连续时间马尔可夫链

合集下载

4 随机过程 连续时间的马尔可夫链

4 随机过程 连续时间的马尔可夫链

p 01
p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
ìïïíïïïî
p01 p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
q = lim p01 (h ) = l
h 01
h0
Q = 骣çççç桫-ml
q = lim p10 (h ) = m
h 10
n+1
n
n+1 n
{ ( ) ( ) ( ) } ( ) ( ) \ P X t n +1 = in +1 / X t1 = i1, L , X t n = in = P {X t n +1 = in +1 / X t n = in }
即具有马尔可夫性
证:齐次性,当j i时,由泊松过程定义
PX s t j / X s i
(t
)
=
-
(l
+
m)
p 00
(t
)
+
m
( ) p 01
(t
)
=
1-
p 00
(t
)
( ) ( ) ( ) e(l + m)t 轾 犏 臌p0¢0 t + l + m p00 t = me(l + m)t
d
dt
e t p00
t
e t
e t
p00 t
{ } ( ) ( ) ( ) ( ) P X t n + 1 = in +1 | X t 1 = i1, X t 2 = i2, L , X t n = in { } ( ) ( ) = P X t n + 1 = in + 1 | X t n = in 则称 {X (t ),t ³ }0 为连续时间马尔可夫链,

第五章 连续时间得Markov链

第五章 连续时间得Markov链
5、2微分方程
对于离散时间齐次链,如果已知其一步转移概率矩阵,则步转移概率矩阵由一步转移概率矩阵得次方即可求得、但就是,对于连续时间齐次链,由于“步长”得概念失效,转移概率函数得求法较为复杂,一般通过解微分方程求出转移概率函数、为此,我们首先讨论得可微性及所满足得微分方程、
定理5、2设齐次链满足连续性条件(5、4),则对于任意固定得转移概率函数就是得一致连续函数、
解由例5、3,要求机器最后所处得状态为正常工作,只需计算即可、
由于,且
因此
例5、5 (排队问题)设有一随机服务系统到达服务台得顾客数就是强度为得过程、服务台只有一个服务员,对顾客得服务时间就是服从参数为得指数分布得随机变量、假定顾客接受服务得时间与顾客到达服务台得人数情况相互独立,如果服务员空闲时到达得顾客立刻接受服务;如果顾客到达时服务员正在为一顾客服务,则她必须排队等待;如果一顾客到达时发现已经有两个人在等待,则她就离开不再回来、设就是时刻服务台里得顾客数(包括正在被服务得顾客与排队等待得顾客),这就是一个连续时间得链,其状态空间为,假设在0时刻系统处在零状态,求在时刻系统处在状态得概率所满足得微分方程、
由定理5、3得
,
,
由此我们得到生灭过程得Q矩阵为
(5、26)
相应地,向后方程
, (5、27)
向前方程就是
(5、28)
因为上述方程组得求解比较困难,同离散时间得链得情形一样,我们通过引进遍历性、极限分布来讨论其平稳分布,由定理5、7
(5、29)
用递推法得
利用,得到平稳分布
,
(5、30)
上式也指出生灭过程平稳分布存在得充要条件就是
需要指出得就是:对于状态空间为得齐次链,当时,向后方程与向前方程依然成立、

随机过程Ch5-连续时间的马尔科夫链

随机过程Ch5-连续时间的马尔科夫链

连续时间马尔可夫链I 马尔可夫链543210 1 2 3 4 5 T25.1 连续时间马尔可夫链定义5.1 设随机过程{X(t),t 0},状态空间I={0,1,2,},若对任意0t1<t2<<t n+1 及非负整数i1,i2, ,i n+1 I,有P{X(t n+1)=i n+1|X(t1)=i1, X(t2)=i2,, X(t n)=i n}=P{X(t n+1)=i n+1|X(t n)=i n},则称{X(t),t 0}为连续时间马尔可夫链。

转移概率:在s时刻处于状态i,经过时间t后转移到状态j的概率p ij(s,t)= P{X(s+t)=j|X(s)=i} 35.1 连续时间马尔可夫链定义5.2 齐次转移概率p ij(s,t)=p ij(t)(与起始时刻s无关,只与时间间隔t有关) •转移概率矩阵P(t)=(p ij(t)) ,i,j I,t 0,称为齐次马尔科夫过程性质:若i为过程在状态转移之前停留在状态i的时间,则对s, t0有P{ s t | s} P{ t}i(1)i i(2)i 服从指数分布45.1 连续时间马尔可夫链证(1) 事实上i i i its s+ti{ s} {X(u) i,0 u s | X(0) i} i{ s t} {X(u) i,0 u s,iX(v) i, s v s t | X(0) i}55.1 连续时间马尔可夫链P{ s t | s} P{X (u) i,0 u s,i iX (v) i,s v s t | X (u) i,0 u s} P{X (v) i,s v s t | X (u) i,0 u s}条件概率P{X (v) i,s v s t | X (s) i}马尔可夫性P{X (u) i,0 u t | X (0) i}齐次性P{ t}i65.1 连续时间马尔可夫链(2)设i的分布函数为F(x), (x0),则生存函数G(x)=1-F(x)P{ t} P{ s t | s }i i iP {isP { t,i s}Ps}iP { s t}t}P{ s}P {iiiG (s t) G(s)G (t)7 由此可推出G(x)为指数函数,G(x)=e -x,则F(x)=1-G(x)=1-e -x为指数分布函数。

随机过程-第五章-连续时间的马尔可夫链

随机过程-第五章-连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质:(1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p(2) ;1=∑∈ij I j p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得===+=+)})0()({)(i X j s t X P s t p ij=∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i j i t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记},)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布. 定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质:(1) ,0)(≥t p j(2) ,1)(=∑∈t p j I j(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii I i i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链.证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++=,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X }= })()({11n n n n i i t X t X P -=-++ .另一方面,因为})()({11n n n n i t X i t X P ==++ =})0()()()({11n n n n n n i X t X i i t X t X P =--=-++=})()({11n n n n i i t X t X P -=-++ 所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++.即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性.当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t e ij t ---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j i j i j t e t p t s p ij t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj i r ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在(1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v tt p(2).,)(lim 0j i q t t p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量.推论 对有限齐次马尔可夫过程,有∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii I j ij ∆=∆-=∆∑∑≠∈ 由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4) 对于状态空间无限的齐次马尔可夫过程,一般只有∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q q q q q Q .....................101111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到)()()(lim )()(lim 00t p q t p hh p h t p h t p ij ii kj i k ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论:定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inf lim 0t p h h p kj i k ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj N k i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以 )()()(inf lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0N k ik kj N k i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj N k i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤N k i k ik ii kj N k i k ik q q t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得)()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik I k kj I k ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得 ),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以)}.()(1)()({lim )()(lim 00t p hh p h h p t p h t p h t p ij jj kj j k ik h ij ij h --=-+∑≠→→ 假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的.定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件.,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10),)()(Q t P t P =' (5.11)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=............ (222120121110)020100q q q q q q q q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= (22)2120121110020100p p p p p p p p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为.!)()(0∑∞===j jQt j Qt e t P 定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程: .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj j k ik i I i jj ij iI i ij I i i q t p p q t p p t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的. 定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj j k k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有.)(lim j j t t p π=∞→(2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则 ,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--=由对称性知,)()(0011t e t p μλμλ+-+=,)()(0010t e t p μλμμ+--=转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为0100,λπμπ==若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P则过程在时刻t 的绝对概率分布为,)()(lim )(1lim 1001010011011q h p dh d h h p h h p q h h h ====-==→→μ,)()(lim )(1lim 010********00q h p dhd h h p h h p q h h h ====-==→→λ)()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例 5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫ ⎝⎛--=μμλλQ . 根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可.由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下.定义 5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.)()()(1010101t p p t p p t p +=,2),()(,≥-=j i h o h p j i若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程.生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dh d t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q i i h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务.假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nn n μλμλμλμλπ。

连续时间的马尔可夫链

连续时间的马尔可夫链
P X t n 1 i n 1 X t1 i1 , X t 2 i 2 , ..., X t n i n P X t n 1 in 1 X t n in




成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。

由切普曼-柯尔莫哥洛夫方程有

kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim

k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。

第五章 连续时间马尔可夫链

第五章  连续时间马尔可夫链

的停留时间
i 超过x的概率为1,则称状态i为吸收状态. 随机过程讲义
第五章 连续时间的马尔可夫链
定理5.1 齐次马尔可夫过程的转移概率具有下列性:
(1) pij(t) 0; (2)
kI
p (t ) 1;
jI ij
(3) pij ( t s ) pik ( t ) pkj ( s ) 证 由概率的定义, (1)(2)显然成立, 下证(3).
ji
p ( t )
ijtຫໍສະໝຸດ qij .ji
说明 对状态空间无限的齐次马尔可夫过程, 一般只有
qii qij .
ji
随机过程讲义
第五章 连续时间的马尔可夫链
二、柯尔莫哥洛夫方程
问题:若连续时间齐次马尔可夫链具有有限状态空间为 I={0,1,2, ,n}, 则其转移速率可构成矩阵
iI iI
(4) p j ( t ) pi ( t ) pij ( );
iI
jI
pi pii1 ( t1 ) pi1i2 ( t 2 t1 )
, X ( t n ) in }
pin1in ( t n t n1 ).
随机过程讲义
第五章 连续时间的马尔可夫链
分布律
(n) pij 0,
转移方程
( n) ( l ) ( nl ) pij pik pkj k I

j I
(n) pij 1
时间 连续
1 , i j lim pij ( t ) t 0 0 , i j
pij ( t ) 0
p (t ) 1
j I ij
则对一切i,j及t 0, 有
( t ) qik pkj ( t ) qii pij ( t ) Qi Pj . pij

随机过程第五章连续时间的马尔可夫链

随机过程第五章连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质: ;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足: ⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性. 5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有 ≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得 )()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p 5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ)()()(1010101t p p t p p t p +=,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dhdt q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh dt q i i h ij ij μλ,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得,2),()(,≥-=j i h o h p j i,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j jj μμμλλλπ,112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ.0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的转移仅依赖于当前状态,与过去状态无关。

在时间离散的情况下,马尔可夫链的数学理论已经十分成熟且应用广泛。

然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。

为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的焦点之一。

一、连续时间马尔可夫链的基本定义和性质连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的变化满足马尔可夫性质。

与离散时间马尔可夫链不同的是,在连续时间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续的时间区间内发生。

连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。

该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。

连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。

连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。

该矩阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。

连续时间马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。

二、连续时间马尔可夫链的稳定性与收敛性连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分布是否趋于稳定。

对于稳定的连续时间马尔可夫链,其状态转移概率在时间的演化中不再发生显著改变。

连续时间马尔可夫链的稳定性与其转移速率矩阵相关。

转移速率矩阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之间转移的速率。

只有当连续时间马尔可夫链的转移速率矩阵满足一定条件时,系统的状态分布才会趋于稳定。

在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的可靠性、资源分配方案以及市场行为等。

利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。

三、连续时间马尔可夫链的应用案例1. 金融市场预测连续时间马尔可夫链可以应用于金融市场的预测和风险评估。

连续时间markov链的原理

连续时间markov链的原理

连续时间markov链的原理连续时间马尔可夫链是一个随机过程,其状态空间是离散的(有限个或可数个状态),并且状态的转移是依赖于连续时间而非离散的。

这种类型的马尔可夫链在许多应用中具有重要的作用,例如物理、生物、金融等领域都可以使用连续时间马尔可夫链对系统的动态特性进行建模和分析。

连续时间马尔可夫链的基本原理是状态之间的转移是基于指数分布的。

具体来说,对于一个连续时间马尔可夫链,每个状态都有一个转移率,表示从当前状态转移到其他状态的速率。

这些转移率可以表示为矩阵的形式,称为转移率矩阵。

转移率矩阵中的每个元素都代表了从一个状态转移到另一个状态的速率。

连续时间马尔可夫链的数学模型可以通过一组微分方程来描述。

假设该马尔可夫链有n个状态,那么对于任意时刻t,我们可以定义n个状态的概率分布向量P(t),其中P(t)的元素表示在时刻t处于各个状态的概率。

那么离散时间马尔可夫链的转移概率矩阵可以表示为Q,其中Q(i,j)表示从状态i转移到状态j 的速率。

那么状态向量P(t)满足以下微分方程:dP(t)/dt = P(t)Q上述方程表明,在给定的时刻t,状态向量P(t)在单位时间内的变化量等于当前状态向量P(t)与转移概率矩阵Q的乘积。

这个微分方程系统可以通过求解得到状态向量P(t)在任意时刻t的概率分布。

连续时间马尔可夫链的数学模型还与特定的概率分布函数相关联。

具体来说,假设某个状态的转移率为λ,那么从该状态转移到其他状态的时间间隔符合指数分布,其概率密度函数为f(t) = λexp(-λt),其中λ是转移率。

这个指数分布的性质使得连续时间马尔可夫链在模拟和预测系统状态的改变方面具有许多有用的特性。

在实际应用中,连续时间马尔可夫链可用于模拟和分析一些复杂的系统。

例如,在金融领域中,我们希望根据历史数据预测未来的市场走势。

通过构建一个连续时间马尔可夫链模型,我们可以根据当前市场状态和转移率矩阵预测未来的股票价格或市场波动性。

连续时间马尔可夫链例题

连续时间马尔可夫链例题

连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。

它受到时间的连续性限制,可以用于描述一些随机过程。

马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。

在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。

这个过程可以用一个状态转移概率矩阵来描述。

在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。

与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。

连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。

该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。

连续时间马尔可夫链的演变是通过指数分布来描述的。

在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。

连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。

设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。

矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。

在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。

转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。

连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。

•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。

•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。

稳态概率分布表示在长时间内各个状态的概率分布。

•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。

连续时间马尔可夫链

连续时间马尔可夫链
PX (tn1 ) in1 X (tn ) in
于是,记:
P X ( s t ) j X ( s ) i pij ( s, t )
2、齐次马氏链:


pij (s, t ) pij (t s)
齐次马氏链的转移矩阵:
P(t ) pij (t )
t1 0, t2 0, t3 这些点处取状态值 0,
pij (t ) t
i
对跳变现象,考察转移概率:pij (t ),i j
以及跳变强度
t 0
lim
,i j
(二) 停留现象(P75)
引入“停留之前停留在状态
f (t ) vi e
pii (0) 1, pij (0) 0, 当i j
为了以后能对转移概率 pij (t ) 作微分运算
(即,对连续时间变量 t ,分析
(t )与pij (t ) pij
的关系,找到它们之间的等量表达式。)
它是一个微分方程。 需要作出正则性规定,才能保证其一致连续性。 正则性条件的物理意义: P 74
可以看出,连续时间下,马尔可夫链的状态是“跳
跃式”变化。
3、跃变(或跳变)与停留现象
X(t)
..………….....
i2 …… i1
t
0
t1
t2
t3
t4
t5
(一)跳变现象: 跳变时刻
t1 , t2 , t3 , 与跳变强度都是随机的。
) xt
(为连续性考虑,一般认为X(t)在跃变点是右连续的, 即X(t)在
1 E i vi
vi t
i 的时间。
i 服从指数分布(参数为 v i ), 其特征是无记忆性。

连续时间马尔可夫链

连续时间马尔可夫链

5 连续时间马尔可夫链5.1引言本章中我们考虑与离散时间马尔可夫链类似的连续时间马尔可夫链。

如离散情形一样,它们由马尔可夫性刻画,即已知现在的状态时将来与过去独立。

在5.2节中。

我们定义连续时间马尔可夫链且把它们与第四章的离散时间马尔可夫链相联系。

在5.3节中,我们引入一类重要的连续时间马尔可夫链,即所谓生灭过程。

这些过程可用作在任何时刻其总量的变化仅为一个单位的群体的模型。

在5.4节中,我们导出两组描述系统的概率规律的微分方程——向前与向后方程。

5.5节的内容是确定连续时间马尔可夫链的有关的极限(或长时间后的)概率。

在5.6节中,我们考虑时间可逆的问题。

其中,我们证明一切生灭过程是时间可逆的,而后阐明这事实对于排队系统的重要性。

在这一节中也提供了时间可逆性对随机群体模型的应用。

在5.7节中,我们阐明逆向链的重要性,即使过程不是时间可逆的。

利用它我们研究排队网络模型。

导出爱尔朗消失公式,分析共用加工系统。

5.8节中我们表面如何“一致化”马尔可夫链——对于数值计算有用的一种技巧。

5.2连续时间马尔可夫链考虑取非负整数值的连续时间随机过程t,0X t,与第四章中给出的离散时间马尔可夫链的定义类似,过程t,0X t称为连续时间马尔可夫链,如果对一切,0s t及非负整数,i j,x u,0u s,有|X,X,0P X t s j s i u x u u sP X t s j X s i|换言之,连续时间马尔可夫链是具有马尔可夫性的随机过程,即已知现在s时是状态及一切过去的状态的套件下在将来时刻t s的状态的条件分布只依赖现在的状态而与过去独立。

若又有|P X t s j X s i与s无关则称连续时间马尔可夫链具有平稳的或其次的转移概率。

将假定我们所考虑的马尔可夫链都有平稳转移概率。

假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且假设在接下来的s个单位时间中过程未离开状态i(即未发生转移)。

在随后的t个单位时间中过程仍不离开状态i的概率是多少呢?为了回答这个问题。

连续时间的Markov链

连续时间的Markov链

第五章 连续时间的马尔可夫链第四章我们讨论了时间和状态都是离散的Markov 链,本章我们研究的是时间连续、状态离散的Markov 过程,即连续时间的Markov 链. 连续时间的Markov 链可以理解为一个做如下运动的随机过程:它以一个离散时间Markov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立.连续时间马尔可夫链的基本概念定义 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数1210n t t t +≤<<<L 及任意的非负整数121,,,n i i i I +∈L ,条件概率满足{}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++====L{}11()|()n n n n P X t i X t i ++=== ()则称{(),0}X t t ≥为连续时间的Markov 链.由定义知,连续时间的Markov 链是具有Markov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关.记式条件概率的一般形式为{()|()}(,)ij P X s t j X s i p s t +=== ()它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关.定义 若式的转移概率函数与s 无关,则称连续时间Markov 链具有平稳的转移概率函数,称该Markov 链为连续时间的齐次(或时齐)Markov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥.若状态空间{0,1,2,}I =L ,则有()000102101112012()()()...()()()()()............()()()............ij n n n p t p t p t p t p t p t P t p t p t p t p t ⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L L ()假设在某时刻,比如说时刻0,Markov 链进入状态i ,在接下来的s 个单位时间内过程未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由Markov 性知,过程在时刻s 处于状态i 的条件下,在区间[,]s s t +中仍处于状态i 的概率正是它处在状态i 至少t 个单位时间的(无条件)概率,若记i τ为过程在转移到另一状态之前停留在状态i 的时间,则对一切,0s t ≥有{|}{}i i i P s t s P t τττ>+>=>可见,随机变量i τ具有无记忆性,因此,i τ服从指数分布.因此,一个连续时间的Markov 链,每当它进入状态i ,具有如下性质: (1) 在转移到另一个状态之前处在状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进入状态j ,且1ijj ip≠=∑.当i v =∞时,称状态i 是瞬时状态,因为过程一旦进入状态就离开;若0i v =,称状态为吸收状态. 因为过程一旦进入永远不再离开.尽管瞬时状态在理论上是可能的,但我们以后还是假设一切i ,0i v ≤<∞.因此,考虑连续时间Markov 链,可以按照离散时间的Markov 链从一个状态转移到另个状态,但在转移到另一状态之前,它在各个状态停留的时间服从指数分布,而且在状态i 停留的时间与下一个状态必须是相互独立的随机变量.定理 齐次Markov 链的转移概率函数具有下列性质:(1)()0ij p t ≥; (2)()1ij j Ip t ∈=∑;(3)()()()ij ikkj k Ip t s pt p s ∈+=∑.(2)式表明转移概率矩阵中任一元素行和为1;(3)式称为连续时间齐次Markov 链的Chapman Kolmogorov -方程,简称C K -方程.证明 (1)和(2)由概率定义及()ij p t 的定义易知,下面只证明(3)式 由全概率公式和Markov 性可得(){()|(0)}ij p t s P X t s j X i +=+=={(),()|(0)}k IP X t s j X t k X i ∈=+===∑{()|(0)}{()|()}k IP X t k X i P X t s j X t k ∈===+==∑{()|(0)}{()|(0)}k IP X t k X i P X s j X k ∈=====∑()()ikkj k Ipt p s ∈=∑对于转移概率函数,我们约定1,,lim ()0ij ij t i j p t i jδ→=⎧==⎨≠⎩ () 称上式为连续性条件或正则性条件.连续性条件保证转移概率函数()ij p t 在边界点0t =处右连续.它的直观意义在于:当系统经过很短时间,其状态几乎不变,也就是认为系统刚进入一个状态又立刻离开这个状态是不可能的.定义 连续时间Markov 链{(),0}X t t ≥在初始时刻(即零时刻)取各状态的概率(0){(0)},i i p p P X i i I ===∈ ()称为它的初始分布.{(),0}X t t ≥在t 时刻取各状态的概率(){()},j p t P X t j == ,0j I t ∈≥称为它在时刻t 的绝对(概率)分布.初始分布和绝对分布都是概率分布,对于任意0t ≥,()j p t 总满足: (1)0()1j p t ≤≤; (2)()1j jp t =∑.利用全概率公式容易得到()(0)(),j i ij i Ip t p p t j I ∈=∈∑ ()()式表明:连续时间Markov 链的绝对概率分布完全由其初始分布和转移概率函数所确定.下面举一个简单的例子说明转移概率函数的计算方法.例 证明Poisson 过程{(),0}N t t ≥是连续时间的齐次Markov 链. 证明 先证明Poisson 过程具有Markov 性.由Poisson 过程的独立增量性和()0N t =,对任意1210n n t t t t +<<<<<L ,有1111{()|(),,()}n n n n P N t i N t i N t i ++===L=1111{()()|()(0),n n n n P N t N t i i N t N i ++-=--=212111()(),,()()}n n n n N t N t i i N t N t i i ---=--=-L11{()()}n n n n P N t N t i i ++=-=- 另一方面,因为11{()|()}n n n n P N t i N t i ++===11{()()|()(0)}n n n n n n P N t N t i i N t N i ++-=--==11{()()}n n n n P N t N t i i ++-=-因此 1111{()|(),,()}n n n n P N t i N t i N t i ++===L =11{()|()}n n n n P N t i N t i ++== 即Poisson 过程是连续时间的Markov 链.再证齐次性. 当j i ≥时,由Poisson 过程的定义,得到{()|()}{()()}P N s t j N s i P N s t N s j i +===+-=-()()!j itt ej i λλ--=-当j i <时,由于过程的增量只取非负整数值,因此,(,)0ij p s t =,故(),(,)()()!0,j it ij ij t ej i p s t p t j i j iλλ--⎧≥⎪==-⎨⎪<⎩即转移概率函数只与t 有关,因此,Poisson 过程具有齐次性.容易看出,固定,i j 时,()ij p t 是关于t 的连续可微函数。

连续时间马尔可夫链的稳态概率

连续时间马尔可夫链的稳态概率

一、概述连续时间马尔可夫链是一种随机过程,它具有许多重要的应用场景,如系统建模、信号处理、金融领域等。

在连续时间马尔可夫链中,稳态概率是一个重要的概念,它描述了系统在长时间尺度上的行为。

本文将对连续时间马尔可夫链的稳态概率进行深入探讨。

二、连续时间马尔可夫链的基本概念连续时间马尔可夫链是一种状态空间和时间的随机过程。

在连续时间马尔可夫链中,系统在不同状态之间发生转移,并且转移的概率是与时间连续的。

假设系统有N种状态,则系统的状态空间可以表示为S={1,2,...,N}。

系统从状态i转移到状态j的转移概率可以表示为Pij(t),其中t为时间。

连续时间马尔可夫链满足马尔可夫性质,即系统的下一个状态只与当前状态有关,与过去的状态无关。

三、稳态概率的定义稳态概率描述了系统在长时间尺度上,各个状态的分布情况。

如果系统在一个特定的状态上停留的时间足够长,那么系统处于该状态的概率将会趋于一个固定的值。

这个固定的值就是稳态概率。

对于连续时间马尔可夫链,它的稳态概率可以通过求解系统的平稳分布得到。

四、连续时间马尔可夫链的平稳分布连续时间马尔可夫链的平稳分布满足以下方程:π(t)Q=0其中π(t)为系统的状态分布向量,Q为系统的转移速率矩阵。

通过求解上述方程,可以得到系统的平稳分布。

平稳分布表示了系统在长时间尺度上各个状态的分布情况,也就是系统的稳态概率。

五、求解稳态概率的方法求解连续时间马尔可夫链的稳态概率有多种方法,其中比较常用的方法包括幂迭代法、特征向量法和对数化法。

这些方法都是基于连续时间马尔可夫链的平稳分布方程进行求解的。

六、幂迭代法幂迭代法是求解稳态概率的一种常用方法。

它的基本思想是通过迭代计算系统的状态分布向量,直至收敛为止。

具体步骤如下:1. 初始化系统的状态分布向量π(0);2. 通过迭代计算得到π(k+1)=π(k)Q,直至π(k)收敛为止。

幂迭代法的收敛性和计算效率较高,是连续时间马尔可夫链稳态概率求解的一种有效方法。

5.连续时间的马尔可夫链3

5.连续时间的马尔可夫链3
顾客以及每个顾客所需的服务时间服从怎样的分布,常用的分 布有指数分布,定长分布等;
(三)各种排队模型的记号 排队模型将如下六个特征按顺序由各自的符号给出,
并用斜线隔开:
输入过程/服务分布/服务台个数/系统容量/顾客源数/排队规则
例4 M/M/S/n/∞/FIFO
表示顾客按泊松过程来到,时间间距为指数分布, 服务时间为指数分布,有s个服务员,系统容量为n 个,顾客来源无限,排队规则是先到先服务。
j1 12 j
即当状态空间 I 1,2, , 时,平稳分布为
0=
1+
j 1
01 12
1
j1 j
1=
0 1
0,
2=
01 12

0

j
=
01 12
j1 j

0

应用举例
例1 泊松过程 N t ,t 0 是生率为
的纯生过程。
状态空间 I 0,1,2, , 状态转移速率图如下
顾客
到达 等待服务 排队规则
提供服务 的服务台 服务时间
随机服务系统示意图
顾客离去
这里“顾客”和“服务台”是广义的,如病人到医院看 病, “顾客”是病人,“服务台”是医院;某人去商店 去购物, “顾客”是购买货物者,“服务台”是柜台; 打电话到寻呼台, “顾客”是打电话的人,“服务台” 是寻呼台;……
解:此系统为M/M/1损失制 = 4,= 2
53
(1)平稳分布
0
=5, 11
1
=
6. 11
(2)系统处于无顾客状态的概率为 即可以接通的
概率为 0 = 151,因每分钟呼唤 =0.8 次,故每分钟
每分钟可以接通的概率

09第五章连续时间马尔可夫链

09第五章连续时间马尔可夫链
(2)再证明齐次性
P{X (s t ) j | X (s) i} P ij (t )
Q矩阵和柯尔莫哥洛夫方程
引理5.1
设齐次马尔可夫过程满足正则性条件,则对 于任意固定的i,j∈I,pij(t)是t的一致连续函数。
Q矩阵和柯尔莫哥洛夫方程
定理5.3 设pij(t)是齐次马尔可夫过程的转移概率且满 足正则性条件,则下列极限存在: 1.
t
例题5.3:机器维修问题
设例题5.2中状态0代表某机器正常工作,状 态1代表机器出故障。状态转移概率与例题5.2相 同,即在h时间内,及其从正常工作变为出故障 的概率为p01(h)=λ h+o(h);在h时间内,机器从 有故障变为经修复后正常工作的概率为 p10(h)=h+o(h),试求在t=0时正常工作的机器, 在t=5时为正常工作的概率。
其转移概率矩阵简记为
P(t ) ( pij (t ))
在0时刻马尔可夫链进入状态i,而且在接 下来的s个单位时间中过程未离开状态i,问在 随后的t个单位时间中过程仍不离开状态i的概 率是多少?
状态i持续时间τ 状态i
i
0
s
s+t
时间轴
P{ i s t | i s} P{ i t}
上式中条件概率可以写成转移概率的形式ijst的转移概率与s无关则称连续时间马尔可夫链具有平稳的或齐次的转移概率此时转移概率简记为其转移概率矩阵简记为ijij状态i状态i持续时间在0时刻马尔可夫链进入状态i而且在接下来的s个单位时间中过程未离开状态i问在随后的t个单位时间中过程仍不离开状态i的概率是多少
iI
(t2 t1 ) pin1in (tn tn1 )
例题5.1: 证明:泊松过程{X(t)}为连续时间齐次马尔可夫 链。 (1)先证明马氏性

连续时间马尔科夫链

连续时间马尔科夫链

Q
{Xt : t ≥ 0}
.

i ∈ E, qi = j̸=i qi,j < ∞,
Q
.
E ,Q
.
qi,i = −qi, ,
4.68 设 Q 是保守的, 则 ∑
p′i,j (t) = qi,rpr,j (t),
r∈E
上式称为 Kolmogorov 向后方程.
∀i, j ∈ E, t ≥ 0.
. E
h → 0,
pi,j(t + h) − h
pi,j (t)
, pi,j(t) ,
. 0<h<t ,
,
Kolmogorov
t − h t, .
4.69 设 qj < ∞ 且 limh→0+ pr,j(h)/h = qr,j 关于 r ∈ E \ {j} 一致成立, 则
∑ p′i,j (t) = pi,r(t)qr,j ,
草稿 不要打印
4.7
,
.
4.7.1
4.62 设随机过程 {Xt : t ≥ 0} 的状态空间 E 是至多可数集, 若对任何整数 n ≥ 1, 参数 0 ≤ t0 < t1 < · · · < tn < tn+1 以及状态 i0, i1, · · ·, in+1 ∈ E, 有
P {Xtn+1 = in+1|Xt0 = i0, · · · , Xtn = in} = P {Xtn+1 = in+1|Xtn = in}, 则称 {Xt : t ≥ 0} 为连续时间马尔可夫链.
.
,
.
4.63 强度为 λ 的 Poisson 过程是齐次马尔可夫链.

第05章 连续时间马尔可夫链S

第05章 连续时间马尔可夫链S

体诸成员的年龄之和的均值。时刻 t 诸年龄之和,记为 A(t),
X (t )1
可表示为 A(t) a0 t (t Si ) i 1
其中 a0 是初始个体在 t=0 时的年龄。对 X(t)取条件
n
E[A(t) | X (t) n 1} a0 t E[ (t Si ) | X (t) n 1} i 1
1 vi
i 1
1 i2
)。假设所考虑的全部马尔可
夫链是规则的。
第四页,共六十九页。
对一切i j,qij定义为
qij vi Pij
因为vi是过程离开状态 i 的速率而 Pij 是它转移到 j 的概率,所以
qij是过程从状态 i 转移到状态 j 的速率;称qij 是从 i 到 j 的转移
率。显然vi qij ji
连续时间马尔可夫链是具有马尔可夫性的随机过程,即已 知现在 s 时的状态 X(s)及一切过去时刻 u,0u<s 的状态 X(u)的 条件下在将来时刻 t+s 的状态 X(t+s)的条件分布只依赖现在的状 态 X(s)而与过去独立。
第一页,共六十九页。
二、连续时间马尔可夫链的状态逗留时间和转移速率
命题 以i 记过程在转移到另一状态之前停留在状态 i 的时 间,则对一切 s,t0 有 P{ i t s | i s} P{ i t},因此, 随机变量i 是无记忆的必有指数分布,其参数设为vi
态 i-1 或 i+1,当状态增长 l 时,就说生了一个;而当它减少 1
时,就说死了一个。设i qi,i1,i qi,i1,值{i , i 0}与{i , i 1}
分 别 称 为 生 长 率 与 死 亡 率 。 因 为 qij vi , 可 见 ji
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n步转移概率
p(n) ij
n步转移概率矩阵 P(n)
t时间区间转移概率 pij(t) t时间区间转移概率矩阵P(t)
强度转移矩阵
Q
初始分布
pi
初始分布
pi
n时刻分布
π(n) j
t时刻分布
j(t)
平稳分布
13
主要公式对比
离散时间马氏链
连续时间马氏链
K-C方程
p(nm) ij
p p (n) (m) ik ቤተ መጻሕፍቲ ባይዱj
❖ 定理3.2
一个连续时间的齐次马氏链,系统处在同一状态 的连续时间服从负指数分布
❖ 定理3.3
一个离散时间的齐次马氏链,在同一状态连续停 留时间的分布是几何分布
其中 pij (t) 0
pi j (t) 1
j
1/ 2 1/ 3 1/ 6 例如:P(2.5) 1/ 3 0 2 / 3
1 0 0
3
1 连续时间马尔可夫链定义
v 若满足下述条件
1 如 i j
lim
t 0
pij
(t)
0
如i j
则称P(t)是X的标准转移矩阵。
有: 1 i j
pij (0) 0 i j
5 平稳分布
若lim t
j
(t
)
j
( j E)
存在,且j 1
j
称为齐次马尔可夫链的平稳分布
,则{j}
❖ 如何判别连续马尔可夫链的平稳分布必定存在?
转移概率矩阵是标准的
不可约的齐次马氏链,则极限存在,且与初始分 布无关
正常返的齐次马氏链,则此极限值为平稳分布, 且全部大于0
10
5 平稳分布
❖ 如何求连续时间马尔可夫链的平稳分布?
pi=P(X(0)=i)=i(0) ❖ 绝对分布(0(t),i1pi(t)p,i j (t)2(t), 3(t)…)
j(t)=P(X(t)=j)=
由初始分布与t时间区间转移概率矩阵求t时刻
绝 j对'(t)分 布 k (t) qkj
初值:i (0) pi
k

为求瞬时概率分布函数的方程组
9
❖ 定义
❖ 定理ltim3.j1(t) j ( j E)
lim
t
j
'(t
)
0

存在,则

j '(t) i (t) qij
i
❖ 根据
lim
t
j
'(t)
lim
t
i
i (t) qij
v
若存i在ii 平q1ij 稳 0 分布写成,矩阵则形式: Q 0 i
11
4 平稳概率例题
❖ 一个连续时间的马氏链E={0,1,2},其状态强度转移矩阵和状
P(0) I
4
2 K-C方程
pij (t s) pik (t) pkj (s)
❖ 1.K-C方程:
k
写成矩阵的形式:
P(t+s)=P(t)·P(s)
P '(t) P(t) Q pij '(t) pik (t) qkj
k
❖ 2. K氏前向方程P '(t) Q P(t)
pij '(t) qik pkj (t)
瞬时分布
P( X n i)
pk
p(n) ki
k
j (t) pi pi j (t)
i
(n) i
(0) i
P(n)
(n1) i
P
j '(t) k (t) qkj
k
平稳分布
P
i 1
v Q 0
v ( I ) P 0
i
i 1 i
i 1
i
14
6 两个定理
(0 qii qi ) (qi j , i j)
❖ 排队论中Q矩阵性质
行和为0
10 6 4
例:Q
2.5
2.5
0
1 1 2
对角线元素为负数
6
3 Q矩阵
❖ 齐次马尔可夫链状态之间的瞬时转移可以用
图表示,图上标明状态之间瞬时强度转移值
qij,叫状态10流图6 4
例:Q
2.5
2.5
记pij(t),成为长度为t的时间区间上的转移概率
p00 (t) p01(t) p02 (t) ...
P(t)
pi j (t)
p10
(t)
p20 (t) ...
p11 (t ) p21 (t )
...
p12 (t) p22 (t)
...
... ... ...
为连续时间马氏链的齐次转移矩阵
1 连续时间马尔可夫链定义
❖ 连续时间的马尔可夫链是这样一种随机过程, 它:
具有无记忆性 状态空间是离散的 时间上是连续的
❖ 与离散时间的马尔可夫链的不同在于其状态 发生变化的时刻是任意时刻,是连续值。
1
1 连续时间马尔可夫链定义
取值在非负整数集E上的随机过程X={Xt, tT=[0,)}, 如果对一 切T中的时刻0t1t2…tn+1及满足 P( Xtk ik ,1 k n) 0
k
❖ 3. K氏后向方程
Q称作密度矩阵,或瞬时概率转移矩阵,也 叫(瞬书时31页强)度转移矩阵,通常称作Q矩阵。 5
3 Q矩阵
❖若
1
lim
t 0
pij
(t)
0
如i j 如i j
qii
lim
t 0
pii (t) 1 t
pii
'(0)

qij
lim
t 0
pij (t) t
pij
'(0)
Q P '(0)
0
1 1 2
0
4
2.5
6
1
1
2
1 状态流图
7
4 Q矩阵P(t)
v 依据K氏微分方程,可以从Q矩阵求得P(t), P(0)=I. v 例:考察E={0,1}的连续时间马氏链X,设t极小
p01(t) t o(t) p10 (t) t o(t)
8
4 绝对概率
❖ 初始分布(p0 ,p1 ,p2 ,p3 , …)
态转移图为

平衡(方0程,1:,
2
)
Q
v 0
1 1 0
Q
2
3
1
0 1 1
❖ 列出方程0 组21 0
0 31 2 0
1 2 0
0 1 2 1

得:
0
1 2
1
2
1 4
1
1
0
1
2
2
1
12
转移概率 瞬时分布
主要公式对比 离散时间马氏链
连续时间马氏链
一步转移概率
pij
一步转移概率矩阵P
k
P(nm) Pn Pm
pij (t s) pik (t) pkj (s) k
P(t s) P(t) P(s)
前向 P '(t) P(t) Q
方程 pij '(t) pik (t) qkj k
后向 P '(t) Q P(t)
方程 pij '(t) qik pkj (t) k
的任意状态 ik E(1 k n)
成立着
P{Xtn1 j | Xtk ik ,1 k n}
P{X tn1 j | X tn in}
则称X是连续时间的马尔可夫链。
与此历史无关
j in
tn
tn+1
2
1 连续时间马尔可夫链定义
记pij(s,t)=P(Xt=j|Xs=i) 若此转移概率只与t-s有关,则称它为X的齐次转移概率函 数,此马氏链X为连续时间齐次马氏链。
相关文档
最新文档