩机建立压力,此时点火系统启动,升温,加速到75%转速时,启动装置脱开关闭,当透平达到操作转速时辅助润滑泵关闭,设备由启动运行状态转为转速控制状态。
在以上操作过程中,所有保安设施同时启动,当发生有关连锁时,设备会自动跳闸停机(也可手动跳闸),同棘轮装置完成车冷却过程。
年产30万吨合成氨原料路线改造(融资投资立项项目可行性研究报告(非常详细)
年产30万吨合成氨原料路线改造(立项投资融资项目可行性研究报告(典型案例〃仅供参考)广州中撰企业投资咨询有限公司地址:中国〃广州目录第一章年产30万吨合成氨原料路线改造(项目概论 (1)一、年产30万吨合成氨原料路线改造(项目名称及承办单位 (1)二、年产30万吨合成氨原料路线改造(项目可行性研究报告委托编制单位 (1)三、可行性研究的目的 (1)四、可行性研究报告编制依据原则和范围 (2)(一)项目可行性报告编制依据 (2)(二)可行性研究报告编制原则 (2)(三)可行性研究报告编制范围 (4)五、研究的主要过程 (5)六、年产30万吨合成氨原料路线改造(产品方案及建设规模 (6)七、年产30万吨合成氨原料路线改造(项目总投资估算 (6)八、工艺技术装备方案的选择 (6)九、项目实施进度建议 (6)十、研究结论 (7)十一、年产30万吨合成氨原料路线改造(项目主要经济技术指标 (9)项目主要经济技术指标一览表 (9)第二章年产30万吨合成氨原料路线改造(产品说明 (15)第三章年产30万吨合成氨原料路线改造(项目市场分析预测 (15)第四章项目选址科学性分析 (15)一、厂址的选择原则 (16)二、厂址选择方案 (16)四、选址用地权属性质类别及占地面积 (17)五、项目用地利用指标 (17)项目占地及建筑工程投资一览表 (18)六、项目选址综合评价 (19)第五章项目建设内容与建设规模 (20)一、建设内容 (20)(一)土建工程 (20)(二)设备购臵 (20)二、建设规模 (21)第六章原辅材料供应及基本生产条件 (21)一、原辅材料供应条件 (21)(一)主要原辅材料供应 (21)(二)原辅材料来源 (21)原辅材料及能源供应情况一览表 (22)二、基本生产条件 (23)第七章工程技术方案 (24)一、工艺技术方案的选用原则 (24)二、工艺技术方案 (25)(一)工艺技术来源及特点 (25)(二)技术保障措施 (25)(三)产品生产工艺流程 (25)年产30万吨合成氨原料路线改造(生产工艺流程示意简图 (26)三、设备的选择 (26)(一)设备配臵原则 (26)(二)设备配臵方案 (27)主要设备投资明细表 (28)第八章环境保护 (28)一、环境保护设计依据 (29)二、污染物的来源 (30)(一)年产30万吨合成氨原料路线改造(项目建设期污染源 (30)(二)年产30万吨合成氨原料路线改造(项目运营期污染源 (31)三、污染物的治理 (31)(一)项目施工期环境影响简要分析及治理措施 (31)1、施工期大气环境影响分析和防治对策 (32)2、施工期水环境影响分析和防治对策 (35)3、施工期固体废弃物环境影响分析和防治对策 (37)4、施工期噪声环境影响分析和防治对策 (38)5、施工建议及要求 (39)施工期间主要污染物产生及预计排放情况一览表 (41)(二)项目营运期环境影响分析及治理措施 (42)1、废水的治理 (42)办公及生活废水处理流程图 (42)生活及办公废水治理效果比较一览表 (43)生活及办公废水治理效果一览表 (43)2、固体废弃物的治理措施及排放分析 (43)3、噪声治理措施及排放分析 (45)主要噪声源治理情况一览表 (46)四、环境保护投资分析 (46)(一)环境保护设施投资 (46)(二)环境效益分析 (47)五、厂区绿化工程 (47)六、清洁生产 (48)七、环境保护结论 (48)施工期主要污染物产生、排放及预期效果一览表 (50)第九章项目节能分析 (51)一、项目建设的节能原则 (51)二、设计依据及用能标准 (51)(一)节能政策依据 (51)(二)国家及省、市节能目标 (52)(三)行业标准、规范、技术规定和技术指导 (53)三、项目节能背景分析 (53)四、项目能源消耗种类和数量分析 (55)(一)主要耗能装臵及能耗种类和数量 (55)1、主要耗能装臵 (55)2、主要能耗种类及数量 (55)项目综合用能测算一览表 (56)(二)单位产品能耗指标测算 (56)单位能耗估算一览表 (57)五、项目用能品种选择的可靠性分析 (58)六、工艺设备节能措施 (58)七、电力节能措施 (59)八、节水措施 (60)九、项目运营期节能原则 (60)十、运营期主要节能措施 (61)十一、能源管理 (62)(一)管理组织和制度 (62)(二)能源计量管理 (62)十二、节能建议及效果分析 (63)(一)节能建议 (63)(二)节能效果分析 (64)第十章组织机构工作制度和劳动定员 (64)一、组织机构 (64)二、工作制度 (64)三、劳动定员 (65)四、人员培训 (66)(一)人员技术水平与要求 (66)(二)培训规划建议 (66)第十一章年产30万吨合成氨原料路线改造(项目投资估算与资金筹措 (67)一、投资估算依据和说明 (67)(一)编制依据 (67)(二)投资费用分析 (69)(三)工程建设投资(固定资产)投资 (69)1、设备投资估算 (69)2、土建投资估算 (69)3、其它费用 (70)4、工程建设投资(固定资产)投资 (70)固定资产投资估算表 (70)5、铺底流动资金估算 (71)铺底流动资金估算一览表 (71)6、年产30万吨合成氨原料路线改造(项目总投资估算 (72)总投资构成分析一览表 (72)二、资金筹措 (73)投资计划与资金筹措表 (73)三、年产30万吨合成氨原料路线改造(项目资金使用计划 (74)资金使用计划与运用表 (74)第十二章经济评价 (75)一、经济评价的依据和范围 (75)二、基础数据与参数选取 (75)三、财务效益与费用估算 (76)(一)销售收入估算 (76)产品销售收入及税金估算一览表 (77)(二)综合总成本估算 (77)综合总成本费用估算表 (78)(三)利润总额估算 (78)(四)所得税及税后利润 (78)(五)项目投资收益率测算 (79)项目综合损益表 (79)四、财务分析 (80)财务现金流量表(全部投资) (82)财务现金流量表(固定投资) (84)五、不确定性分析 (84)盈亏平衡分析表 (85)六、敏感性分析 (86)单因素敏感性分析表 (87)第十三章年产30万吨合成氨原料路线改造(项目综合评价 (87)第一章项目概论一、项目名称及承办单位1、项目名称:年产30万吨合成氨原料路线改造(投资建设项目2、项目建设性质:新建3、项目承办单位:广州中撰企业投资咨询有限公司4、企业类型:有限责任公司5、注册资金:100万元人民币二、项目可行性研究报告委托编制单位1、编制单位:广州中撰企业投资咨询有限公司三、可行性研究的目的本可行性研究报告对该年产30万吨合成氨原料路线改造(项目所涉及的主要问题,例如:资源条件、原辅材料、燃料和动力的供应、交通运输条件、建厂规模、投资规模、生产工艺和设备选型、产品类别、项目节能技术和措施、环境影响评价和劳动卫生保障等,从技术、经济和环境保护等多个方面进行较为详细的调查研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、绪论 (1)、概述 (3)、设计任务的依据 (1)二、装置流程及说明 (2)、生产工艺流程说明 (2)、粗苯洗涤 (4)、粗苯蒸馏 (4)三、吸收工段工艺计算 (7)、物料衡算 (7)、气液平衡曲线 (8)、吸收剂的用量 (9)、塔底吸收液 (10)、操作线 (10)、塔径计算 (10)、填料层高度计算 (13)、填料层压降计算 (16)四、脱苯工段工艺计算 (17)、管式炉 (17)、物料衡算 (18)、热量衡算 (22)五、主要符号说明 (25)六、设计心得 (26)七、参考文献 (27)一、绪论概述氨是重要的化工产品之一,用途很广。
在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。
液氨本身就是一种高效氮素肥料,可以直接施用。
目前,世界上氨产量的85%—90%用于生产各和氮肥。
因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。
合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。
氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。
将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。
生产火箭的推进剂和氧化剂,同样也离不开氨。
此外,氨还是常用的冷嘲热讽冻剂。
合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。
同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。
所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。
在合成氨工业中,脱硫倍受重视。
合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。
其中硫化氢属于无机化合物,常称为“无机硫”。
合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。
①腐蚀设备、管道。
含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。
其腐蚀程度随原料气中S H 2的含量增高而加剧。
②使催化剂中毒、失活。
当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。
包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂等。
脱硫的任务是除去原料气中的各种硫化物,同时硫是一种重要的资源,应加以回收和利用。
因此,无论原料来源如何,合成氨原料必须首先脱硫。
文献综述目前原料气脱硫的方法很多,据统计达四五十种。
随着石油化工的发展,还会开发出新的脱硫方法。
按脱硫剂的物理形态分为干法(脱硫剂为固态)和湿法(脱硫剂为液态)两大类。
干法脱硫又分为吸附法——以活性炭、分子筛为脱硫剂;接触反应法——以氧化锌、氧化铁等为脱硫剂;加氢转化法——以钴钼为催化剂,先将有机硫转化为S H 2,再脱除。
干法脱硫具有郊率高、设备简单、操作简单、维修方便等优点。
但脱硫反应速度慢,脱硫过程是间歇操作,设备庞大;在脱硫剂使用后期,脱硫效率和阻力变大,脱硫剂阻力变大,脱硫剂再行困难。
因此,大型合成厂广泛将此法用于业精细脱硫。
湿法脱硫又分为化学吸收法(按脱硫溶液与S H 2发生的反应,又分为中和法如乙醇胺法和氧化法如ADA 法、氨水催化法等)、物理吸收法(如低温甲醇洗涤法等)和物理化学吸收法(如环丁砜法等)。
湿法脱硫有着明显的优点,即脱硫剂是便于输送的液体、可以再生并能回收硫磺,构成一个连续的脱硫系统。
但此法净化度不高,出口含硫量在20—100 cm 3 / m 3 。
当原料气含硫较高时,宜先采用湿法脱去大量的硫,然后串联干法精脱,以达到工艺上和经济上都合理的要求。
这么多湿式氧化法的脱硫方法,如果对它们之间的优缺点都进行比较,是很困难的。
传统的中型氮肥厂,以前对改良ADA 法和栲胶法用的比较多;对小型氮肥厂,以前对苯二酚法用得较多。
对氮肥厂来说,采用什么方法,它有多种因素决定,有半水煤气硫含量高低的问题,有操作费用的问题,有习惯性的问题,有改造资金的问题等等。
因此即便有一种方法有明显的优势,他也不一定就很快采用。
设计任务的依据表 半水煤气成分组分2N 2CO CO 2H 2O 4CH S H 2 体积/% 年产合成氨30万吨二、流程方案的确定各脱硫方法对比脱硫方法很多,按脱硫剂物理形态可分为干法和湿法两大类,前者所用脱硫剂为固体,后者为溶液。
当含硫气体通过这些脱硫剂时,硫化物被固体脱硫剂所吸附,或被脱硫溶液所吸收而除去。
湿法脱硫主要用于脱除原料气中硫化氢。
根据脱硫溶液吸收过程性质的不同,湿法脱硫又可分为化学吸收法,物理吸收法和物理化学吸收法三种。
化学听收法 在化学吸收法中,脱硫溶液与硫化氢发生了化学反应。
按反应不同,化学吸收法分为中和法和湿式氧化法。
中合法,用弱碱性溶液为吸收济,与原料气中的酸性气体硫化氢进行中和反应,生成硫氢化物而除去。
吸收了硫化氢的溶液,在减压、加热的条件下,使硫氢化物分解放出硫化氢,溶液再生后循环使用。
中和法主要有烷基醇胺法、氨水法和碳酸法等。
湿式氧化法,用弱碱性溶液吸收原料气中的硫化氢,生成硫氢化物,再借助溶液中载氧体(催化剂)的氧化作用,将硫氢化物氧化成元素硫,同时获得副产品硫磺,然后还原载氧体,再被空气氧化成氧化态的载氧体,使脱硫溶液得到再生后循环使用。
根据所用载氧体的不同,湿式氧化法主要有蒽醌二磺酸钠法(简称ADA 法)、氨水对苯二酚催化法、铁氨法、硫酸锰-水杨法、硫酸锰-水杨酸-对苯二酚法(简称MSQ 法)、改良砷碱法和栲胶法等。
与中和法相比,湿式氧化法脱硫的优点是反应速度快,净化度高,能直接回收硫磺。
目前国内中、小氨厂绝大部分采用湿式氧化法脱硫,因此原料气中有机硫含量高时,变换后气体中硫化氢含量增加,需要经过二次脱硫。
物理吸收法是依靠吸收剂对硫化物的物理溶解作用进行脱硫的。
当温度升高、压力降低时,硫化物解吸出来,使吸收剂再生,循环使用。
吸收剂一般为有机溶剂,如甲醇、聚乙二醇二甲醚、碳酸丙烯酯等。
这类方法除了能脱硫化氢外,还能脱除有机硫和二氧化碳。
生产中往往用这些溶剂,同时脱除原料气中的酸性气体硫化物和二氧化碳。
物理化学吸附法用环丁砜的烷基醇的混合溶液,脱除原料气中硫化物的过程,属于物理化学吸收过程,称为环丁砜法。
溶液中的环丁砜是物理吸收剂,烷基醇胺为化学吸收剂。
我国有少数中型氨厂采这种方法脱硫。
干法脱硫是用固体脱硫剂,脱除原料气中硫化物。
优点是既能脱除硫化氢,又能脱除在机硫,净化度高,可将气体中硫化物脱除至1cm3/m3以下。
缺点是再生比较麻烦或者难以再生,回收硫磺比较困难,设备体积较大,有些为间歇操作,一般只作为脱除有机硫和精细脱硫的手段。
在气体中含硫量高的情况下,应先采用湿法除去绝大部分的硫化氢,再采用干法脱除有机硫的残余硫化氢。
常用的干法脱硫有氧化锌法、钴钼加氢法、活性炭法、分子筛法等。
本设计是采用湿法氧化法对水气煤脱硫,主要是采用栲胶脱硫法,栲胶法是我国特有的脱硫技术,是目前国内使用较多的脱硫方法之一。
该法主要有矸性栲胶脱硫(以栲胶和偏钒酸钠作催化剂)和氨法栲胶(以氨代替矸)两种。
栲胶是由植物的果皮、叶和干的水淬液熬制而成。
主要成分是丹宁,由于来源不同,丹宁组分也不同,但都是化学结构十分复杂的多羟基芳香烃化合物组成,具有酚式或醌式结构。
栲胶法有如下优点:(1)栲胶资源丰富,价廉易得,运行费用比改良ADA 低。
(2)基本上无硫堵塔的问题。
(3)栲胶既是氧化剂又是钒的配合剂,溶液的组成比改良ADA法简单。
(4)栲胶脱硫液腐蚀性小。
(5)栲胶需要熟化预处理,栲胶质量及其配制方法得当与否是决定栲胶法使用效果的主要因素。
栲胶脱硫法的理论依据栲胶脱硫是利用碱性栲胶水溶液从气体中脱除硫化氢,属于二元氧化还原过程。
栲胶是有酚式结构的多羟基化合物,是一种良好的载氧体,又能对多种重金属离子起络合作用。
其脱硫反应机理如下:1)碱性溶液吸收S H 2 的反应 :3232NaHCO NaHS S H CO Na +=+O H CO NaHS S H NaHCO 2223++=+2) NaHS 与偏钒酸钠反应生成焦钒酸钠:硫氢化钠与偏钒酸钠反应生成焦钒酸钠,析出单质硫。
2S 4NaOH O V Na 4NaV O 2NaHS 3423++=+3) 将342O V Na 氧化成偏钒酸钠:醌态栲胶氧化四价钒络离子为五价钒络离子使钒络离子恢复活性而醌态栲胶被还原为酚态栲胶失去活性。
332942)(242)(2OH T NaVO NaOH O OH T O V Na +=++4) 还原态栲胶的氧化:酚态栲胶被氧化获得再生,同时生成H 2O 2。
222232)(22)(2O H O OH T O OH T +=+O H NaVO O V Na NaOH O H 23342223422+=++S H NaHS 2H 222++=+NaOH O O此外 ,在生产中还有生成硫代硫酸钠的副反应:32222S Na H NaHS 22O O O +=+2423222SO 2223+=+SO Na O S Na O322222Na H 5NaHS 24H O S O O +=+O H SO Na O S Na NaOH O H 242322225224+=++工艺流程方框图三、生产流程的简述简述物料流程3.1.1气体流程半水煤气从造气车间出来后,经过洗涤塔除尘、降温,水封后,从脱硫塔的底部进入塔内,脱硫液从塔顶喷淋而下,水煤气与碱性栲胶溶液在塔内逆向接触,其中的大部分硫化氢气体被溶液吸收,脱硫后的气体从塔顶出来至气柜。
3.1.2溶液流程从脱硫塔顶喷淋下来的溶液,吸收硫化氢后,称为富液,经脱硫塔液封槽引出至富液槽(又称缓冲槽)。
在富液槽内未被氧化的硫氢化钠被进一步氧化,并析出单质硫,此时,溶液中吸收的硫以单质悬浮状态存在。
出富液槽的溶液用再生泵加压后,打入再生槽顶部,经喷射器高速喷射进入再生槽,同时吸入足够的空气,以达到氧化栲胶和浮选硫膏之目的。
再生后的溶液称为贫液,贫液经液位调节器进入贫液槽,出贫液槽的贫液用脱硫泵打入脱硫塔顶部,经喷头在塔内喷淋,溶液循环使用。
再生槽浮选出的单质硫呈泡沫悬浮于液面上,溢流至硫泡沫槽内,上部清液回贫液槽循环使用,沉淀出的硫膏入熔硫釜生成副产品硫磺。
3.1.3 硫磺回收流程再生槽中溢出的硫泡沫经泡沫槽后在离心机分离,得到硫膏,硫膏放入熔硫釜,用夹套蒸汽加热精制,放出做成98%纯度的硫磺锭,离心分离出的母液至富液槽回系统中使用。