乙醇气固相催化制备乙烯实验报告

合集下载

化学实验报告制取乙烯(3篇)

化学实验报告制取乙烯(3篇)

第1篇实验名称:制取乙烯实验日期:2023年X月X日实验目的:1. 学习实验室制取乙烯的方法。

2. 掌握乙醇脱水反应的原理和操作步骤。

3. 了解反应条件对产物的影响。

4. 培养实验操作技能和安全意识。

实验原理:乙醇在浓硫酸的催化作用下,加热至170℃左右时,会发生消去反应,生成乙烯和水。

反应方程式如下:\[ C_2H_5OH \xrightarrow{H_2SO_4, 170℃} C_2H_4 + H_2O \]实验仪器与试剂:1. 仪器:酒精灯、试管、试管夹、烧杯、铁架台、导管、集气瓶、橡胶塞、玻璃片、温度计。

2. 试剂:无水乙醇、浓硫酸、碎瓷片。

实验步骤:1. 取一支干燥的试管,加入约5ml无水乙醇。

2. 慢慢加入浓硫酸,边加边振荡,使混合液均匀。

3. 在试管中加入少量碎瓷片,防止暴沸。

4. 用橡胶塞密封试管,插入温度计,温度计的水银球应位于液面以下。

5. 将试管固定在铁架台上,用酒精灯加热,控制温度在170℃左右。

6. 观察反应现象,当观察到有气体产生时,将导管插入集气瓶中,收集乙烯气体。

7. 实验结束后,关闭酒精灯,将试管中的液体倒入烧杯中,用水冲洗试管。

8. 将收集到的乙烯气体用点燃的火柴检验,观察火焰的颜色和声音。

实验现象:1. 加热过程中,试管内出现大量气泡,表明有气体产生。

2. 集气瓶中收集到的气体,用火柴点燃,火焰明亮,伴有“嘭”的一声,表明气体为乙烯。

实验结果:1. 成功制取乙烯气体。

2. 实验过程中,温度控制在170℃左右,反应现象明显。

实验分析:1. 本实验成功制取了乙烯气体,验证了乙醇在浓硫酸催化下加热至170℃左右可以发生消去反应生成乙烯。

2. 实验过程中,温度对反应有重要影响,温度过高或过低都会影响产物的生成。

3. 实验过程中,应注意安全操作,避免发生意外。

实验总结:1. 本实验学习了实验室制取乙烯的方法,掌握了乙醇脱水反应的原理和操作步骤。

2. 通过实验,了解了反应条件对产物的影响,培养了实验操作技能和安全意识。

乙醇乙烯制作实验报告

乙醇乙烯制作实验报告

一、实验目的1. 学习乙醇的制备方法。

2. 学习乙烯的制备方法。

3. 掌握实验操作技能,提高实验操作水平。

二、实验原理1. 乙醇的制备:乙醇可以通过酒精发酵法、乙烯水化法等方法制备。

本实验采用乙烯水化法制备乙醇。

2. 乙烯的制备:乙烯可以通过乙醇脱水法、乙烷催化氧化法等方法制备。

本实验采用乙醇脱水法制备乙烯。

三、实验仪器与试剂1. 仪器:烧瓶、冷凝管、温度计、酒精灯、滴定管、试管、铁架台、玻璃棒等。

2. 试剂:乙醇、浓硫酸、无水氯化钙、氢氧化钠、氢氧化钠溶液、氢氧化钠固体、氢氧化钠水溶液、硫酸铜溶液、碘化钾溶液等。

四、实验步骤1. 乙醇的制备:(1)取一定量的乙醇放入烧瓶中,加入适量的浓硫酸。

(2)将烧瓶置于酒精灯上加热,同时用温度计控制温度在140℃左右。

(3)观察反应现象,当反应液变为无色时,停止加热。

(4)将反应液倒入冷凝管中,冷却至室温。

(5)加入适量的无水氯化钙,过滤除去杂质。

(6)将滤液转移至烧瓶中,加入适量的氢氧化钠溶液,调节pH值至7。

(7)加入适量的硫酸铜溶液,观察蓝色沉淀的形成。

(8)将反应液转移至烧瓶中,加入适量的氢氧化钠固体,搅拌溶解。

(9)将反应液转移至滴定管中,用碘化钾溶液滴定至蓝色消失。

2. 乙烯的制备:(1)取一定量的乙醇放入烧瓶中,加入适量的浓硫酸。

(2)将烧瓶置于酒精灯上加热,同时用温度计控制温度在140℃左右。

(3)观察反应现象,当反应液变为无色时,停止加热。

(4)将反应液倒入冷凝管中,冷却至室温。

(5)加入适量的氢氧化钠溶液,调节pH值至7。

(6)将反应液转移至烧瓶中,加入适量的氢氧化钠固体,搅拌溶解。

(7)将反应液转移至滴定管中,用碘化钾溶液滴定至蓝色消失。

五、实验结果与分析1. 乙醇的制备:实验过程中,反应液变为无色,说明乙醇已经生成。

加入无水氯化钙后,过滤除去杂质,得到的滤液呈无色。

加入氢氧化钠溶液后,调节pH值至7,加入硫酸铜溶液,观察到蓝色沉淀的形成,说明乙醇已经制备成功。

乙醇气相脱水制乙烯实验报告(一)

乙醇气相脱水制乙烯实验报告(一)

乙醇气相脱水制乙烯实验报告(一)
乙醇气相脱水制乙烯实验报告
实验目的
•研究乙醇气相脱水制乙烯的实验条件和产物收率
•探究乙醇脱水反应机理
实验原理
•乙醇气相脱水反应:乙醇在高温下与催化剂作用生成乙烯和水•催化剂:常用的催化剂有磷酸系催化剂、硅铝酸盐等
实验步骤
1.准备实验装置:包括加热器、冷凝器、反应容器等
2.将乙醇与催化剂按一定比例加入反应容器中
3.将装置密封,加热至特定温度,并控制温度保持稳定
4.收集冷凝水,记录产物乙烯的收率
5.进行实验单点和多点对比实验,研究不同条件下的乙醇脱水反应
情况
实验结果
•控制温度为300°C、催化剂为磷酸系催化剂的实验,乙醇脱水产物乙烯收率为70%
•提高温度至400°C,乙醇脱水产物乙烯收率上升至80%
结论
•乙醇气相脱水制乙烯是一种有效的方法,可以通过调节温度和催化剂种类来控制乙烯的产率
•高温对乙醇脱水反应有促进作用,但过高温度可能导致副反应的发生和产物选择性的降低
实验改进
•进一步研究不同催化剂在乙醇脱水反应中的催化活性和选择性•调查不同温度下乙醇脱水反应的反应动力学特性
以上是本次乙醇气相脱水制乙烯实验的相关报告。

通过实验的不断改进和深入研究,有望在工业生产中应用该方法来制备乙烯。

乙醇气相脱水制乙烯实验报告

乙醇气相脱水制乙烯实验报告

乙醇气相脱水制乙烯实验报告1. 引言本实验旨在通过乙醇气相脱水制备乙烯,并探究不同反应条件对乙烯产率的影响。

乙烯是一种重要的工业原料,广泛应用于塑料、橡胶、化肥等领域。

本实验通过控制反应温度、气体流速和催化剂用量,寻找最佳的制备乙烯的条件。

2. 实验步骤2.1 原料准备准备乙醇、催化剂和载气。

乙醇要保持高纯度,以确保反应的可靠性和重复性。

催化剂一般选择酸性固体催化剂,如磷钨酸盐等。

载气可以选择氮气,用于控制反应系统的气氛。

2.2 反应装置搭建搭建乙醇气相脱水反应装置,并将所需的催化剂放置在反应器中。

反应器需要具备对温度和流速的精确控制能力,以确保反应的可控性。

2.3 反应条件设定根据实验要求,设定不同的反应条件,包括反应温度、气体流速和催化剂用量。

通过改变这些条件,可以比较它们对乙烯产率的影响。

2.4 实验操作将乙醇注入反应器中,加热至设定的反应温度。

在反应过程中,控制气体流速,并定期取样分析乙烯产率。

根据乙烯的生成速率和反应时间,计算乙烯的产率。

3. 实验结果与分析3.1 不同反应温度下的产率比较在固定流速和催化剂用量的条件下,分别设定不同的反应温度,并测定乙烯的产率。

结果显示,随着反应温度的升高,乙烯的产率逐渐增加,但在一定温度范围内,随着温度的继续升高,乙烯的产率开始下降。

这可能是因为催化剂在高温下活性减弱,导致反应速率降低。

3.2 不同气体流速下的产率比较在固定温度和催化剂用量的条件下,分别设定不同的气体流速,并测定乙烯的产率。

结果显示,随着气体流速的增加,乙烯的产率逐渐增加,并达到一个稳定的值。

这可能是因为较高的流速有利于乙醇与催化剂的接触,促使反应更充分地进行。

3.3 不同催化剂用量下的产率比较在固定温度和气体流速的条件下,分别设定不同的催化剂用量,并测定乙烯的产率。

结果显示,随着催化剂用量的增加,乙烯的产率呈现先增加后减少的趋势。

这是因为催化剂的增加可以提高反应速率,但过多的催化剂可能会导致反应中产生的副产物增加,从而降低乙烯的产率。

实验3乙醇气相脱水制乙烯宏观反应速率的测定

实验3乙醇气相脱水制乙烯宏观反应速率的测定

实验三简易内循环无梯度反应(乙醇气相脱水制乙烯宏观反应速率的测定)一、实验目的1.巩固所学有关反应动力学方面的知识。

2.掌握测取宏观反应动力学数据的手段和方法。

3.学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。

4.了解内循环式无梯度反应器的特点及其使用方法。

二、实验原理反学动力学描述了化学反应速率与各种因素如浓度、温度、压力、催化剂等之间的定量关系。

动力学在反应过程开发和反应器设计过程中起着重要的作用。

它也是反应工程学科的重要组成部分。

气固相催化反应是一个多步骤的反应,它包括以下七个步骤:1.反应物分子由气流主体向催化剂的外表面扩散(外扩散);2.反应物分子由催化剂外表面向催化剂微孔内表面扩散(内扩散);3.反应物分子在催化剂微孔内表面上被吸附(表面吸附);4.吸附的反应物分子在催化剂的表面上发生化学反应,转化成产物分子(表面反应);5.产物分子从催化剂的内表面上脱附下来(表面脱附);6.脱附下来的产物分子从微孔内表面向催化剂外表面扩散(内扩散);7.产物分子从催化剂的外表面向气流主体扩散。

这七个步骤可分为物理过程和化学过程。

其中步骤1、2、6、7为物理扩散过程,步骤3、4、5为化学过程。

在化学过程中,步骤3、步骤5分别为化学吸附和化学脱附过程,步骤4为表面化学反应过程。

整个反应的总速率取决于这7个步骤中阻力最大的一步,该步骤称为反应的速率控制步骤。

如果步骤1或7为控制步骤,称反应为外扩散控制反应;如果步骤2或6为控制步骤,称反应为内扩散控制反应;如果步骤3、4或5的任何一步为控制步骤,称反应过程为反应控制或动力学控制。

在考虑以上所有步骤的影响的反应速率为为宏观反应速率,在消除了传递过程(包括热量传递和质量传递)的影响的理想情况下,测得的化学反应的反应速率为相应反应的本征反应速率。

在实际反应过程中,由于固体催化剂一般都具有很大的内表面,反应物质通过扩散达到催化剂内部的不同深度进行反应,因而导致常常具有浓度梯度和温度梯度,而这个浓度梯度和温度梯度对催化反应影响一般很大,因此需要了解催化剂颗粒内表面的浓度和温度梯度,即内扩散对总反应速率的影响。

乙醇气相脱水制乙烯动力学(内循环无梯度)

乙醇气相脱水制乙烯动力学(内循环无梯度)

3.300
气 81.57 1.465 16.46 0.08825 0.408

16.24
83.5
0.6000
318.5
气 89.78 2.065

48.81
7.098
0.1551 51.09
0.984 0.9600
气 90.18 2.298 7.109 0.3243
1.440

56.59
43.02
1.570
水,乙醇,乙醚的摩尔数分别为 0.0134,0.0151,0.0041 质量计算;乙烯质量=原子量×摩尔数=32×0.0087=0.2795 水和乙醇,乙醚的质量分别为 0.2407,0.6975,0.3030 合计为:0.0087+0.2407+0.6975+0.303=1.5206 与乙醇进料量基本平衡。
六、讨论 1、本次实验用来巩固所学的有关动力学的知识,由实验证明该反应器是本
征反应。 2、本次实验在操作过程中,另取了 4 个点,得一直线。 3、由实验结果可以看出,升高反应温度,乙醇气相脱水制乙烯反应有利于
生成乙烯,不利于生成乙醚。最佳反应温度在 350℃左右。
95.98
46.45 0.03515
69.50 24.59 2.155 3.766
96.62
66.36 0.01675
59.08 38.42 0.7433 1.763
98.67
64.13 0.03238
54.62 43.76 0.4146 1.198
99.24
60.84 0.04605
CA
0.0002080 0.0001580 0.0001230 0.0004320 0.0002540 0.0002310 0.001462 0.0005890 0.0005340 0.0004270 0.0001470 0.00008210

乙醇气固相催化制备乙烯实验报告

乙醇气固相催化制备乙烯实验报告

化工专业实验报告实验六乙醇气固催化脱水制乙烯姓名:XXX学号:XXXXXX班级:同组人:一实验目的1、掌握乙醇脱水实验的反应过程、实验流程和操作。

2、掌握乙醇气相脱水操作条件对产物收率的影响,学会获取稳定的工艺条件的方法。

3、了解固定床反应器的构造、原理和使用方法,学习反应器的正常操作和安装。

4、学习气相色谱在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5、学习微量泵的使用方法,学会使用湿式流量计测量流体流量。

二、实验原理乙醇脱水属于平行反应,即可进行分子内脱水生成乙烯,又可进行分子间脱水生成乙醚。

一般而言,较低的温度有利于生成乙醚,因此该复合反应条件改变,脱水机理也有不同。

采用浓硫酸、氧化铝和分子筛催化剂可以有下列反应过程产生:浓硫酸:2C2H5-OH C2H5OC2H5+H2O(140℃)C2H5OH C2H4+H2O(170℃)氧化铝:C2H5OH C2H4+H2O(360℃)分子筛:C2H5OH C2H4+H2O(300℃)随着温度升高,反应可得到足够多的乙烯转化,而乙醚的生成量较少。

乙烯是世界上产量最大的化学产品之一,乙烯工业是石油化工产业的核心,乙烯产品占石化产品的70%以上,在国民经济中占有重要的地位。

世界上已将乙烯产品作为衡量一个国家石油化工生产水平的重要标志之一。

主要用于制聚乙烯、聚氯乙烯、醋酸、高级醇等,还可用来催熟水果。

三、实验装置及流程图6-1 固定床反应装置实物图 VAVV 57151683TCITITCI-控温热电偶;TI-测温热电偶;PI-压力计; K-调节阀;V-截止阀;VA-调节阀;VB-安全阀;1-气体钢瓶;2-钢瓶减压阀;3-稳压阀;4-干燥器;5-过滤器;6-质量流量控制器;7,7'-取样器;8-预热炉;9-预热器;10-反应炉;11-固定床反应器;12-汽液分离器;13-冷凝器; 14-尾液收集器;15-转子流量计;16-湿式流量计; 17-加料罐;18-液体泵;PI9104TCI TCITCI6137'141812111217KPIVV57151683TCITI TCI-控温热电偶;TI-测温热电偶;PI-压力计; K-调节阀;V-截止阀;VA-调节阀;VB-安全阀;1-气体钢瓶;2-钢瓶减压阀;3-稳压阀;4-干燥器;5-过滤器;6-质量流量控制器;7,7'-取样器;8-预热炉;9-预热器;10-反应炉;11-固定床反应器;12-汽液分离器;13-冷凝器; 14-尾液收集器;15-转子流量计;16-湿式流量计; 17-加料罐;18-液体泵;PI9104TCI TCITCI6137'14181111217K PI图6-2 乙醇气固催化制备乙烯实验流程图本实验选用固定床反应器,凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器。

乙醇气相脱水制乙烯动力学实验(2)

乙醇气相脱水制乙烯动力学实验(2)

乙醇气相脱水制乙烯动力学实验(2)化工专业实验报告实验名称:乙醇气相脱水制乙烯动力学实验一、实验目的1、巩固所学的有关动力学方面的知识;2、掌握获得的反应动力学数据的方法和手段;3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值;4、熟悉内循环式无梯度反应器的特点以及其他有关设备的特点以及其它有关设备的使用方法,提高自己的实验技能。

二、实验原理乙醇脱水属于平等反应。

既可以进行分子内脱水成乙烯,又可以分子间脱水生成乙醚。

一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。

较高温度:O H H OC H C OH H C 25252522+→ 较低温度:OH H C OH H C 24252+→三、实验装置、流程及试剂1.实验装置装置由三部分组成:第一部分是有微量进料泵,氢气钢瓶,汽化器和取样六通阀组成的系统;第二部分是反应系统,它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成;第三部分是取样和分析系统,包括六通阀,产品收集器和在线气相色谱信。

2.实验流程如下图所示:PI内循环无梯度反应色谱实验装置流程示意图1017TITCI 8911TIC-控温;TT-测温;PI-压力计;V1-进气截止;V2-进气预热截止阀;K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀;1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器;7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达;13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵1211V 1PI色谱TCITCITCI2345613141531618K 1K 2V 2进气预热截止K 37J内循环无梯度反应色谱实验装置流程示意图3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重3.0g 。

四、实验步骤1、打开H 2钢瓶使柱前压达到0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱温110℃,汽化室130℃,检测室温达到120℃,待温度稳定后,打开导热池——微电流放大器开关,桥电流至100mA ;2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温至160℃;3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工专业实验报告实验六乙醇气固催化脱水制乙烯姓名:XXX学号:XXXXXX班级:同组人:一实验目的1、掌握乙醇脱水实验的反应过程、实验流程和操作。

2、掌握乙醇气相脱水操作条件对产物收率的影响,学会获取稳定的工艺条件的方法。

3、了解固定床反应器的构造、原理和使用方法,学习反应器的正常操作和安装。

4、学习气相色谱在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5、学习微量泵的使用方法,学会使用湿式流量计测量流体流量。

二、实验原理乙醇脱水属于平行反应,即可进行分子内脱水生成乙烯,又可进行分子间脱水生成乙醚。

一般而言,较低的温度有利于生成乙醚,因此该复合反应条件改变,脱水机理也有不同。

采用浓硫酸、氧化铝和分子筛催化剂可以有下列反应过程产生:浓硫酸:2C2H5-OH C2H5OC2H5+H2O(140℃)C2H5OH C2H4+H2O(170℃)氧化铝:C2H5OH C2H4+H2O(360℃)分子筛:C2H5OH C2H4+H2O(300℃)随着温度升高,反应可得到足够多的乙烯转化,而乙醚的生成量较少。

乙烯是世界上产量最大的化学产品之一,乙烯工业是石油化工产业的核心,乙烯产品占石化产品的70%以上,在国民经济中占有重要的地位。

世界上已将乙烯产品作为衡量一个国家石油化工生产水平的重要标志之一。

主要用于制聚乙烯、聚氯乙烯、醋酸、高级醇等,还可用来催熟水果。

三、实验装置及流程图6-1 固定床反应装置实物图 VAVV 57151683TCITITCI-控温热电偶;TI-测温热电偶;PI-压力计; K-调节阀;V-截止阀;VA-调节阀;VB-安全阀;1-气体钢瓶;2-钢瓶减压阀;3-稳压阀;4-干燥器;5-过滤器;6-质量流量控制器;7,7'-取样器;8-预热炉;9-预热器;10-反应炉;11-固定床反应器;12-汽液分离器;13-冷凝器; 14-尾液收集器;15-转子流量计;16-湿式流量计; 17-加料罐;18-液体泵;PI9104TCI TCITCI6137'141812111217KPIVV57151683TCITI TCI-控温热电偶;TI-测温热电偶;PI-压力计; K-调节阀;V-截止阀;VA-调节阀;VB-安全阀;1-气体钢瓶;2-钢瓶减压阀;3-稳压阀;4-干燥器;5-过滤器;6-质量流量控制器;7,7'-取样器;8-预热炉;9-预热器;10-反应炉;11-固定床反应器;12-汽液分离器;13-冷凝器; 14-尾液收集器;15-转子流量计;16-湿式流量计; 17-加料罐;18-液体泵;PI9104TCI TCITCI6137'14181111217K PI图6-2 乙醇气固催化制备乙烯实验流程图本实验选用固定床反应器,凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器。

固定床反应器的优点可归纳为:(1)、催化剂在床层内不易磨损;(2)床层内流体的流动接近于平推流,与返混式反应器相比,用较少的催化剂和较小的反应器容积来获得较大的生产能力;(3)、结构简单。

固定床反应器的缺点是:(1)、传热较差。

反应放热量很大时,即使是列管式反应器也可能出现飞温(当某一参数变化到一定程度时就可能使床层温度失去控制,急剧上升,超过允许范围,这种现象俗称飞温)。

(2)操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用。

实验流程:无水乙醇由进口泵泵入预热器后,进入填装有催化剂的固定床反应器中反应,反应产物经冷凝后,冷凝液流入收集器,不凝气体经湿式流量计计量后排空。

反应产物由气相色谱仪进行分析。

四、实验步骤及方法1、催化剂的填装松开反应器的下部热电偶套管密封件,拆去下部出口与分离器连接接头和上部与预热器连接接头,卸开大螺帽将反应器从加热炉上部拉出,再卸下反应器上部大螺帽,上部朝下用铁丝拉出玻璃棉,倒出催化剂,取出套管和支撑架,用丙酮或乙醇清洗干净后吹干,再插入测温套管及催化剂支撑架和不锈钢支撑网后,连接下部大螺帽(从套管中穿过,用手拧紧螺帽再拧紧反应器的下部热电偶套管密封件,使套管不能移动),最后装入新催化剂,催化剂装填量为20ml。

注意:装催化剂要将套管放在反应器中心位置,要用小直径的长棍测量催化剂的床层高度,最好使催化剂床层处于加热炉的中部。

将上盖大螺帽通过测温套管安装好,用扳手拧紧后再卸下下部大螺帽,重新插入炉内,在拧紧上预热器后、用板手拧紧反应器下部大螺帽,再连接好分离器接头,插入测温热电偶。

2、系统试漏通过稳压阀和调节阀进入空气或氮气,堵塞出口和液体进口,加压至0.1MPa,5分钟不下降为合格。

试漏合格后打开被堵塞的管路,可进行实验操作。

3、升温与温度控制升温前必须检查热电偶和加热电路接线是否正确,检查无误后方可开启电源总开关和分开关,此时控温仪表有温度数值显示出来。

顺时针方向调节电流给定旋钮,电流表有电流指示表明已开始加热。

电流给定值最好反应器不超过2A;预热器不超过1A。

反应器温度设定为260~400℃(温度给定一般是上、下设定为同一温度,而且小于中段20℃),预热器温度设定为110℃。

4、进料与反应在温度达到设定值后,继续稳定10~20min,然后开始加入无水乙醇,乙醇的加料速度为10~30ml/hr,正式开始实验。

分别在气液分离器下放置干净的采样瓶。

记录湿式流量计读数,应每隔一定时间记录反应温度等实验条件。

反应时间为20~30min。

5、分析产生乙烯气体在湿式流量计内计量。

当反应结束后将分离器内液体取出称量,通过蒸馏手段,除去实验中可能产生的副产物乙醚,然后对液体进行气相色谱分析。

6、改变反应条件改变反应温度,每次提高20~30℃,重复上述实验步骤,则得到不同反应温度下的原料转化率和产物收率。

改变进料速率,每次提高5~10ml/hr,重复上述实验步骤,则得到不同进料速率下的原料转化率和产物收率。

改变催化剂用量,每次改变2.5ml,重复上述实验步骤,则得到不同催化剂用量下的原料转化率和产物收率。

7、结束实验停止加料(液体),停止加热,将电流给定逆时针转至零后关闭电源。

关闭色谱(待柱温降至室温后,关闭色谱电源,最后停止通载气),停下实验。

五、实验数据记录与处理表1 原始记录表表2 色谱原始数据表3 液体质量原始数据表4 转化率相关数据计算表五收率与选择性相关数据计算计算以反应温度288.7℃,流量Q-1.1 ml/min 数据为例1. 乙醇转化率X 计算以标准状态下处理温度与压力、气相色谱乙醇校正因子F i = 0.886、水校正因子F=1、95%乙醇密度ρ=0.789g/ml加入乙醇总量 g 663.16789.021.201.195.0t 95.0m =⨯⨯⨯==ρQ 进产物中乙醇含量w=FA A F i i =989.0675187886.065691675187886.0=⨯+⨯⨯ 产物中乙醇的剩余量=m 余w=3.692×0.989=3.652g 乙醇转化率%08.78%100663.16652.3663.16%100m m m =⨯-=⨯-=进余进X2. 乙烯的回收率乙烯体积V=5.252L ,由理想气体状态方程PV=nRT 得mol 234.015.273314.810252.510325.101n 33=⨯⨯⨯⨯=-乙烯生成乙烯所需要的乙醇量=M ·n 乙烯=46×0.234=10.779g 收率%69.64%100663.16779.10%100=⨯=⨯=Φ乙醇总量生成所需乙醇量3. 乙烯选择性S 计算%85.82%08.78%69.64==Φ=X S 六、结果与讨论I. 由上述数据可以看出,在温度相同下随着进料流量Q 的增大,使得乙烯的收率与选择性都有一定程度的降低,同时转化率也下降;II.由原始数据表1中(2)、(3)两组数据降低温度促进了乙醚的生成降低了乙烯的选择性以及转化率;III.实验中有较大的误差,引起误差的有:色谱仪器使用年限过久本身存在着较大的系统误差;因实验仪器灵敏度而产生的读书等系统误差;乙醚未分离完全使得产物乙醇剩余量偏大;计算过程中引入了计算误差。

综合实验过程和结果实验中为了得到更高的乙烯选择性、收率以及转化率,实验条件应采取升高反应温度、降低进料流量。

七、思考题1、怎样对整个反应过程进行物料恒算?应该注意哪些问题?答:根据反应方程式,利用求出的乙烯和乙醚的质量可以算出反应所需的乙醇的总量,利用下面表达式对乙醇进行物料恒算:液体产物中乙醇质量+ 生成反应物消耗的乙醇质量- 乙醇进量若上式等于零,则表明物料守恒。

要进行物料衡算应该注意下述条件:1) 保证反应过程应达到稳态。

这可以根据设备仪表的读数是否稳定在目标温度确定;2) 确保色谱读数可靠。

实验中,通过完成两次色谱测定,只有当两次色谱结果各值差距不超过2时,才能确保色谱操作可信。

3) 确保每次称量液体产品前,都要对三角锥瓶进行称重,不能以第一次结果进行测量。

因为每次实验都要对容器进行彻底地清洗,凡士林不能保证每次涂抹量一样。

4) 最好保证实验的时间控制精确到秒。

这是因为乙醇进量是根据流量乘以时间求出,相差几十秒对实验衡算结果影响也是不小的。

2、固定床反应器的特点?答:固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。

②催化剂机械损耗小。

③结构简单。

固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。

②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。

相关文档
最新文档