2014年高考试题:理科数学(湖北卷)_中小学教育网

合集下载

2014年湖北省高考数学试卷(理科)答案与解析

2014年湖北省高考数学试卷(理科)答案与解析

2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•湖北)i为虚数单位,()2=()可先计算出的值,再计算平方的值.解:由于(2.(5分)(2014•湖北)若二项式(2x+)7的展开式中的系数是84,则实数a=()2x+的展开式即(+2x,代入得:3.(5分)(2014•湖北)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”4.(5分)(2014•湖北)根据如下样本数据,得到回归方程=bx+a,则()5.(5分)(2014•湖北)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()6.(5分)(2014•湖北)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g (x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,解:对于①:x cos x dx=(﹣对于②:(dx=(()对于③:(7.(5分)(2014•湖北)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为B,面积为,解得(,S=,,8.(5分)(2014•湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()BL=(.9.(5分)(2014•湖北)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()B,cos)×+)=当且仅当,cos ,得,=m,的最大值为10.(5分)(2014•湖北)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x 222,],,],,解得:的取值范围是二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)(2014•湖北)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ=±3.解:∵向量=,||=3|,向量=3+λ)⊥(﹣λ+λ﹣λ12.(5分)(2014•湖北)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等四段弧,则a2+b2=2.)到两条直线的距离相等,且每段弧长都是圆周的=,====13.(5分)(2014•湖北)设a是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=495.三、解答题14.(2014•湖北)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b >0,若经过点(a,f(a)),(b,﹣f(b))的直线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为M f(a,b),例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=x(x>0)时,M f(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可),,,﹣,x=c==,)的直线方程为,x=c=故答案为:的直线方程为=x=c=的调和平均数15.(2014•湖北)如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=4.16.(2014•湖北)已知曲线C1的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).(,求得交点的直角坐标为(,17.(11分)(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?t+(t+,即<t+<﹣(t+≤t+<,故当t+=时,t+=时,即(t+)t+)(t+)<﹣<t+<18.(12分)(2014•湖北)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n 的最小值;若不存在,说明理由.=19.(12分)(2014•湖北)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N 分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.=2,可得===,=2=,则==•±.±20.(12分)(2014•湖北)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?,21.(14分)(2014•湖北)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.的方程为;由方程组,解得.∈或时,直线或时,直线,解得﹣<﹣<或时,直线∈,时,直线22.(14分)(2014•湖北)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.,即,又由(Ⅱ)知,时,,ln<,,π,∴,,,得=,即x=,又ln<,π.①﹣﹣﹣。

【推荐】2014年湖北省高考数学试卷(理科)

【推荐】2014年湖北省高考数学试卷(理科)

2014年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B .C.1 D .C”3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=b+a,则()a>0,b<0 C.a<0,b>0 D.a<0,b<05.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A .B .C .D .9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A . B .C .3D .2 10.(5分)已知函数f ()是定义在R 上的奇函数,当≥0时,f ()=(|﹣a 2|+|﹣2a 2|﹣3a 2),若∀∈R ,f (﹣1)≤f (),则实数a 的取值范围为( )A .[﹣,]B .[﹣,]C .[﹣,]D .[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= .12.(5分)直线l 1:y=+a 和l 2:y=+b 将单位圆C :2+y 2=1分成长度相等的四段弧,则a 2+b 2= .13.(5分)设a 是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a=815,则I (a )=158,D (a )=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b= .三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= .16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D.【分析】利用二项式定理的展开式的通项公式,通过幂指数为﹣3,求出a即可.【解答】解:二项式(2+)7的展开式即(+2)7的展开式中﹣3项的系数为84,==,所以Tr+1令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.3.(5分)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件.故选:C .【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=b+a ,则( )a >0,b <0 C .a <0,b >0 D .a <0,b <0 【分析】通过样本数据表,容易判断回归方程中,b 、a 的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a >0. 故选:B .【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.3【分析】利用新定义,对每组函数求积分,即可得出结论.【解答】解:对于①:[sin•cos]d=(sin)d=﹣cos=0,∴f(),g()为区间[﹣1,1]上的一组正交函数;对于②:(+1)(﹣1)d=(2﹣1)d=()≠0,∴f(),g ()不是区间[﹣1,1]上的一组正交函数;对于③:3d=()=0,∴f(),g()为区间[﹣1,1]上的一组正交函数,∴正交函数有2组,故选:C.【点评】本题考查新定义,考查微积分基本定理的运用,属于基础题.7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.【点评】本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V ≈L 2h ,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr ,∴=(2πr )2h ,∴π=. 故选:B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .B .C .3D .2【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【解答】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2, 即,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2, 即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d 当且仅当时取等号,法2:设椭圆的长半轴为a 1,双曲线的实半轴为a 2,(a 1>a 2),半焦距为c , 由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos =(r 1)2+(r 2)2﹣r 1r 2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设|PF 1|=m ,|PF 2|=n ,则,则a 1+a 2=m ,则=,由正弦定理得=,即=sin(120°﹣θ)≤=故选:A.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.(5分)已知函数f()是定义在R上的奇函数,当≥0时,f()=(|﹣a2|+|﹣2a2|﹣3a2),若∀∈R,f(﹣1)≤f(),则实数a的取值范围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣,]【分析】把≥0时的f()改写成分段函数,求出其最小值,由函数的奇偶性可得<0时的函数的最大值,由对∀∈R,都有f(﹣1)≤f(),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.【解答】解:当≥0时,f()=,由f()=﹣3a2,>2a2,得f()>﹣a2;当a2<≤2a2时,f()=﹣a2;由f()=﹣,0≤≤a2,得f()≥﹣a2.∴当>0时,.∵函数f()为奇函数,∴当<0时,.∵对∀∈R,都有f(﹣1)≤f(),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【点评】本题考查了恒成立问题,考查了函数奇偶性的性质,运用了数学转化思想方法,解答此题的关键是由对∀∈R,都有f(﹣1)≤f()得到不等式2a2﹣(﹣4a2)≤1,是中档题.二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= ±3 .【分析】根据向量垂直与向量坐标之间的关系建立方程关系,即可得到结论.【解答】解:∵向量=(3,3),=(1,﹣1),∴向量||=3,||=,向量•=3﹣3=0,若(+λ)⊥(﹣λ),则(+λ)•(﹣λ)=,即18﹣2λ2=0,则λ2=9,解得λ=±3,故答案为:±3,【点评】本题主要考查向量垂直的坐标公式的应用,比较基础.12.(5分)直线l1:y=+a和l2:y=+b将单位圆C:2+y2=1分成长度相等的四段弧,则a2+b2= 2 .【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b= 495 .【分析】给出一个三位数的a值,实验模拟运行程序,直到满足条件,确定输出的a值,可得答案.【解答】解:由程序框图知:例当a=123,第一次循环a=123,b=321﹣123=198;第二次循环a=198,b=981﹣189=792;第三次循环a=792,b=972﹣279=693;第四次循环a=693,b=963﹣369=594;第五次循环a=594,b=954﹣459=495;第六次循环a=495,b=954﹣459=495,满足条件a=b,跳出循环体,输出b=495.故答案为:495.【点评】本题通过新定义题型考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)【分析】(1)设f()=,(>0),在经过点(a,)、(b,﹣)的直线方程中,令y=0,求得=c=,从而得出结论.(2)设f()=,(>0),在经过点(a,a)、(b,﹣b)的直线方程中,令y=0,求得=c=,从而得出结论.【解答】解:(1)设f()=,(>0),则经过点(a,)、(b,﹣)的直线方程为=,令y=0,求得=c=,∴当f()=,(>0)时,M(a,b)为a,b的几何平均数,f故答案为:.(2)设f()=,(>0),则经过点(a,a)、(b,﹣b)的直线方程为=,令y=0,求得=c=,∴当f()=(>0)时,M(a,b)为a,b的调和平均数,f故答案为:.【点评】本题主要考查新定义,用两点式求直线的方程,属于中档题.15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= 4 .【分析】利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.【解答】解:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.故答案为:4.【点评】本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).【分析】把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.【解答】解:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为2=3y2(≥0,y≥0),即y=(≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为2+y2=4.解方程组,再结合>0、y>0,求得,∴C1与C2交点的直角坐标为(,1),故答案为:(,1).【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两条曲线的交点,属于基础题.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【分析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin(t+),t∈[0,24),利用正弦函数的定义域和值域求得f()的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<﹣,即<t+<,解得t的范围,可得结论.【解答】解:(Ⅰ)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,及t=14时,函数取得最大值为10+2=12,当t+=时,即t=2时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),由10﹣2sin(t+)>11,求得sin(t+)<﹣,即<t+<,解得10<t<18,即在10时到18时,需要降温.【点评】本题主要考查函数y=Asin(ω+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn 为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出Sn 根据Sn>60n+800,解不等式根据不等式的解集判断.【解答】解:(Ⅰ)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ),化简得d 2﹣4d=0,解得d=0或4,当d=0时,a n =2,当d=4时,a n =2+(n ﹣1)•4=4n ﹣2.(Ⅱ)当a n =2时,S n =2n ,显然2n <60n+800,此时不存在正整数n ,使得S n >60n+800成立,当a n =4n ﹣2时,S n ==2n 2,令2n 2>60n+800,即n 2﹣30n ﹣400>0,解得n >40,或n <﹣10(舍去),此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41,综上,当a n =2时,不存在满足题意的正整数n ,当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.∥FP,利用线面平行的【分析】(Ⅰ)建立坐标系,求出=2,可得BC1∥平面EFPQ;判定定理,可以证明直线BC1(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ 与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.【解答】(Ⅰ)证明:以D为原点,射线DA,DC,DD分别为,y,轴的正1(0,2,2),E(2,1,0),F(1,0,半轴,建立坐标系,则B(2,2,0),C10),P(0,0,λ),∴=(﹣2,0,2),=(﹣1,0,λ),=(1,1,0)λ=1时,=(﹣2,0,2),=(﹣1,0,1),∴=2,∥FP,∴BC1∵FP⊂平面EFPQ,BC⊄平面EFPQ,1∥平面EFPQ;∴直线BC1(Ⅱ)设平面EFPQ的一个法向量为=(,y,),则,∴取=(λ,﹣λ,1).同理可得平面MNPQ的一个法向量为=(λ﹣2,2﹣λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.【点评】本题考查直线与平面平行的证明,考查存在性问题,解题时要合理地化空间问题为平面问题,注意向量法的合理运用.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【分析】(1)依题意,p 1=0.2,p 2=0.7,p 3=0.1.由二项分布能求出在未4年中至多有1年的年入流量超过120的概率.(2)记水电站年总利润为Y ,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.【解答】解:(1)依题意,p 1=P (40<<80)==0.2, p 2=P (80≤≤120)==0.7,p 3=P (>120)==0.1.由二项分布得,在未4年中至多有1年的年入流量超过120的概率为 p=(1﹣p3)4+(1﹣p 3)3p 3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y )=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣160=840,因此P (Y=840)=P (40<<80)=p 1=0.2;当≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P (Y=2 000)=P (≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣320=680, 因此P (Y=680)=P (40<<80)=p 1=0.2;当80≤≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P (Y=1840)=P (80≤≤120)=p 2=0.7;当>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(>120)=p3=0.1.由此得Y的分布列如下:×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)【点评】本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【分析】(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M的轨迹C的方程;(Ⅱ)设出直线l的方程为y﹣1=(+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y﹣1=(+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【解答】解:(Ⅰ)设M(,y),依题意得:|MF|=||+1,即,化简得,y2=2||+2.∴点M的轨迹C的方程为;(Ⅱ)在点M 的轨迹C 中,记C 1:y 2=4(≥0),C 2:y=0(<0). 依题意,可设直线l 的方程为y ﹣1=(+2). 由方程组,可得y 2﹣4y+4(2+1)=0.①当=0时,此时y=1,把y=1代入轨迹C 的方程,得.故此时直线l :y=1与轨迹C 恰好有一个公共点(). ②当≠0时,方程y 2﹣4y+4(2+1)=0的判别式为△=﹣16(22+﹣1). 设直线l 与轴的交点为(0,0),则由y ﹣1=(+2),取y=0得. 若,解得<﹣1或>. 即当∈时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点. 若或,解得=﹣1或=或.即当=﹣1或=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当=﹣1或=或时,直线l 与轨迹C 恰好有两个公共点. 若,解得﹣1<<﹣或0<<.即当﹣1<<﹣或0<<时,直线l 与C 1有两个公共点,与C 2有一个公共点.此时直线l 与C 恰有三个公共点.综上,当∈∪{0}时,直线l与C恰有一个公共点;当∪{﹣1,}时,直线l与C恰有两个公共点;当∈时,直线l与轨迹C恰有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.【分析】(Ⅰ)先求函数定义域,然后在定义域内解不等式f′()>0,f′()<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<<e时,.,令=,有ln<,从而2﹣lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;【解答】解:(Ⅰ)函数f()的定义域为(0,+∞),∵f()=,∴f′()=,当f′()>0,即0<<e时,函数f()单调递增;当f′()<0,即>e时,函数f()单调递减.故函数f()的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<<e时,f()<f(e)=,即.在上式中,令=,又,则ln<,从而2﹣lnπ,即得lnπ.①由①得,elnπ>e(2﹣)>2.7×(2﹣)>2.7×(2﹣0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6﹣>6﹣e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.【点评】本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.。

2014年普通高等学校招生全国统一考试湖北卷

2014年普通高等学校招生全国统一考试湖北卷

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D.i3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件4.根据如下样本数据得到的回归方程为a bx y+=ˆ,则( )A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.35511310.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB.16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.。

2014年全国高考理科数学试题及答案-湖北卷

2014年全国高考理科数学试题及答案-湖北卷

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2)11(ii ( ) A.1- B. 1 C. i - D. i 2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D.42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 根据如下样本数据x 3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5. 在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和② 6. 若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37. 由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一。

【精校】2014年普通高等学校招生全国统一考试(湖北卷)数学理

【精校】2014年普通高等学校招生全国统一考试(湖北卷)数学理

2014年普通高等学校招生全国统一考试(湖北卷)数学理一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. i为虚数单位,()2=( )A. -1B. 1C. -iD. i解析:由于,所以()2=(-i)2=-1.答案:A.2.若二项式(2x+)7的展开式中的系数是84,则实数a=( )A. 2B.C. 1D.解析:二项式(2x+)7的展开式即(+2x)7的展开式中x-3项的系数为84,所以T r+1==,令-7+2r=-3,解得r=2,代入得:,解得a=1,答案:C.3.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要条件解析:由题意A⊆C,则C U C⊆C U A,当B⊆∁U C,可得“A∩B=∅”;若“A∩B=∅”能推出存在集合C使得A⊆C,B⊆C U C,∴U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分必要的条件.答案:C.4.根据如下样本数据,得到回归方程=bx+a,则( )A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0解析:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,3.5)附近,所以a>0.答案:B.5.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B. ③和①C. ④和③D. ④和②解析:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,答案:D.6.若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2,其中为区间[-1,1]上的正交函数的组数是( )A. 0B. 1C. 2D. 3解析:对于①:[sin x•cos x]dx=(sinx)dx=cosx=0,∴f(x),g(x)为区间[-1,1]上的一组正交函数;对于②:(x+1)(x-1)dx=(x2-1)dx=()≠0,∴f(x),g(x)不为区间[-1,1]上的一组正交函数;对于③:x3dx=()=0,∴f(x),g(x)为区间[-1,1]上的一组正交函数,∴正交函数有2组,答案:C.7.由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.B.C.D.解析:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,答案:D.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )A.B.C.D.解析:设圆锥底面圆的半径为r,高为h,则L=(2πr)2,∴=(2πr)2h,∴π= .答案:B.9.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.B.C. 3D. 2解析:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,|PF1|+|PF2|=2a,|PF1|-|PF2|=2a1,则|PF1|=a+a1|,|PF2|=a-a1,∵∠F1PF2=,∴由余弦定理可得4c2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos,即4c2=a2+3a12,则4-,即,利用基本不等式可得椭圆和双曲线的离心率的倒数之和的最大值为.答案:B10.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x-a2|+|x-2a2|-3a2),若∀x∈R,f(x-1)≤f(x),则实数a的取值范围为( )A. [-,]B. [-,]C. [-,]D. [-,]解析:当x≥0时,f(x)=,由f(x)=x-3a2,x>2a2,得f(x)>-a2;当a2<x<2a2时,f(x)=-a2;由f(x)=-x,0≤x≤a2,得f(x)≥-a2.∴当x>0时,.∵函数f(x)为奇函数,∴当x<0时,.∵对∀x∈R,都有f(x-1)≤f(x),∴2a2-(-4a2)≤1,解得:.故实数a的取值范围是.答案:B.二、填空题:本大题共3小题,每小题5分,共15分.11.设向量=(3,3),=(1,-1),若(+λ)⊥(-λ),则实数λ=.解析:∵向量=(3,3),=(1,-1),∴向量||=3,||=,向量•=3-3=0,若(+λ)⊥((-λ)),则(+λ)•((-λ)=,即18-2λ2=0,则λ2=9,解得λ=±3,答案:±3,12.直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等四段弧,则a2+b2= . 解析:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,答案:2.13.设a是一个各位数字都不是0且没有重复数字三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b= .解析:由程序框图知:例当a=123,第一次循环a=123,b=321-123=198;第二次循环a=198,b=981-189=792;第三次循环a=792,b=972-279=693;第四次循环a=693,b=963-369=594;第五次循环a=594,b=954-459=495;第六次循环a=495,b=954-459=495,满足条件a=b,跳出循环体,输出b=495.答案:495.三、解答题14.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为M f(a,b),例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b 的算术平均数.(1)当f(x)= (x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)= (x>0)时,M f(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)解析:(1)设f(x)=,(x>0),在经过点(a,)、(b,-)的直线方程中,令y=0,求得x=c=,从而得出结论.(2)设f(x)=x,(x>0),在经过点(a,a)、(b,-b)的直线方程中,令y=0,求得x=c=,从而得出结论.答案:(1)设f(x)=,(x>0),则经过点(a,)、(b,-)的直线方程为=,令y=0,求得x=c=,∴当f(x)=,(x>0)时,M f(a,b)为a,b的几何平均数,(2)设f(x)=x,(x>0),则经过点(a,a)、(b,-b)的直线方程为=,令y=0,求得x=c=,∴当f(x)=x(x>0)时,M f(a,b)为a,b的调和平均数,15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q 作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= .解析:利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.答案:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.解析:把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.答案:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为x2=3y2 (x≥0,y≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为x2+y2=4.解方程组,求得,∴C1与C2交点的直角坐标为(,1),17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?解析:(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10-2sin(t+),t∈[0,24),利用正弦函数的定义域和值域求得f(x)的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<-,即≤t+<,解得t的范围,可得结论.答案:(Ⅰ)∵f(t)=10-=10-2sin(t+),t∈[0,24),∴≤t+<,故当t-=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10-2=8,故实验室这一天的最大温差为12-8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10-2sin(t+),由10-2sin(t+)>11,求得sin(t+)<-,即≤t+<,解得10<t<18,即在10时到18时,需要降温.18.(12分)(已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n 的最小值;若不存在,说明理由.解析:(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出S n根据S n>60n+800,解不等式根据不等式的解集来判断.答案:(Ⅰ)设数列{a n}的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或4,当d=0时,a n=2,当d=4时,a n=2+(n-1)•4=4n-2.(Ⅱ)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立,当a n=4n-2时,S n==2n2,令2n2>60n+800,即n2-30n-400>0,解得n>40,或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41,综上,当a n=2时,不存在满足题意的正整数n,当a n=4n-2时,存在满足题意的正整数n,最小值为4119.(12分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.解析:(Ⅰ)建立坐标系,求出=2,可得BC1∥FP,利用线面平行的判定定理,可以证明直线BC1∥平面EFPQ;(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.答案:(Ⅰ)以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴,建立坐标系,则B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ),∴=(-2,0,2),=(-1,0,λ),=(1,1,0)λ=1时,=(-2,0,2),=(-1,0,1),∴=2,∴BC1∥FP,∵FP⊂平面EFPQ,BC1⊄平面EFPQ,∴直线BC1∥平面EFPQ;(Ⅱ)设平面EFPQ的一个法向量为=(x,y,z),则,∴取=(λ,-λ,1).同理可得平面MNPQ的一个法向量为=(λ-2,2-λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ-2)-λ(2-λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?解析:(Ⅰ)先求出年入流量X的概率,根据二项分布,求出未来4年中,至少有1年的年入流量超过120的概率;(Ⅱ)分三种情况进行讨论,分别求出一台,两台,三台的数学期望,比较即可得到. 答案:(Ⅰ)依题意,p1=P(40<X<80)=,,,由二项分布,未来4年中,至多有1年的年入流量超过120的概率为=(Ⅱ)记水电站的总利润为Y(单位,万元)(1)安装1台发电机的情形,由于水库年入流总量大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000,(2)安装2台发电机的情形,依题意,当 40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=,当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此,P(Y=10000)=P(X≥80)=P2+P3=0.8,由此得Y的分布列如下所以E(Y)=4200×0.2+10000×0.8=8840.(2)安装3台发电机的情形,依题意,当 40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2,当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此,P(Y=9200)=P(80≤X≤120)=p2=0.7,当X>120时,三台发电机运行,此时Y=5000×3=15000,因此,P(Y=15000)=P(X>120)=p3=0.1,由此得Y的分布列如下所以E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.21.(14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析:(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M的轨迹C的方程;(Ⅱ)设出直线l的方程为y-1=k(x+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y-1=k(x+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合x0<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.答案:(Ⅰ)设M(x,y),依题意得:|MF|=|x|+1,即,化简得,y2=2|x|+2x.∴点M的轨迹C的方程为;(Ⅱ)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x<0).依题意,可设直线l的方程为y-1=k(x+2).由方程组,可得ky2-4y+4(2k+1)=0.①当k=0时,此时y=1,把y=1代入轨迹C的方程,得.故此时直线l:y=1与轨迹C恰好有一个公共点().②当k≠0时,方程ky2-4y+4(2k+1)=0的判别式为△=-16(2k2+k-1).设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),取y=0得.若,解得k<-1或k>.即当k∈时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或,解得k=-1或k=或.即当k=-1或k=时,直线l与C1只有一个公共点,与C2有一个公共点.当时,直线l与C1有两个公共点,与C2无公共点.故当k=-1或k=或时,直线l与轨迹C恰好有两个公共点.若,解得-1<k<-或0<k<.即当-1<k<-或0<k<时,直线l与C1有两个公共点,与C2有一个公共点.此时直线l与C恰有三个公共点.综上,当k∈∪{0}时,直线l与C恰有一个公共点;当k∪{-1,}时,直线l与C恰有两个公共点;当k∈时,直线l与轨迹C恰有三个公共点.点评:本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.解析:(Ⅰ)先求函数定义域,然后在定义域内解不等式f′(x)>0,f′(x)<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=lnx,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<x<e时,.,令x=,有ln<,从而2-lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;答案:(Ⅰ)函数f(x)的定义域为(0,+∞),∵f(x)=,∴f′(x)=,当f′(x)>0,即0<x<e时,函数f(x)单调递增;当f′(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=lnx,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<x<e时,f(x)<f(e)=,即.在上式中,令x=,又,则ln<,从而2-lnπ,即得lnπ.①由①得,elnπ>e(2-)>2.7×(2-)>2.7×(2-0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6->6-e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2014年湖北省高考数学理科试题及解析(全部题目)

2014年湖北省高考数学理科试题及解析(全部题目)

2014年湖北省高考数学理科试题及解析1. 为虚数单位,A. -1B.1C. -D.【解题提示】利用复数的运算法则进行计算【解析】选A.2.若二项式的展开式中的系数是84,则实数=A. 2B.C.1D.【解题提示】考查二项式定理的通项公式【解析】选C. 因为,令,得,所以,解得a=1.3.设为全集,是集合,则“存在集合使得”是“”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断【解析】选C. 依题意,若,则,当,可得;若,不妨另,显然满足,故满足条件的集合是存在的.4.x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为,则A. B. C. D.【解题提示】考查根据已知样本数判绘制散点图,由散点图判断线性回归方程中的与的符号问题【解析】选B.画出散点图如图所示,y的值大致随x的增加而减小,因而两个变量呈负相关,所以,5..在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】考查由已知条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图【解析】选D. 在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.6.若函数f(x),满足,则称f(x),为区间[-1,1] 上的一组正交函数,给出三组函数:①;②;③其中为区间的正交函数的组数是()A.0B.1C.2D.3【解题提示】考查微积分基本定理的运用【解析】选C. 对①,,则、为区间上的正交函数;对②,,则、不为区间上的正交函数;对③,,则、为区间上的正交函数.所以满足条件的正交函数有2组.7.由不等式确定的平面区域记为,不等式,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A. B. C. D.【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解析】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在内的概率为.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。

2014年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科)解析版

2014年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科)解析版

绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2014·湖北卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i1.A [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=-2i 2i =-1.故选A.2.[2014·湖北卷] 若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.242.C [解析] 展开式中含1x 3的项是T 6=C 57(2x )2⎝⎛⎭⎫a x 5=C 5722a 5x -3,故含1x 3的项的系数是C 5722a 5=84,解得a =1.故选C. 3. [2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.4.[2014·得到的回归方程为y =bx +a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 4.B [解析]观察图象可知,回归直线y =bx +a 的斜率b <0,截距a >0.故a >0,b <0.故选B.5.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O ­ xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,A .①和②B 5.D [解析] 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②. 故选D.6.[2014·湖北卷] 若函数f (x ),g (x )满足⎠⎛-11f(x)g(x)d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .36.C [解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足⎠⎛-11f(x)g(x)d x =0.①⎠⎛-11f(x)g(x)d x =⎠⎛-11sin 12x cos 12x d x =12⎠⎛-11sin x d x =⎝⎛⎭⎫-12cos x 1-1=0,故第①组是区间[-1,1]上的正交函数; ②⎠⎛-11f(x)g(x)d x =⎠⎛-11(x +1)(x -1)d x =⎝⎛⎭⎫x 33-x 1-1=-43≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11f(x)g(x)d x =⎠⎛-11x ·x 2d x =x 441-1=0,故第③组是区间[-1,1]上的正交函数. 综上,是区间[-1,1]上的正交函数的组数是2. 故选C .7.[2014·湖北卷] 由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.787.D [解析] 作出Ω1,Ω2S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.8.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227 B .258 C.15750 D.3551138.B [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr ,由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3;类比推理,若V =275L 2h ,则π≈258.故选B.9.、[2014·湖北卷] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .433 B.233C .3D .29.A [解析] 设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝⎛⎭⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13×3e 22≤⎝⎛⎭⎫1e 21+3e 22⎝⎛⎭⎫1+13=163.所以1e 1+1e 2≤433.故选A.10.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ; 当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B.11.[2014·湖北卷] 设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________. 11.±3 [解析] 因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.12.[2014·湖北卷] 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.12.2 [解析] 依题意得,圆心O 到两直线l 1:y =x +a ,l 2:y =x +b 的距离相等,且每段弧长等于圆周的14,即|a |2=|b |2=1×sin 45°,得 |a |=|b |=1.故a 2+b 2=2.13.[2014·湖北卷] 设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.13.495 [解析] 取a 1=815⇒b 1=851-158=693≠815⇒a 2=693; 由a 2=693⇒b 2=963-369=594≠693⇒a 3=594; 由a 3=594⇒b 3=954-459=495≠594⇒a 4=495; 由a 4=495⇒b 4=954-459=495=a 4⇒b =495. 14.、[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数) [解析] 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则此三点共线:(1)依题意,c =ab ,则0-f (a )c -a =0+f (b )c -b,即0-f (a )ab -a =0+f (b )ab -b.因为a >0,b >0,所以化简得 f (a )a =f (b )b,故可以选择f (x )=x (x >0);(2)依题意,c =2aba +b,则0-f (a )2ab a +b -a =0+f (b )2ab a +b-b ,因为a >0,b >0,所以化简得 f (a )a =f (b )b ,故可以选择f (x )=x (x >0).15.[2014·湖北卷] (选修4-1:几何证明选讲) 如图1-3,P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过P A 的中点Q 作割线交⊙O 于C ,D 两点,若.15.4 [解析] 由切线长定理得QA 2=QC ·QD =1×(1+3)=4,解得QA =2.故PB =P A =2QA =4.16.[2014·湖北卷] (选修4-4:坐标系与参数方程)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________. 16.()3,1 [解析] 由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1. 17.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11,即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温. 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 19.、、、[2014·湖北卷] 如图1-4,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.19.解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD ­A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP . 而FP ⊂平面EFPQ .(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1, 于是EQ =FP =1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝⎛⎭⎫222=λ2+12,OG 2=1+(2-λ)2-⎝⎛⎭⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0). (1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.20.[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4×0.93×0.1=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形. 由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-800=4200,因此P (Y =4200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5000×2=10 000,因此P (Y =10 000)=P (X ≥80)= p 2+p 3=所以,E (Y )=4200×0.2+③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-1600=3400,因此P (Y =3400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5000×2-800=9200,因此P (Y =9200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.由此得Y 的分布列如下:所以,E (Y )=3400×0.2综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.21.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.21.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. 当k ≠0时,方程①的判别式Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点.故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综上可知,当k ∈()-∞,-1∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点.22.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln x x的单调区间; (2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln x x ,所以f ′(x )=1-ln x x 2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln e e . 由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3; 由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π. 故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e, 即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-e π.① 由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3e π>6-e>π,即3ln π>π, 所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.。

【推荐】2014年湖北省高考数学试卷(理科)

【推荐】2014年湖北省高考数学试卷(理科)

2014年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B .C.1 D .C”3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=b+a,则()a>0,b<0 C.a<0,b>0 D.a<0,b<05.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A .B .C .D .9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A . B .C .3D .2 10.(5分)已知函数f ()是定义在R 上的奇函数,当≥0时,f ()=(|﹣a 2|+|﹣2a 2|﹣3a 2),若∀∈R ,f (﹣1)≤f (),则实数a 的取值范围为( )A .[﹣,]B .[﹣,]C .[﹣,]D .[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= .12.(5分)直线l 1:y=+a 和l 2:y=+b 将单位圆C :2+y 2=1分成长度相等的四段弧,则a 2+b 2= .13.(5分)设a 是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a=815,则I (a )=158,D (a )=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b= .三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= .16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D.【分析】利用二项式定理的展开式的通项公式,通过幂指数为﹣3,求出a即可.【解答】解:二项式(2+)7的展开式即(+2)7的展开式中﹣3项的系数为84,==,所以T令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.3.(5分)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件.故选:C .【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=b+a ,则( )a >0,b <0 C .a <0,b >0 D .a <0,b <0 【分析】通过样本数据表,容易判断回归方程中,b 、a 的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a >0. 故选:B .【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.3【分析】利用新定义,对每组函数求积分,即可得出结论.【解答】解:对于①:[sin•cos]d=(sin)d=﹣cos=0,∴f(),g()为区间[﹣1,1]上的一组正交函数;对于②:(+1)(﹣1)d=(2﹣1)d=()≠0,∴f(),g ()不是区间[﹣1,1]上的一组正交函数;对于③:3d=()=0,∴f(),g()为区间[﹣1,1]上的一组正交函数,∴正交函数有2组,故选:C.【点评】本题考查新定义,考查微积分基本定理的运用,属于基础题.7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.【点评】本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V ≈L 2h ,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr , ∴=(2πr )2h ,∴π=. 故选:B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .B .C .3D .2【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【解答】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2, 即,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2, 即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d 当且仅当时取等号,法2:设椭圆的长半轴为a 1,双曲线的实半轴为a 2,(a 1>a 2),半焦距为c , 由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos =(r 1)2+(r 2)2﹣r 1r 2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设|PF 1|=m ,|PF 2|=n ,则,则a 1+a 2=m ,则=,由正弦定理得=,即=sin(120°﹣θ)≤=故选:A.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.(5分)已知函数f()是定义在R上的奇函数,当≥0时,f()=(|﹣a2|+|﹣2a2|﹣3a2),若∀∈R,f(﹣1)≤f(),则实数a的取值范围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣,]【分析】把≥0时的f()改写成分段函数,求出其最小值,由函数的奇偶性可得<0时的函数的最大值,由对∀∈R,都有f(﹣1)≤f(),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.【解答】解:当≥0时,f()=,由f()=﹣3a2,>2a2,得f()>﹣a2;当a2<≤2a2时,f()=﹣a2;由f()=﹣,0≤≤a2,得f()≥﹣a2.∴当>0时,.∵函数f()为奇函数,∴当<0时,.∵对∀∈R,都有f(﹣1)≤f(),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【点评】本题考查了恒成立问题,考查了函数奇偶性的性质,运用了数学转化思想方法,解答此题的关键是由对∀∈R,都有f(﹣1)≤f()得到不等式2a2﹣(﹣4a2)≤1,是中档题.二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= ±3 .【分析】根据向量垂直与向量坐标之间的关系建立方程关系,即可得到结论.【解答】解:∵向量=(3,3),=(1,﹣1),∴向量||=3,||=,向量•=3﹣3=0,若(+λ)⊥(﹣λ),则(+λ)•(﹣λ)=,即18﹣2λ2=0,则λ2=9,解得λ=±3,故答案为:±3,【点评】本题主要考查向量垂直的坐标公式的应用,比较基础.12.(5分)直线l1:y=+a和l2:y=+b将单位圆C:2+y2=1分成长度相等的四段弧,则a2+b2= 2 .【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b= 495 .【分析】给出一个三位数的a值,实验模拟运行程序,直到满足条件,确定输出的a值,可得答案.【解答】解:由程序框图知:例当a=123,第一次循环a=123,b=321﹣123=198;第二次循环a=198,b=981﹣189=792;第三次循环a=792,b=972﹣279=693;第四次循环a=693,b=963﹣369=594;第五次循环a=594,b=954﹣459=495;第六次循环a=495,b=954﹣459=495,满足条件a=b,跳出循环体,输出b=495.故答案为:495.【点评】本题通过新定义题型考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)【分析】(1)设f()=,(>0),在经过点(a,)、(b,﹣)的直线方程中,令y=0,求得=c=,从而得出结论.(2)设f()=,(>0),在经过点(a,a)、(b,﹣b)的直线方程中,令y=0,求得=c=,从而得出结论.【解答】解:(1)设f()=,(>0),则经过点(a,)、(b,﹣)的直线方程为=,令y=0,求得=c=,(a,b)为a,b的几何平均数,∴当f()=,(>0)时,M故答案为:.(2)设f()=,(>0),则经过点(a,a)、(b,﹣b)的直线方程为=,令y=0,求得=c=,∴当f()=(>0)时,M(a,b)为a,b的调和平均数,f故答案为:.【点评】本题主要考查新定义,用两点式求直线的方程,属于中档题.15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= 4 .【分析】利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.【解答】解:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.故答案为:4.【点评】本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).【分析】把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.【解答】解:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为2=3y2(≥0,y≥0),即y=(≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为2+y2=4.解方程组,再结合>0、y>0,求得,∴C1与C2交点的直角坐标为(,1),故答案为:(,1).【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两条曲线的交点,属于基础题.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【分析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin(t+),t∈[0,24),利用正弦函数的定义域和值域求得f()的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<﹣,即<t+<,解得t的范围,可得结论.【解答】解:(Ⅰ)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,及t=14时,函数取得最大值为10+2=12,当t+=时,即t=2时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),由10﹣2sin(t+)>11,求得sin(t+)<﹣,即<t+<,解得10<t<18,即在10时到18时,需要降温.【点评】本题主要考查函数y=Asin(ω+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn 为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出Sn 根据Sn>60n+800,解不等式根据不等式的解集判断.【解答】解:(Ⅰ)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ),化简得d 2﹣4d=0,解得d=0或4,当d=0时,a n =2,当d=4时,a n =2+(n ﹣1)•4=4n ﹣2.(Ⅱ)当a n =2时,S n =2n ,显然2n <60n+800,此时不存在正整数n ,使得S n >60n+800成立,当a n =4n ﹣2时,S n ==2n 2,令2n 2>60n+800,即n 2﹣30n ﹣400>0,解得n >40,或n <﹣10(舍去),此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41,综上,当a n =2时,不存在满足题意的正整数n ,当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.∥FP,利用线面平行的【分析】(Ⅰ)建立坐标系,求出=2,可得BC1∥平面EFPQ;判定定理,可以证明直线BC1(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ 与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.【解答】(Ⅰ)证明:以D为原点,射线DA,DC,DD分别为,y,轴的正1(0,2,2),E(2,1,0),F(1,0,半轴,建立坐标系,则B(2,2,0),C10),P(0,0,λ),∴=(﹣2,0,2),=(﹣1,0,λ),=(1,1,0)λ=1时,=(﹣2,0,2),=(﹣1,0,1),∴=2,∥FP,∴BC1∵FP⊂平面EFPQ,BC⊄平面EFPQ,1∥平面EFPQ;∴直线BC1(Ⅱ)设平面EFPQ的一个法向量为=(,y,),则,∴取=(λ,﹣λ,1).同理可得平面MNPQ的一个法向量为=(λ﹣2,2﹣λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.【点评】本题考查直线与平面平行的证明,考查存在性问题,解题时要合理地化空间问题为平面问题,注意向量法的合理运用.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【分析】(1)依题意,p 1=0.2,p 2=0.7,p 3=0.1.由二项分布能求出在未4年中至多有1年的年入流量超过120的概率.(2)记水电站年总利润为Y ,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.【解答】解:(1)依题意,p 1=P (40<<80)==0.2, p 2=P (80≤≤120)==0.7,p 3=P (>120)==0.1.由二项分布得,在未4年中至多有1年的年入流量超过120的概率为 p=(1﹣p3)4+(1﹣p 3)3p 3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y )=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣160=840,因此P (Y=840)=P (40<<80)=p 1=0.2;当≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P (Y=2 000)=P (≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣320=680, 因此P (Y=680)=P (40<<80)=p 1=0.2;当80≤≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P (Y=1840)=P (80≤≤120)=p 2=0.7;当>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(>120)=p3=0.1.由此得Y的分布列如下:×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)【点评】本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【分析】(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M的轨迹C的方程;(Ⅱ)设出直线l的方程为y﹣1=(+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y﹣1=(+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【解答】解:(Ⅰ)设M(,y),依题意得:|MF|=||+1,即,化简得,y2=2||+2.∴点M的轨迹C的方程为;(Ⅱ)在点M 的轨迹C 中,记C 1:y 2=4(≥0),C 2:y=0(<0). 依题意,可设直线l 的方程为y ﹣1=(+2). 由方程组,可得y 2﹣4y+4(2+1)=0.①当=0时,此时y=1,把y=1代入轨迹C 的方程,得.故此时直线l :y=1与轨迹C 恰好有一个公共点(). ②当≠0时,方程y 2﹣4y+4(2+1)=0的判别式为△=﹣16(22+﹣1). 设直线l 与轴的交点为(0,0),则由y ﹣1=(+2),取y=0得. 若,解得<﹣1或>. 即当∈时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点. 若或,解得=﹣1或=或.即当=﹣1或=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当=﹣1或=或时,直线l 与轨迹C 恰好有两个公共点. 若,解得﹣1<<﹣或0<<.即当﹣1<<﹣或0<<时,直线l 与C 1有两个公共点,与C 2有一个公共点.此时直线l 与C 恰有三个公共点.综上,当∈∪{0}时,直线l与C恰有一个公共点;当∪{﹣1,}时,直线l与C恰有两个公共点;当∈时,直线l与轨迹C恰有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.【分析】(Ⅰ)先求函数定义域,然后在定义域内解不等式f′()>0,f′()<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<<e时,.,令=,有ln<,从而2﹣lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;【解答】解:(Ⅰ)函数f()的定义域为(0,+∞),∵f()=,∴f′()=,当f′()>0,即0<<e时,函数f()单调递增;当f′()<0,即>e时,函数f()单调递减.故函数f()的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<<e时,f()<f(e)=,即.在上式中,令=,又,则ln<,从而2﹣lnπ,即得lnπ.①由①得,elnπ>e(2﹣)>2.7×(2﹣)>2.7×(2﹣0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6﹣>6﹣e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.【点评】本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.。

2014年湖北省高考数学试卷(理科)最新修正版

2014年湖北省高考数学试卷(理科)最新修正版

2014年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i 为虚数单位,()2=( ) A .﹣1 B .1 C .﹣i D .i2.(5分)若二项式(2x +)7的展开式中的系数是84,则实数a=( ) A .2 B . C .1 D .3.(5分)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C”是“A ∩B=∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=bx +a ,则( )A.a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <05.(5分)在如图所示的空间直角坐标系O ﹣xyz 中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C .④和③D .④和②6.(5分)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.9.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.B.C.3 D.210.(5分)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x ﹣a2|+|x﹣2a2|﹣3a2),若∀x∈R,f(x﹣1)≤f(x),则实数a的取值范围为()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ=.12.(5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=.三、解答题14.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为M f(a,b),例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=(x>0)时,M f(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题2.(5分)若二项式(2x+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为﹣3,求出a即可.【解答】解:二项式(2x+)7的展开式即(+2x)7的展开式中x﹣3项的系数为84,==,所以T r+1令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A ∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A⊆C,则∁U C⊆∁U A,当B⊆∁U C,可得“A∩B=∅”;若“A∩B=∅”能推出存在集合C使得A⊆C,B⊆∁U C,∴U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分必要的条件.故选:C.【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=bx+a,则()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0【分析】通过样本数据表,容易判断回归方程中,b、a的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.6.(5分)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.3【分析】利用新定义,对每组函数求积分,即可得出结论.【解答】解:对于①:[sin x•cos x]dx=(sinx)dx=﹣cosx=0,∴f(x),g(x)为区间[﹣1,1]上的一组正交函数;对于②:(x+1)(x﹣1)dx=(x2﹣1)dx=()≠0,∴f(x),g(x)不是区间[﹣1,1]上的一组正交函数;对于③:x3dx=()=0,∴f(x),g(x)为区间[﹣1,1]上的一组正交函数,∴正交函数有2组,故选:C.【点评】本题考查新定义,考查微积分基本定理的运用,属于基础题.7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.【点评】本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.【分析】根据近似公式V≈L2h,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.9.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.B.C.3 D.2【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论.【解答】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即,②在双曲线中,①化简为即4c2=4a12+r1r2,即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d当且仅当时取等号,法2:设椭圆的长半轴为a1,双曲线的实半轴为a2,(a1>a2),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos=(r1)2+(r2)2﹣r1r2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设|PF1|=m,|PF2|=n,则,则a1+a2=m,则=,由正弦定理得=,即=sin(120°﹣θ)≤=故选:A.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.(5分)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x ﹣a2|+|x﹣2a2|﹣3a2),若∀x∈R,f(x﹣1)≤f(x),则实数a的取值范围为()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,]【分析】把x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,由对∀x∈R,都有f(x﹣1)≤f(x),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.【解答】解:当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x≤2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2.∴当x>0时,.∵函数f(x)为奇函数,∴当x<0时,.∵对∀x∈R,都有f(x﹣1)≤f(x),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【点评】本题考查了恒成立问题,考查了函数奇偶性的性质,运用了数学转化思想方法,解答此题的关键是由对∀x∈R,都有f(x﹣1)≤f(x)得到不等式2a2﹣(﹣4a2)≤1,是中档题.二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ=±3.【分析】根据向量垂直与向量坐标之间的关系建立方程关系,即可得到结论.【解答】解:∵向量=(3,3),=(1,﹣1),∴向量||=3,||=,向量•=3﹣3=0,若(+λ)⊥(﹣λ),则(+λ)•(﹣λ)=,即18﹣2λ2=0,则λ2=9,解得λ=±3,故答案为:±3,【点评】本题主要考查向量垂直的坐标公式的应用,比较基础.12.(5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=2.【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=495.【分析】给出一个三位数的a值,实验模拟运行程序,直到满足条件,确定输出的a值,可得答案.【解答】解:由程序框图知:例当a=123,第一次循环a=123,b=321﹣123=198;第二次循环a=198,b=981﹣189=792;第三次循环a=792,b=972﹣279=693;第四次循环a=693,b=963﹣369=594;第五次循环a=594,b=954﹣459=495;第六次循环a=495,b=954﹣459=495,满足条件a=b,跳出循环体,输出b=495.故答案为:495.【点评】本题通过新定义题型考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.三、解答题14.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为M f(a,b),例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=x(x>0)时,M f(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)【分析】(1)设f(x)=,(x>0),在经过点(a,)、(b,﹣)的直线方程中,令y=0,求得x=c=,从而得出结论.(2)设f(x)=x,(x>0),在经过点(a,a)、(b,﹣b)的直线方程中,令y=0,求得x=c=,从而得出结论.【解答】解:(1)设f(x)=,(x>0),则经过点(a,)、(b,﹣)的直线方程为=,令y=0,求得x=c=,∴当f(x)=,(x>0)时,M f(a,b)为a,b的几何平均数,故答案为:.(2)设f(x)=x,(x>0),则经过点(a,a)、(b,﹣b)的直线方程为=,令y=0,求得x=c=,∴当f(x)=x(x>0)时,M f(a,b)为a,b的调和平均数,故答案为:x.【点评】本题主要考查新定义,用两点式求直线的方程,属于中档题.15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=4.【分析】利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.【解答】解:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.故答案为:4.【点评】本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).【分析】把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.【解答】解:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为x2=3y2(x≥0,y≥0),即y=x (x≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为x2+y2=4.解方程组,再结合x>0、y>0,求得,∴C1与C2交点的直角坐标为(,1),故答案为:(,1).【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两条曲线的交点,属于基础题.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【分析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin (t+),t∈[0,24),利用正弦函数的定义域和值域求得f(x)的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<﹣,即<t+<,解得t的范围,可得结论.【解答】解:(Ⅰ)∵f(t)=10﹣=10﹣2sin(t+),t ∈[0,24),∴≤t+<,故当t+=时,及t=14时,函数取得最大值为10+2=12,当t+=时,即t=2时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin (t+),由10﹣2sin(t+)>11,求得sin(t+)<﹣,即<t+<,解得10<t<18,即在10时到18时,需要降温.【点评】本题主要考查函数y=Asin(ωx+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.18.(12分)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出S n根据S n>60n+800,解不等式根据不等式的解集来判断.【解答】解:(Ⅰ)设数列{a n}的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d2﹣4d=0,解得d=0或4,当d=0时,a n=2,当d=4时,a n=2+(n﹣1)•4=4n﹣2.(Ⅱ)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立,当a n=4n﹣2时,S n==2n2,令2n2>60n+800,即n2﹣30n﹣400>0,解得n>40,或n<﹣10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41,综上,当a n=2时,不存在满足题意的正整数n,当a n=4n﹣2时,存在满足题意的正整数n,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【分析】(Ⅰ)建立坐标系,求出=2,可得BC1∥FP,利用线面平行的判定定理,可以证明直线BC1∥平面EFPQ;(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ 与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.【解答】(Ⅰ)证明:以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴,建立坐标系,则B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ),∴=(﹣2,0,2),=(﹣1,0,λ),=(1,1,0)λ=1时,=(﹣2,0,2),=(﹣1,0,1),∴=2,∴BC1∥FP,∵FP⊂平面EFPQ,BC1⊄平面EFPQ,∴直线BC1∥平面EFPQ;(Ⅱ)设平面EFPQ的一个法向量为=(x,y,z),则,∴取=(λ,﹣λ,1).同理可得平面MNPQ的一个法向量为=(λ﹣2,2﹣λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.【点评】本题考查直线与平面平行的证明,考查存在性问题,解题时要合理地化空间问题为平面问题,注意向量法的合理运用.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【分析】(1)依题意,p1=0.2,p2=0.7,p3=0.1.由二项分布能求出在未来4年中至多有1年的年入流量超过120的概率.(2)记水电站年总利润为Y,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.【解答】解:(1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=(1﹣p3)4+(1﹣p3)3p3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E(Y)=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣160=840,因此P (Y=840)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P(Y=2 000)=P(X ≥80)=p2+p3=0.8.由此得Y的分布列如下:所以,E(Y)=840×0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣320=680,因此P(Y=680)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P(Y=1840)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:所以,E(Y)=680×0.2+1840×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)【点评】本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.21.(14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.【分析】(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M的轨迹C的方程;(Ⅱ)设出直线l的方程为y﹣1=k(x+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y﹣1=k(x+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合x0<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.【解答】解:(Ⅰ)设M(x,y),依题意得:|MF|=|x|+1,即,化简得,y2=2|x|+2x.∴点M的轨迹C的方程为;(Ⅱ)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x<0).依题意,可设直线l的方程为y﹣1=k(x+2).由方程组,可得ky2﹣4y+4(2k+1)=0.①当k=0时,此时y=1,把y=1代入轨迹C的方程,得.故此时直线l:y=1与轨迹C恰好有一个公共点().②当k≠0时,方程ky2﹣4y+4(2k+1)=0的判别式为△=﹣16(2k2+k﹣1).设直线l与x轴的交点为(x0,0),则由y﹣1=k(x+2),取y=0得.若,解得k<﹣1或k>.即当k∈时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或,解得k=﹣1或k=或.即当k=﹣1或k=时,直线l与C1只有一个公共点,与C2有一个公共点.当时,直线l与C1有两个公共点,与C2无公共点.故当k=﹣1或k=或时,直线l与轨迹C恰好有两个公共点.若,解得﹣1<k<﹣或0<k<.即当﹣1<k<﹣或0<k<时,直线l与C1有两个公共点,与C2有一个公共点.此时直线l与C恰有三个公共点.综上,当k∈∪{0}时,直线l与C恰有一个公共点;当k∪{﹣1,}时,直线l与C恰有两个公共点;当k∈时,直线l与轨迹C恰有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.【分析】(Ⅰ)先求函数定义域,然后在定义域内解不等式f′(x)>0,f′(x)<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=lnx,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<x<e时,.,令x=,有ln<,从而2﹣lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),∵f(x)=,∴f′(x)=,当f′(x)>0,即0<x<e时,函数f(x)单调递增;当f′(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=lnx,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<x<e时,f(x)<f(e)=,即.在上式中,令x=,又,则ln<,从而2﹣lnπ,即得lnπ.①由①得,elnπ>e(2﹣)>2.7×(2﹣)>2.7×(2﹣0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6﹣>6﹣e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.【点评】本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.。

2014年高考理数真题试卷(湖北卷)

2014年高考理数真题试卷(湖北卷)

第1页,总20页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2014年高考理数真题试卷(湖北卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. (2014•湖北)设U 为全集,A ,B 是集合,则“存在集合C 使得A⊆C ,B⊆⊆U C”是“A∩B=⊆”的( ) A . 充分而不必要的条件 B . 必要而不充分的条件 C . 充要条件 D . 既不充分也不必要条件2. (2014•湖北)已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )= (|x ﹣a 2|+|x ﹣2a 2|﹣3a 2),若⊆x⊆R ,f (x ﹣1)≤f (x ),则实数a 的取值范围为( )A . [﹣ , ]B . [﹣ , ]C . [﹣ , ]D . [﹣ , ]3. (2014•湖北)在如图所示的空间直角坐标系O ﹣xyz 中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A . ①和②B . ③和①C . ④和③D . ④和②答案第2页,总20页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. (2014•湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈ L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈ L 2h 相当于将圆锥体积公式中的π近似取为( )A .B .C .D .5. (2014•湖北)由不等式组 确定的平面区域记为Ω1 , 不等式组 确定的平面区域记为Ω2 , 在Ω1中随机取一点,则该点恰好在Ω2内的概率为( ) A . B . C . D .6. (2014•湖北)已知F 1 , F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且⊆F 1PF 2= ,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .B .C . 3D . 27. (2014•湖北)i 为虚数单位,()2=( )A . ﹣1B . 1C . ﹣iD . i8. (2014•湖北)若函数f (x ),g (x )满足 f (x )g (x )dx=0,则f (x ),g (x )为区间[﹣1,1]上的一组正交函数,给出三组函数: ①f (x )=sinx ,g (x )=cosx ;②f (x )=x+1,g (x )=x ﹣1; ③f (x )=x ,g (x )=x 2,其中为区间[﹣1,1]上的正交函数的组数是( ) A . 0 B . 1 C . 2 D . 39. (2014•湖北)若二项式(2x+ )7的展开式中的系数是84,则实数a=( )。

2014年高考湖北理科数学试题及答案(word解析版)

2014年高考湖北理科数学试题及答案(word解析版)

20XX 普通高等学校招生全国统一考试〔XX 卷〕数学〔理科〕一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. 〔1〕[20XXXX ,理1,5分]i 为虚数单位,则21i 1i -⎛⎫⎪+⎝⎭〔〕〔A 〕1-〔B 〕1〔C 〕i -〔D 〕i [答案]A[解析]因为21i 2i 11i 2i --⎛⎫==- ⎪+⎝⎭,故选A . [点评]本题考查复数的运算,容易题.〔2〕[20XXXX ,理2,5分]若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =〔〕〔A 〕2〔B 〕54〔C 〕1〔D 〕24[答案]D[解析]因为()77727722xrr r r r r a C x C a x x ---+⎛⎫⋅⋅=⋅⋅⋅ ⎪⎝⎭,令723r -+=-,得2r =,22727284C a -⋅⋅=,解得24a =,故选D .[点评]本题考查二项式定理的通项公式,容易题.〔3〕[20XXXX ,理3,5分]设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C C ⊆是“A B =∅〞的〔〕〔A 〕充分而不必要条件〔B 〕必要而不充分条件〔C 〕充要条件〔D 〕既不充分也不必要条件 [答案]A[解析]依题意,若A C ⊆,则U U C C C A ⊆,U B C C ⊆,可得A B =∅;若A B =∅,不能推出U B C C ⊆,故选A .[点评]本题考查集合与集合的关系,充分条件与必要条件判断,容易题. 〔4〕[20XXXX ,理4,5分]根据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为ˆybx a =+,则〔〕 〔A 〕0a >,0b >〔B 〕0a >,0b <〔C 〕0a <,0b >〔D 〕0a <,0b < [答案]B[解析]依题意,画散点图知,两个变量负相关,所以0b <,0a >,故选B . [点评]本题考查根据已知样本数判断线性回归方程中的b 与a 的符号,容易题. 〔5〕[20XXXX ,理5,5分]在如图所示的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为〔〕 〔A 〕①和②〔B 〕③和①〔C 〕④和③〔D 〕④和② [答案]D[解析]在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .[点评]本题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题. 〔6〕[20XXXX ,理6,5分]若函数()f x ,()g x 满足()()110f x g x dx -=⎰,则称()f x ,()g x 为区间[]1,1-上的一组正交函数,给出三组函数:①()1sin 2f x x =,()1cos 2g x x =;②()1f x x =+,()1g x x =-;③()f x x =,()2g x x =,其中为区间[]1,1-的正交函数的组数是〔〕 〔A 〕0〔B 〕1〔C 〕2〔D 〕3 [答案]C[解析]对①1111111111sin cos sin cos 02222x x dx x dx x---⎛⎫⎛⎫⋅=== ⎪ ⎪⎝⎭⎝⎭⎰⎰,则()f x ,()g x 为区间[]1,1-上的正交函数;对②()()()11231111111103x x dx x dx x x ---⎛⎫+-=-=-≠ ⎪⎝⎭⎰⎰,则()f x ,()g x 不为区间[]1,1-上的正交函数;对③134111104x dx x --⎛⎫== ⎪⎝⎭⎰,则()f x ,()g x 为区间[]1,1-上的正交函数,所以满足条件的正交函数有2组,故选C .[点评]新定义题型,本题考查微积分基本定理的运用,容易题.〔7〕[20XXXX ,理7,5分]由不等式0020x y y x ≤⎧⎪≥⎨⎪--≤⎩确定的平面区域记为1Ω,不等式12x y x y +≤⎧⎨+≥-⎩,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为〔〕〔A 〕18〔B 〕14〔C 〕34〔D 〕78[答案]D[解析]依题意,不等式组表示的平面区域如图,由几何公式知,该点落在2Ω内的概率为:11221172218222P ⨯⨯-⨯⨯==⨯⨯,故选D .[点评]本题考查不等式组表示的平面区域,面积型的几何概型,中等题.〔8〕[20XXXX ,理8,5分]《算数书》竹简于上世纪八十年代在XX 省江陵县X 家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖〞的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为〔〕〔A 〕227〔B 〕258〔C 〕15750〔D 〕355113[答案]B[解析]设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .[点评]本题考查《算数书》中π的近似计算,容易题.〔9〕[20XXXX ,理9,5分]已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为〔〕〔A 〕433〔B 〕233〔C 〕3〔D 〕2[答案]B[解析]设椭圆的短半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c ,由椭圆、双曲线的定义得122PF PF a +=,1212PF PF a -=,所以11PF a a =+,21PF a a =-,因为1260F PF ∠=︒,由余弦定理得:()()()()22211114c a a a a a a a a =++--+-,所以222143c a a =+,即22221112222142a a a a a c c c c c ⎛⎫-=+≥+ ⎪⎝⎭,22111148e e e ⎛⎫∴+≤- ⎪⎝⎭,利用基本不等式可得椭圆和双曲线的离心率的倒数之和的最大值为233,故选B . [点评]本题椭圆、双曲线的定义和性质,余弦定理与用基本不等式求最值,难度中等.〔10〕[20XXXX ,理10,5分]已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--,若R x ∀∈,(1)()f x f x -≤,则实数a 的取值X 围为〔〕〔A 〕11,66⎡⎤-⎢⎥⎣⎦〔B 〕66,66⎡⎤-⎢⎥⎣⎦〔C 〕11,33⎡⎤-⎢⎥⎣⎦〔D 〕33,33⎡⎤-⎢⎥⎣⎦ [答案]B[解析]依题意,当0x ≥时,()2222223220x a x a f x a a x a xx a ⎧->⎪=-<≤⎨⎪-≤≤⎩,作图可知,()f x 的最小值为2a -,因为函数()f x 为奇函数,所以当0x <时,()f x 的最大值为2a ,因为对任意实数x 都有,()()1f x f x -≤,所以,()22421a a --≤,解得6666a -≤≤,故实数a 的取值X 围是66,66⎡⎤-⎢⎥⎣⎦,故选B . [点评]本题考查函数的奇函数性质、分段函数、最值与恒成立,难度中等.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. 〔一〕必考题〔11-14题〕〔11〕[20XXXX ,理11,5分]设向量()3,3a =,()1,1b =-,若()()a b a b λλ+⊥-,则实数λ=. [答案]3±[解析]因为()3,3a b λλλ+=+-,()3,3a b λλλ+=++,因为()()a b a b λλ+⊥-,所以()()()()33330λλλλ+-+++=,解得3λ±.[点评]本题考查平面向量的坐标运算、数量积,容易题.〔12〕[20XXXX ,理12,5分]直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=.[答案]2[解析]依题意,圆心()0,0到两条直线的距离相等,且每段弧的长度都是圆周的14,即22a b =,2cos 4522a=︒=,所以221a b ==,故222a b +=. [点评]本题考查直线与圆相交,点到直线的距离公式,容易题.〔13〕[20XXXX ,理13,5分]设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a〔例如815a =,则()158I a =,()851D a =〕.阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =. [答案]495[解析]当123a =,则321123198123b =-=≠,当198a =,则981198783198b =-=≠;当783a =,则954459b a =-=,终止循环,故输出495b =.[点评]新定义题型,本题考查程序框图,当型循环结构,容易题.〔14〕[20XXXX ,理14,5分]设()f x 是定义在()0,+∞上的函数,且()0f x >,对任意0a >,0b >,0a >,0b >,若经过点()()af a ,()(),b f x ()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为a ,b 关于函数()f x 的平均数,记为[],f M a b ,例如,当()1f x =())0(1>=x x f 时,可得2f a bM c +==,即(),f M a b 为,a b的算术平均数.〔1〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的几何平均数; 〔2〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的调和平均数2aba b+;〔以上两空各只需写出一个符合要求的函数即可〕[答案]〔1〕x 〔2〕x 〔或填〔1〕1k x 〔2〕2k x ,其中12,k k 为正常数均可〕[解析]设()()0f x x x =>,则经过点(),a a ,(),b b -的直线方程为y a b a x a b a ---=--,令0y =,所以2abc x a b ==+,所以当()()0f x x x =>,(),f M a b 为,a b 的调和平均数2aba b+.[点评]本题考查两个数的几何平均数与调和平均数,难度中等.〔一〕选考题〔请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.〕〔15〕[20XXXX ,理15,5分]〔选修4-1:几何证明选讲〕如图,P 为O 的两条切线,切点分别为,A B ,过PA 的中点Q 作割线交O 于,C D 两点,若1QC =,3CD =,则PB = _______. [答案]4[解析]由切割线定理得()21134QA QC QD =⋅=⨯+=,所以2QA =,4PB PA ==. [点评]本题考查圆的切线长定理,切割线定理,容易题.〔16〕[20XXXX ,理16,5分]〔选修4-4:坐标系与参数方程〕已知曲线1C 的参数方程是33x tty ⎧=⎪⎨=⎪⎩〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为.[答案]()3,1[解析]由33x t t y ⎧=⎪⎨=⎪⎩,消去t 得()2230,0x y x y =≥≥,由2ρ=得224x y +=,解方程组222243x y x y ⎧+=⎪⎨=⎪⎩,得1C 与2C 的交点坐标为()3,1.[点评]本题考查参数方程,极坐标方程与平面直角坐标方程的转化,曲线的交点,容易题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.〔17〕[20XXXX ,理17,11分]某实验室一天的温度〔单位:C ︒〕随时间t 〔单位:h 〕的变化近似满足函数关系;()103cossin,[0,24)1212f t t t t ππ=--∈.〔1〕XX 验室这一天的最大温差;〔2〕若要XX 验室温度不高于11C ︒,则在哪段时间实验室需要降温?解:〔1〕因为31()102(cos sin )102sin()212212123f t t t t ππππ=-+=-+,又024t ≤<,所以7,1sin()131233123t t ππππππ≤+<-≤+≤,当2t =时,sin()1123t ππ+=;当14t =时,sin()1123t ππ+=-,于是()f t 在[0,24)上取得最大值12,取得最小值8,故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. 〔2〕依题意,当()11f t >时实验室需要降温,由〔1〕得()102sin()123f t t ππ=-+,故有102sin()11123t ππ-+>,即1sin()1232t ππ+<-,又024t ≤<,因此71161236t ππππ<+<,即1018t <<,在10时至18时实验室需要降温. 〔18〕[20XXXX ,理18,12分]已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.〔1〕求数列{}n a 的通项公式;〔2〕记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.解:〔1〕设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=, 解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.〔2〕当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-〔舍去〕,此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.〔19〕[20XXXX ,理19,12分]如图,在棱长为2的正方体1111ABCD A B C D -中,,,,E F M N 分别是棱1111,,,AB AD A B A D 的中点,点,P Q 分别在棱1DD ,1BB 上移动,且 ()02DP BQ λλ==<<.〔1〕当1λ=时,证明:直线1BC 平面EFPQ ;〔2〕是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存 在,说明理由.解:解法一:〔1〕如图1,连接1AD ,由1111ABCD A B C D =是正方体,知11//BC AD ,当1λ=时,P 是1DD 的中点,又F 是AD的中点,所以1//FP AD ,所以1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . 〔2〕如图2,连接BD ,因为E ,F 分别是AB ,AD 的中点,所以//EF BD ,且12EF BD =,又,//DP BQ DP BQ =,所以四边形PQBD 是平行四边形,故//PQ BD ,且PQ BD =,从而//EF PQ ,且12EF PQ =,在Rt EBQ ∆和Rt FDP ∆中,因为BQ DP λ==,1BE DF ==,于是21DQ FP λ==+,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取,,EF PQ MN 的中点为,,H O G ,连接,OH OG ,则,GO PQ HO PQ ⊥⊥,而GO HO O =, 故GOH ∠是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则90GOH ∠=,连接EM ,FN ,则 由//EF MN ,且EF MN =,知四边形EFNM 是平行四边形,连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==,在GOH ∆中,22222214,1()22GH OH λλ==+-=+,2222211(2)()(2)22OG λλ=+--=-+,由222OG OH GH +=,得2211(2)422λλ-+++=,解得212λ=±,故存在212λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.解法二:以D 为原点,射线1,,DA DC DD 分别为,,x y z 轴的正半轴建立如图3所示的空间直角坐标系D xyz -,由已知 得(2,2,0)B ,1(0,2,2)C ,(2,1,0)E ,(1,0,0)F ,(0,0,)P λ,(2,0,2)BC -,(1,0,)FP λ-,(1,1,0)FE . 〔1〕当1λ=时,(1,0,1)FP =-,因为1(2,0,2)BC =-,所以12BC FP =,即1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .〔2〕设平面EFPQ 的一个法向量为(,,)n x y z =,则由00FE n FP n ⎧⋅=⎪⎨⋅=⎪⎩,可得00x y x z λ+=⎧⎨-+=⎩,于是可取(,,1)n λλ=-,同理可得平面MNPQ 的一个法向量为(2,2,1)m λλ=--,若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则(2,2,1)(,,1)0m n λλλλ⋅=--⋅-=,即(2)(2)10λλλλ---+=,解得12λ=±.故存在1λ=,使面EFPQ 与面PQMN 所成的二面角为直二面角. 〔20〕[20XXXX ,理20,12分]计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米〕都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. 〔1〕求未来4年中,至多1年的年入流量超过120的概率;〔2〕水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万 元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:〔1〕依题意,110(4080)0.250p P X =<<==,235(80120)0.750p P X =≤≤==,35(120)0.150p P X =>==由二项分布,在未来4年中至多有1年的年入流量超过120的概率为04134343433991(1)(1)()4()()0.9477101010p C p C p p =-+-=+⨯⨯=.〔2〕记水电站年总利润为Y 〔单位:万元〕〔1〕安装1台发电机的情形:由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000,()500015000Y E Y ==⨯=.〔2〕安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此(10000)(80)0.8P Y P X p p ==≥=+=;由此得Y 的分布列如下:所以,()E Y =〔3〕安装3台发电机的情形:当4080X <<时,一台发电机运行,此时500016003400Y =-=,因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时500028009200Y =⨯-=,因此2(9200)(80120)0.7P Y P X p ==≤≤==;当120X >时,三台发电机运行,5000315000Y =⨯=,因此3(15000)(120)0.1P Y PX p ==>==, 由此得所以,综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.〔21〕[20XXXX ,理21,14分]在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .〔1〕求轨迹为C 的方程;〔2〕设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 好有一个公共点,两个公共点,三个公共点时k 的相应取值X 围.解:〔1〕设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+,故点M 的轨迹C 的方程为24,00,0x x yx ≥⎧=⎨<⎩.〔2〕在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++=①〔1〕当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =, 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4〔2〕当0k ≠时,方程①的判别式为216(21)k k ∆=-+-②设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ 〔ⅰ〕若000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点. 〔ⅱ〕若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 与1C只有一个公共点,与2C 有一个公共点,当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点,故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.〔ⅲ〕若000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点. 综合〔1〕〔2〕可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.〔22〕[20XXXX ,理22,14分]π为圆周率,e =2.71828……为自然对数的底数.〔1〕求函数xxx f ln )(=的单调区间; 〔2〕求33,3,,,3,e e e e ππππ这6个数中的最大数与最小数;〔3〕将33,3,,,3,ee e e ππππ这6个数按从小到大的顺序排列,并证明你的结论.解:〔1〕函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x-'=,当()0f x '>,即0x e <<时,函 数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e , 单调递减区间为(,)e +∞. 〔2〕因为3e π<<,所以ln33ln ,ln ln3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==, x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π与3π之中,最小数在3e 与3e 之中.由3e π<<与〔1〕的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln3ππ<,所以33ππ>;由ln3ln 3e e <,得3ln3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e .〔3〕由〔2〕知,3333,3e e e e πππ<<<<,又由〔2〕知,ln ln ee ππ<,得e e ππ<故只需比较3e 与e π和e π与 3π的大小,由〔1〕知,当0x e <<时,1()()f x f e e <=,即ln 1x x e<,在上式中,令2e x π=,又2e e π<,则2lne eππ<,从而2ln eππ-<,即得ln 2eππ>-①由①得, 2.72ln (2) 2.7(2) 2.7(20.88) 3.02433.1e e e ππ>->⨯->⨯-=>,即ln 3e π>,亦即3ln ln e e π>,所以3e e π<,又由①得,33ln 66ee πππ>->->,即3ln ππ>,所以3e ππ<.综上可得,3333eee e ππππ<<<<<,即6个数从小到大的顺序为333,,,,,3e e e e ππππ.。

数学高考真题-2014湖北卷理科

数学高考真题-2014湖北卷理科

2014年普通高等学校招生全国统一考试(湖北卷)理科数学一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)**为虚数单位,=( )A.-1B.1C.-iD.i2.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式中1x 3的系数是84,则实数a =( ) ** B. C.1 D.3.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件4.根据如下样本数据x 3 4 5 6 7 8y ** ** -0.5 **-2.0 -3.0 得到的回归方程为y ^=bx +a ,则( )**>0,b >0 B.a >0,b <0 C.a <0,b >0 D.a <0,b <05.在如图所示的空间直角坐标系O ­xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②6.若函数f (x ),g (x )满足⎰-11)()(x g x f d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数,给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )** B.1 C.2 D.37.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.788.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.3551139.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=3π,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C.3D.2 10.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎥⎦⎤⎢⎣⎡-61,61B.⎥⎥⎦⎤⎢⎢⎣⎡-66,66C.⎥⎦⎤⎢⎣⎡-31,31D.⎥⎥⎦⎤⎢⎢⎣⎡-33,33 二、填空题(本大题共6小题,考生共需作答5小题,每小题5分,共25分.把答案填在题中横线上)(一)必考题(11~14题)11.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.12.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设f (x )是定义在(0,+∞)上的函数,且f (x )>0.对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ).例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b 2,即M f (a ,b )为a ,b 的算术平均数. (1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2ab a +b. (以上两空各只需写出一个符合要求的函数即可)(二)选考题(请在第15,16两题中任选一题作答,如果全选,则按第15题作答结果计分)15.(选修4-1:几何证明选讲)如图,P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B .过P A 的中点Q 作割线交⊙O 于C ,D 两点.若QC =1,CD =3,则PB =________.16.(选修4-4:坐标系与参数方程)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分11分)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系f (t )=10-3cos 12πt -sin 12πt ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(本小题满分12分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年.入流量...X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:年入流量X 40<X <80 80≤X ≤120 X >120发电机最多可运行台数 1 2 3若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.(本小题满分14分)π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln x x的单调区间; (2)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.。

【推荐】2014年湖北省高考数学试卷(理科)

【推荐】2014年湖北省高考数学试卷(理科)

2014年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B .C.1 D .C”3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=b+a,则()a>0,b<0 C.a<0,b>0 D.a<0,b<05.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A .B .C .D .9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A . B .C .3D .2 10.(5分)已知函数f ()是定义在R 上的奇函数,当≥0时,f ()=(|﹣a 2|+|﹣2a 2|﹣3a 2),若∀∈R ,f (﹣1)≤f (),则实数a 的取值范围为( )A .[﹣,]B .[﹣,]C .[﹣,]D .[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= .12.(5分)直线l 1:y=+a 和l 2:y=+b 将单位圆C :2+y 2=1分成长度相等的四段弧,则a 2+b 2= .13.(5分)设a 是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a=815,则I (a )=158,D (a )=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b= .三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= .16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D.【分析】利用二项式定理的展开式的通项公式,通过幂指数为﹣3,求出a即可.【解答】解:二项式(2+)7的展开式即(+2)7的展开式中﹣3项的系数为84,==,所以Tr+1令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.3.(5分)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件.故选:C .【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=b+a ,则( )a >0,b <0 C .a <0,b >0 D .a <0,b <0 【分析】通过样本数据表,容易判断回归方程中,b 、a 的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a >0. 故选:B .【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.3【分析】利用新定义,对每组函数求积分,即可得出结论.【解答】解:对于①:[sin•cos]d=(sin)d=﹣cos=0,∴f(),g()为区间[﹣1,1]上的一组正交函数;对于②:(+1)(﹣1)d=(2﹣1)d=()≠0,∴f(),g ()不是区间[﹣1,1]上的一组正交函数;对于③:3d=()=0,∴f(),g()为区间[﹣1,1]上的一组正交函数,∴正交函数有2组,故选:C.【点评】本题考查新定义,考查微积分基本定理的运用,属于基础题.7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.【点评】本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V ≈L 2h ,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr ,∴=(2πr )2h ,∴π=. 故选:B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .B .C .3D .2【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【解答】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2, 即,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2, 即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d 当且仅当时取等号,法2:设椭圆的长半轴为a 1,双曲线的实半轴为a 2,(a 1>a 2),半焦距为c , 由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos =(r 1)2+(r 2)2﹣r 1r 2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设|PF 1|=m ,|PF 2|=n ,则,则a 1+a 2=m ,则=,由正弦定理得=,即=sin(120°﹣θ)≤=故选:A.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.(5分)已知函数f()是定义在R上的奇函数,当≥0时,f()=(|﹣a2|+|﹣2a2|﹣3a2),若∀∈R,f(﹣1)≤f(),则实数a的取值范围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣,]【分析】把≥0时的f()改写成分段函数,求出其最小值,由函数的奇偶性可得<0时的函数的最大值,由对∀∈R,都有f(﹣1)≤f(),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.【解答】解:当≥0时,f()=,由f()=﹣3a2,>2a2,得f()>﹣a2;当a2<≤2a2时,f()=﹣a2;由f()=﹣,0≤≤a2,得f()≥﹣a2.∴当>0时,.∵函数f()为奇函数,∴当<0时,.∵对∀∈R,都有f(﹣1)≤f(),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【点评】本题考查了恒成立问题,考查了函数奇偶性的性质,运用了数学转化思想方法,解答此题的关键是由对∀∈R,都有f(﹣1)≤f()得到不等式2a2﹣(﹣4a2)≤1,是中档题.二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= ±3 .【分析】根据向量垂直与向量坐标之间的关系建立方程关系,即可得到结论.【解答】解:∵向量=(3,3),=(1,﹣1),∴向量||=3,||=,向量•=3﹣3=0,若(+λ)⊥(﹣λ),则(+λ)•(﹣λ)=,即18﹣2λ2=0,则λ2=9,解得λ=±3,故答案为:±3,【点评】本题主要考查向量垂直的坐标公式的应用,比较基础.12.(5分)直线l1:y=+a和l2:y=+b将单位圆C:2+y2=1分成长度相等的四段弧,则a2+b2= 2 .【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b= 495 .【分析】给出一个三位数的a值,实验模拟运行程序,直到满足条件,确定输出的a值,可得答案.【解答】解:由程序框图知:例当a=123,第一次循环a=123,b=321﹣123=198;第二次循环a=198,b=981﹣189=792;第三次循环a=792,b=972﹣279=693;第四次循环a=693,b=963﹣369=594;第五次循环a=594,b=954﹣459=495;第六次循环a=495,b=954﹣459=495,满足条件a=b,跳出循环体,输出b=495.故答案为:495.【点评】本题通过新定义题型考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)【分析】(1)设f()=,(>0),在经过点(a,)、(b,﹣)的直线方程中,令y=0,求得=c=,从而得出结论.(2)设f()=,(>0),在经过点(a,a)、(b,﹣b)的直线方程中,令y=0,求得=c=,从而得出结论.【解答】解:(1)设f()=,(>0),则经过点(a,)、(b,﹣)的直线方程为=,令y=0,求得=c=,(a,b)为a,b的几何平均数,∴当f()=,(>0)时,M故答案为:.(2)设f()=,(>0),则经过点(a,a)、(b,﹣b)的直线方程为=,令y=0,求得=c=,∴当f()=(>0)时,M(a,b)为a,b的调和平均数,f故答案为:.【点评】本题主要考查新定义,用两点式求直线的方程,属于中档题.15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= 4 .【分析】利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.【解答】解:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.故答案为:4.【点评】本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).【分析】把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.【解答】解:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为2=3y2(≥0,y≥0),即y=(≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为2+y2=4.解方程组,再结合>0、y>0,求得,∴C1与C2交点的直角坐标为(,1),故答案为:(,1).【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两条曲线的交点,属于基础题.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【分析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin (t+),t∈[0,24),利用正弦函数的定义域和值域求得f()的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<﹣,即<t+<,解得t的范围,可得结论.【解答】解:(Ⅰ)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,及t=14时,函数取得最大值为10+2=12,当t+=时,即t=2时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),由10﹣2sin(t+)>11,求得sin(t+)<﹣,即<t+<,解得10<t<18,即在10时到18时,需要降温.【点评】本题主要考查函数y=Asin(ω+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn 为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出Sn 根据Sn>60n+800,解不等式根据不等式的解集判断.【解答】解:(Ⅰ)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ),化简得d 2﹣4d=0,解得d=0或4,当d=0时,a n =2,当d=4时,a n =2+(n ﹣1)•4=4n ﹣2.(Ⅱ)当a n =2时,S n =2n ,显然2n <60n+800,此时不存在正整数n ,使得S n >60n+800成立,当a n =4n ﹣2时,S n ==2n 2,令2n 2>60n+800,即n 2﹣30n ﹣400>0,解得n >40,或n <﹣10(舍去),此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41,综上,当a n =2时,不存在满足题意的正整数n ,当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.∥FP,利用线面平行的【分析】(Ⅰ)建立坐标系,求出=2,可得BC1∥平面EFPQ;判定定理,可以证明直线BC1(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ 与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.【解答】(Ⅰ)证明:以D为原点,射线DA,DC,DD分别为,y,轴的正1(0,2,2),E(2,1,0),F(1,0,半轴,建立坐标系,则B(2,2,0),C10),P(0,0,λ),∴=(﹣2,0,2),=(﹣1,0,λ),=(1,1,0)λ=1时,=(﹣2,0,2),=(﹣1,0,1),∴=2,∥FP,∴BC1∵FP⊂平面EFPQ,BC⊄平面EFPQ,1∥平面EFPQ;∴直线BC1(Ⅱ)设平面EFPQ的一个法向量为=(,y,),则,∴取=(λ,﹣λ,1).同理可得平面MNPQ的一个法向量为=(λ﹣2,2﹣λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.【点评】本题考查直线与平面平行的证明,考查存在性问题,解题时要合理地化空间问题为平面问题,注意向量法的合理运用.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【分析】(1)依题意,p 1=0.2,p 2=0.7,p 3=0.1.由二项分布能求出在未4年中至多有1年的年入流量超过120的概率.(2)记水电站年总利润为Y ,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.【解答】解:(1)依题意,p 1=P (40<<80)==0.2, p 2=P (80≤≤120)==0.7,p 3=P (>120)==0.1.由二项分布得,在未4年中至多有1年的年入流量超过120的概率为 p=(1﹣p3)4+(1﹣p 3)3p 3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y )=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣160=840,因此P (Y=840)=P (40<<80)=p 1=0.2;当≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P (Y=2 000)=P (≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣320=680, 因此P (Y=680)=P (40<<80)=p 1=0.2;当80≤≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P (Y=1840)=P (80≤≤120)=p 2=0.7;当>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(>120)=p3=0.1.由此得Y的分布列如下:×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)【点评】本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【分析】(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M的轨迹C的方程;(Ⅱ)设出直线l的方程为y﹣1=(+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y﹣1=(+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【解答】解:(Ⅰ)设M(,y),依题意得:|MF|=||+1,即,化简得,y2=2||+2.∴点M的轨迹C的方程为;(Ⅱ)在点M 的轨迹C 中,记C 1:y 2=4(≥0),C 2:y=0(<0). 依题意,可设直线l 的方程为y ﹣1=(+2). 由方程组,可得y 2﹣4y+4(2+1)=0.①当=0时,此时y=1,把y=1代入轨迹C 的方程,得.故此时直线l :y=1与轨迹C 恰好有一个公共点(). ②当≠0时,方程y 2﹣4y+4(2+1)=0的判别式为△=﹣16(22+﹣1). 设直线l 与轴的交点为(0,0),则由y ﹣1=(+2),取y=0得. 若,解得<﹣1或>. 即当∈时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点. 若或,解得=﹣1或=或.即当=﹣1或=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当=﹣1或=或时,直线l 与轨迹C 恰好有两个公共点. 若,解得﹣1<<﹣或0<<.即当﹣1<<﹣或0<<时,直线l 与C 1有两个公共点,与C 2有一个公共点.此时直线l 与C 恰有三个公共点.综上,当∈∪{0}时,直线l与C恰有一个公共点;当∪{﹣1,}时,直线l与C恰有两个公共点;当∈时,直线l与轨迹C恰有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.【分析】(Ⅰ)先求函数定义域,然后在定义域内解不等式f′()>0,f′()<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<<e时,.,令=,有ln<,从而2﹣lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;【解答】解:(Ⅰ)函数f()的定义域为(0,+∞),∵f()=,∴f′()=,当f′()>0,即0<<e时,函数f()单调递增;当f′()<0,即>e时,函数f()单调递减.故函数f()的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<<e时,f()<f(e)=,即.在上式中,令=,又,则ln<,从而2﹣lnπ,即得lnπ.①由①得,elnπ>e(2﹣)>2.7×(2﹣)>2.7×(2﹣0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6﹣>6﹣e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.【点评】本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.。

【推荐】2014年湖北省高考数学试卷(理科)

【推荐】2014年湖北省高考数学试卷(理科)

2014年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B .C.1 D .C”3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=b+a,则()a>0,b<0 C.a<0,b>0 D.a<0,b<05.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是()A.0 B.1 C.2 D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A .B .C .D .9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A . B .C .3D .2 10.(5分)已知函数f ()是定义在R 上的奇函数,当≥0时,f ()=(|﹣a 2|+|﹣2a 2|﹣3a 2),若∀∈R ,f (﹣1)≤f (),则实数a 的取值范围为( )A .[﹣,]B .[﹣,]C .[﹣,]D .[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= .12.(5分)直线l 1:y=+a 和l 2:y=+b 将单位圆C :2+y 2=1分成长度相等的四段弧,则a 2+b 2= .13.(5分)设a 是一个各位数字都不是0且没有重复数字三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a=815,则I (a )=158,D (a )=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b= .三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= .16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.2014年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,()2=()A.﹣1 B.1 C.﹣i D.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题2.(5分)若二项式(2+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D.【分析】利用二项式定理的展开式的通项公式,通过幂指数为﹣3,求出a即可.【解答】解:二项式(2+)7的展开式即(+2)7的展开式中﹣3项的系数为84,==,所以T令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.3.(5分)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件.故选:C .【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=b+a ,则( )a >0,b <0 C .a <0,b >0 D .a <0,b <0 【分析】通过样本数据表,容易判断回归方程中,b 、a 的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a >0. 故选:B .【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣y中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.6.(5分)若函数f(),g()满足f()g()d=0,则f(),g()为区间[﹣1,1]上的一组正交函数,给出三组函数:①f()=sin,g()=cos;②f()=+1,g()=﹣1;③f()=,g()=2,其中为区间[﹣1,1]上的正交函数的组数是( )A .0B .1C .2D .3【分析】利用新定义,对每组函数求积分,即可得出结论.【解答】解:对于①:[sin •cos ]d=(sin )d=﹣cos =0,∴f(),g ()为区间[﹣1,1]上的一组正交函数; 对于②:(+1)(﹣1)d=(2﹣1)d=()≠0,∴f (),g ()不是区间[﹣1,1]上的一组正交函数; 对于③:3d=()=0,∴f (),g ()为区间[﹣1,1]上的一组正交函数,∴正交函数有2组,故选:C .【点评】本题考查新定义,考查微积分基本定理的运用,属于基础题.7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A .B .C .D .【分析】作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.【解答】解:平面区域Ω1,为三角形AOB ,面积为, 平面区域Ω2,为△AOB 内的四边形BDCO ,其中C (0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.【点评】本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V ≈L 2h ,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr , ∴=(2πr )2h ,∴π=. 故选:B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.9.(5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .B .C .3D .2【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【解答】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2, 即,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2, 即,③联立②③得,=4,由柯西不等式得(1+)()≥(1×+)2,即()=即,d 当且仅当时取等号,法2:设椭圆的长半轴为a 1,双曲线的实半轴为a 2,(a 1>a 2),半焦距为c , 由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1PF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos =(r 1)2+(r 2)2﹣r 1r 2,由,得,∴=,令m===,当时,m,∴,即的最大值为,法3:设|PF 1|=m ,|PF 2|=n ,则,则a 1+a 2=m ,则=,由正弦定理得=,即=sin(120°﹣θ)≤=故选:A.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.(5分)已知函数f()是定义在R上的奇函数,当≥0时,f()=(|﹣a2|+|﹣2a2|﹣3a2),若∀∈R,f(﹣1)≤f(),则实数a的取值范围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣,]【分析】把≥0时的f()改写成分段函数,求出其最小值,由函数的奇偶性可得<0时的函数的最大值,由对∀∈R,都有f(﹣1)≤f(),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.【解答】解:当≥0时,f()=,由f()=﹣3a2,>2a2,得f()>﹣a2;当a2<≤2a2时,f()=﹣a2;由f()=﹣,0≤≤a2,得f()≥﹣a2.∴当>0时,.∵函数f()为奇函数,∴当<0时,.∵对∀∈R,都有f(﹣1)≤f(),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【点评】本题考查了恒成立问题,考查了函数奇偶性的性质,运用了数学转化思想方法,解答此题的关键是由对∀∈R,都有f(﹣1)≤f()得到不等式2a2﹣(﹣4a2)≤1,是中档题.二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ= ±3 .【分析】根据向量垂直与向量坐标之间的关系建立方程关系,即可得到结论.【解答】解:∵向量=(3,3),=(1,﹣1),∴向量||=3,||=,向量•=3﹣3=0,若(+λ)⊥(﹣λ),则(+λ)•(﹣λ)=,即18﹣2λ2=0,则λ2=9,解得λ=±3,故答案为:±3,【点评】本题主要考查向量垂直的坐标公式的应用,比较基础.12.(5分)直线l1:y=+a和l2:y=+b将单位圆C:2+y2=1分成长度相等的四段弧,则a2+b2= 2 .【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D (a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b= 495 .【分析】给出一个三位数的a值,实验模拟运行程序,直到满足条件,确定输出的a值,可得答案.【解答】解:由程序框图知:例当a=123,第一次循环a=123,b=321﹣123=198;第二次循环a=198,b=981﹣189=792;第三次循环a=792,b=972﹣279=693;第四次循环a=693,b=963﹣369=594;第五次循环a=594,b=954﹣459=495;第六次循环a=495,b=954﹣459=495,满足条件a=b,跳出循环体,输出b=495.故答案为:495.【点评】本题通过新定义题型考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.三、解答题14.设f()是定义在(0,+∞)上的函数,且f()>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与轴的交点为(c,0),则称c为关于函数f()的平均数,记为Mf(a,b),例如,当f()=1(>0)时,可得Mf (a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f()= (>0)时,Mf(a,b)为a,b的几何平均数;(2)当f()= (>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)【分析】(1)设f()=,(>0),在经过点(a,)、(b,﹣)的直线方程中,令y=0,求得=c=,从而得出结论.(2)设f()=,(>0),在经过点(a,a)、(b,﹣b)的直线方程中,令y=0,求得=c=,从而得出结论.【解答】解:(1)设f()=,(>0),则经过点(a,)、(b,﹣)的直线方程为=,令y=0,求得=c=,(a,b)为a,b的几何平均数,∴当f()=,(>0)时,M故答案为:.(2)设f()=,(>0),则经过点(a,a)、(b,﹣b)的直线方程为=,令y=0,求得=c=,∴当f()=(>0)时,M(a,b)为a,b的调和平均数,f故答案为:.【点评】本题主要考查新定义,用两点式求直线的方程,属于中档题.15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB= 4 .【分析】利用切割线定理可得QA2=QC•QD,可求QA,可得PA,利用圆的切线长定理,可得PB.【解答】解:∵QA是⊙O的切线,∴QA2=QC•QD,∵QC=1,CD=3,∴QA2=4,∴QA=2,∴PA=4,∵PA,PB是⊙O的切线,∴PB=PA=4.故答案为:4.【点评】本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为(,1).【分析】把参数方程、极坐标方程化为直角坐标方程,再把两曲线的方程联立方程组求得C1与C2交点的直角坐标.【解答】解:把曲线C1的参数方程是(t为参数),消去参数化为直角坐标方程为2=3y2(≥0,y≥0),即y=(≥0).曲线C2的极坐标方程是ρ=2,化为直角坐标方程为2+y2=4.解方程组,再结合>0、y>0,求得,∴C1与C2交点的直角坐标为(,1),故答案为:(,1).【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两条曲线的交点,属于基础题.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【分析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin(t+),t∈[0,24),利用正弦函数的定义域和值域求得f()的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(t+)<﹣,即<t+<,解得t的范围,可得结论.【解答】解:(Ⅰ)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,及t=14时,函数取得最大值为10+2=12,当t+=时,即t=2时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),由10﹣2sin(t+)>11,求得sin(t+)<﹣,即<t+<,解得10<t<18,即在10时到18时,需要降温.【点评】本题主要考查函数y=Asin(ω+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.18.(12分)已知等差数列{an }满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn 为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d,则数列的通项公式可得.(Ⅱ)利用(Ⅰ)中数列的通项公式,表示出Sn 根据Sn>60n+800,解不等式根据不等式的解集判断.【解答】解:(Ⅰ)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ),化简得d 2﹣4d=0,解得d=0或4,当d=0时,a n =2,当d=4时,a n =2+(n ﹣1)•4=4n ﹣2.(Ⅱ)当a n =2时,S n =2n ,显然2n <60n+800,此时不存在正整数n ,使得S n >60n+800成立,当a n =4n ﹣2时,S n ==2n 2,令2n 2>60n+800,即n 2﹣30n ﹣400>0,解得n >40,或n <﹣10(舍去),此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41,综上,当a n =2时,不存在满足题意的正整数n ,当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC 1∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.∥FP,利用线面平行的【分析】(Ⅰ)建立坐标系,求出=2,可得BC1∥平面EFPQ;判定定理,可以证明直线BC1(Ⅱ)求出平面EFPQ的一个法向量、平面MNPQ的一个法向量,利用面EFPQ 与面PQMN所成的二面角为直二面角,建立方程,即可得出结论.【解答】(Ⅰ)证明:以D为原点,射线DA,DC,DD分别为,y,轴的正1(0,2,2),E(2,1,0),F(1,0,半轴,建立坐标系,则B(2,2,0),C10),P(0,0,λ),∴=(﹣2,0,2),=(﹣1,0,λ),=(1,1,0)λ=1时,=(﹣2,0,2),=(﹣1,0,1),∴=2,∥FP,∴BC1∵FP⊂平面EFPQ,BC⊄平面EFPQ,1∥平面EFPQ;∴直线BC1(Ⅱ)设平面EFPQ的一个法向量为=(,y,),则,∴取=(λ,﹣λ,1).同理可得平面MNPQ的一个法向量为=(λ﹣2,2﹣λ,1),若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则•=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±.∴存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.【点评】本题考查直线与平面平行的证明,考查存在性问题,解题时要合理地化空间问题为平面问题,注意向量法的合理运用.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【分析】(1)依题意,p 1=0.2,p 2=0.7,p 3=0.1.由二项分布能求出在未4年中至多有1年的年入流量超过120的概率.(2)记水电站年总利润为Y ,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.【解答】解:(1)依题意,p 1=P (40<<80)==0.2, p 2=P (80≤≤120)==0.7,p 3=P (>120)==0.1.由二项分布得,在未4年中至多有1年的年入流量超过120的概率为 p=(1﹣p3)4+(1﹣p 3)3p 3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y )=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣160=840,因此P (Y=840)=P (40<<80)=p 1=0.2;当≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P (Y=2 000)=P (≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<<80时,一台发电机运行,此时Y=1000﹣320=680, 因此P (Y=680)=P (40<<80)=p 1=0.2;当80≤≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P (Y=1840)=P (80≤≤120)=p 2=0.7;当>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(>120)=p3=0.1.由此得Y的分布列如下:×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)【点评】本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.21.(14分)在平面直角坐标系Oy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【分析】(Ⅰ)设出M点的坐标,直接由题意列等式,整理后即可得到M 的轨迹C的方程;(Ⅱ)设出直线l的方程为y﹣1=(+2),和(Ⅰ)中的轨迹方程联立化为关于y的一元二次方程,求出判别式,再在直线y﹣1=(+2)中取y=0得到.然后分判别式小于0、等于0、大于0结合<0求解使直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时的相应取值范围.【解答】解:(Ⅰ)设M(,y),依题意得:|MF|=||+1,即,化简得,y2=2||+2.∴点M的轨迹C的方程为;(Ⅱ)在点M 的轨迹C 中,记C 1:y 2=4(≥0),C 2:y=0(<0).依题意,可设直线l 的方程为y ﹣1=(+2). 由方程组,可得y 2﹣4y+4(2+1)=0.①当=0时,此时y=1,把y=1代入轨迹C 的方程,得.故此时直线l :y=1与轨迹C 恰好有一个公共点(). ②当≠0时,方程y 2﹣4y+4(2+1)=0的判别式为△=﹣16(22+﹣1). 设直线l 与轴的交点为(0,0),则由y ﹣1=(+2),取y=0得. 若,解得<﹣1或>. 即当∈时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点. 若或,解得=﹣1或=或.即当=﹣1或=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当=﹣1或=或时,直线l 与轨迹C 恰好有两个公共点. 若,解得﹣1<<﹣或0<<.即当﹣1<<﹣或0<<时,直线l 与C 1有两个公共点,与C 2有一个公共点. 此时直线l 与C 恰有三个公共点. 综上,当∈∪{0}时,直线l 与C 恰有一个公共点;当∪{﹣1,}时,直线l与C恰有两个公共点;当∈时,直线l与轨迹C恰有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f()=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.【分析】(Ⅰ)先求函数定义域,然后在定义域内解不等式f′()>0,f′()<0即可得到单调增、减区间;(Ⅱ)由e<3<π,得eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.再根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,从而六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由此进而得到结论;(Ⅲ)由(Ⅱ)可知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)可得0<<e时,.,令=,有ln<,从而2﹣lnπ,即得lnπ.①,由①还可得lnπe>lne3,3lnπ>π,由此易得结论;【解答】解:(Ⅰ)函数f()的定义域为(0,+∞),∵f()=,∴f′()=,当f′()>0,即0<<e时,函数f()单调递增;当f′()<0,即>e时,函数f()单调递减.故函数f()的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵e<3<π,∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=ln,y=e,y=π在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π,故这六个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(Ⅰ)的结论,得f(π)<f(3)<f(e),即,由,得lnπ3<ln3π,∴3π>π3;由,得ln3e<lne3,∴3e<e3.综上,6个数中的最大数是3π,最小数是3e.(Ⅲ)由(Ⅱ)知,3e<πe<π3<3π,3e<e3,又由(Ⅱ)知,,得πe<eπ,故只需比较e3与πe和eπ与π3的大小.由(Ⅰ)知,当0<<e时,f()<f(e)=,即.在上式中,令=,又,则ln<,从而2﹣lnπ,即得lnπ.①由①得,elnπ>e(2﹣)>2.7×(2﹣)>2.7×(2﹣0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,∴e3<πe.又由①得,3lnπ>6﹣>6﹣e>π,即3lnπ>π,∴eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大顺序为3e,e3,πe,eπ,π3,3π.【点评】本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(湖北卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2
)11(i
i ( )
A. 1-
B. 1
C. i -
D. i 2. 若二项式7
)2(x
a x +的展开式中
3
1
x 的系数是84,则实数=a ( ) A.2 B.
5
4 C. 1 D.
4
2 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A I ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件
x 3 4 5
6 7
8
y
4.0
2.5
5.0-
0.5
0.2-
0.3-
得到的回归方程为a bx y
+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a
5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),
(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )
A. ①和②
B.③和①
C. ④和③
D.④和②
6.若函数[]1,1)(),(,0)()()(),(11
-=⎰
-为区间
则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 2
1
cos )(,21sin
)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.3
7.由不等式⎪⎩

⎨⎧≤--≥≤0
200
x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中
随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.8
7
8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2
1.36
v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2
275
v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258
C.15750
D.355113
9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123
F PF π
∠=,则椭圆和双曲线的离心
率的倒数之和的最大值为( )
A.
3
B.3
C.3
D.2
二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)
11.设向量(3,3)a =r ,(1,1)b =-r ,若()(
)
a b a b λλ+⊥-r r r r
,则实数λ=________.
12.直线1l :y=x+a 和2l :y=x+b 将单位圆2
2
:1C x y +=分成长度相等的四段弧,则22
a b +=________.
13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图
所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.
14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2
)
,(b
a c
b a M f +=
=,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数b
a ab
+2; (以上两空各只需写出一个符合要求的函数即可)
(二)选考题
15.(选修4-1:几何证明选讲)
如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若
,3,1==CD QC 则_____=PB
16.(选修4-4:坐标系与参数方程)
已知曲线1C 的参数方程是⎪⎩

⎨⎧=
=33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,
曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________
17、(本小题满分11分)
某实验室一天的温度(单位:
)随时间(单位;h )的变化近似满足函数关系;
(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于
,则在哪段时间实验室需要降温?
18(本小题满分12分) 已知等差数列满足:=2,且,成等比数列.
(1) 求数列的通项公式.
(2) 记为数列的前n 项和,是否存在正整数n ,使得
若存在,求n 的最小值;若
不存在,说明理由.
19(本小题满分12分)
如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . (1)当1=λ时,证明:直线1BC 平面EFPQ ;
(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.
20.(本小题满分12分)
计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C.
(1)求轨迹为C 的方程
(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。

相关文档
最新文档