课上练习题_连续时间马尔科夫链 619
第五章习题答案

5.1 设 P = (pij (t)) 是马氏链的转移概率矩阵,当状态空间 I 是有限集合时, 证明 det(P (t)) > 0. 证 明:因为 P (t) = eQt ,我们知道 P (t) e−Qt = I (I 是单位阵)
所以 det(P (t)) ̸= 0. 又因为 P (t) = P (t − s)P (s) ,特别的取 s = t/2 时,我们有 t P (t) = (P ( ))2 2 两边取行列式,既得到 det(P (t)) > 0.
k∈Ik̸=j
pjk (t − s)pkj (s)
5.3
一个工人照看两台机床,第 i 台机床的正常工作时间服从参数为 λi 的指
数分布。每台机床发生故障后需要维修的时间服从参数为 µ 的指数分布。用马 氏链描述 t 时机床的工作状态并写出该马氏链的转移速率和嵌入链的转移概率. 解 : 用 X (t) = i 表示 t 时第 i 台机床在工作,X (t) = 0 表示没有机床在 工作,X (t) = 3 表示两台机器在工作。X (t) 是马氏链。转移概率计算结果如 下: p00 (t) = (e−µt )2 ,p01 (t) = p02 (t) = 1 − e−µt ,p03 (t) = (1 − e−µt )2 ; p10 (t) = e−µt ·(1 − e−λ1 t ), p11 (t) = e−µt ·e−λ1 t , p12 (t) = (1 − e−µt )·(1 − e−λ1 t ), p13 (t) = e−λ1 t ·(1 − e−µt ); p20 (t) = e−µt ·(1 − e−λ2 t ), p21 (t) = (1 − e−µt )·(1 − e−λ2 t ), p22 (t) = e−µt ·e−λ2 t , 2
随机过程-第五章-连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6×−+×.(2)设()i i P A p =,依题可知,()1i i P B p =−,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+−×−=+, 构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=−,则1121353i i p p + −=−,又11111,236p p =−=,所以13i p−是首项为16,公比为25的等比数列,即11112121,365653i i i i p p −−−=×=×+. (3)因为1121653i i p − =×+,1,2,,i n =⋅⋅⋅, 所以当*N n ∈时,()122115251263185315nnn n n E Y p p p − =+++=×+=−+ − ,故52()11853nnE Y=−+.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】(1)X 的所有可能取值为-1,0,1.11()()P X αβ=−−=,()()()011P X αβαβ=+−−=,()1(1)P X αβ=−=, 所以X 的分布列为X -11P(1)αβ− )1((1)αβαβ+−− ()1αβ−(2)①证明 由(1)得0.4a =,0.5b =,0.1c =.因此110.40.50.1i i i i p p p p −+=++,故()()110.10.4i i i i p p p p −=−+-,则()114i i i i p p p p −=−+-.又因为1010p p p −≠=,所以1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为公比为4,首项为1p 的等比数列. ② 由①得()()()88877610087761001413p p p p p p p p p p p p p p p p −=−+−+…+−+=−+−+…+−+=⋅. 由于81p =,故18341p =−, 所以()()()()444332*********3257p p p p p p p p p p p −=−+−+−+−+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率. 【解析】记第n 次传球后球在甲手中的概率为n P ,则第1n −次传球后球在甲手中的概率为1n P −, 开始时球在甲手中,则01P =.若第n 次传球后球在甲手中,则第1n −次传球后球不在甲手中,即第1n −次传球后球在乙或丙手中, 所以第1n −次传球后球不在甲手中的概率为11n P −−,又乙或丙在第n 次把球传到甲手上的概率为12, 于是有()1112n n P P −−=,即1111323n n P P − −=−− ,1n ≥, 于是数列13n P−是首项为0213P −=,公比为12−得等比数列, 所以121332nn P −=×−,所以()*211323nn P n =×−+∈ N .1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ; (2)求20p . 【答案】(1)2815P =,33875P =;(2)201911652P =+⋅【分析】(1)分第一次取出黄球和绿球两种情况,再由互斥事件概率加法公式计算可得答案; (2)由题意可得()132155+=+−i i i P P P ,可得答案. 【详解】(1)从第二个箱子取出黄球的概率223128353515P =⋅+⋅=, 从第三个箱子取出黄球的概率3838238115515575P =⋅+−⋅= ; (2)由题意可知,()1321215555i i i i P P P P +=+−=+, 即1111252i i P P + −=− ,又123P = 1111111111,,,26265652i i i i P P P −− −=∴−=⋅∴=+ ⋅ 201911652P ∴=+⋅.重点题型·归类精讲【答案】(1)1942,1311776n n P −=−−(2)第二次,证明见解析【分析】(1)根据全概率公式即可求解2P ,利用抽奖规则,结合全概率公式即可由等比数列的定义求解, (2)根据1311776n n P −=−−,即可对n 分奇偶性求解.【详解】(1)记该顾客第()*N i i ∈次摸球抽中奖品为事件A ,依题意,127P =, ()()()()()22121121212119||1737242P P A P A P A A P A P A A ==+=×+−×= . 因为()11|3n n P A A −=,()11|2n n P A A −=,()n n P P A =,所以()()()()()1111||n n n n n n n P A P A P A A P A P A A −−−−=+,所以()111111113262n n n n P P P P −−−=+−=−+, 所以1313767n n P P − −=−−, 又因为127P =,则131077P −=−≠, 所以数列37n P−是首项为17−,公比为16−的等比数列,故1311776n n P −=−−.(2)证明:当n 为奇数时,1131976742n n P −<<⋅,当n 为偶数时,131776n n P −=+⋅,则n P 随着n 的增大而减小, 所以,21942n P P ≤=,综上,该顾客第二次摸球抽中奖品的概率最大.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n = ,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈. 【答案】(1)分布列见解析(2)①10p =,212p =,314p =;②111,1,2,322n n p p n +=−+=;11(1)132n n − −+ 【分析】(1)由离散型随机变量的分布列可解;(2)记n A 表示事件“经过n 次传球后,球在甲手中”,由全概率公式可求111,22n n p p +=−+再由数列知识,由递推公式求得通项公式.【详解】(1)X 可能取值为1,2,3,()1232353110C C p X C ===;()213235325C C p X C ===;()3032351310C C p X C === 所以随机变量X 的分布列为(2)若刚好抽到甲乙丙三个人相互做传球训练,且n 次传球后球在甲手中的概率为,1,2,3,n p n = , 则有10,p =2221,22p ==3321,24p == 记n A 表示事件“经过n 次传球后,球在甲手中”,111n n n n n A A A A A +++=⋅+⋅所以()()()11111n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅ ()()()()()()111110122n n nn n n n n n P A P A A P A P A A p p p ++=⋅+⋅=−⋅+⋅=−∣∣ 即111,1,2,322n n p p n +=−+=, 所以1111323n n p p + −=−− ,且11133p −=− 所以数列13n p− 表示以13−为首项,12−为公比的等比数列,所以1111332n n p −−=−×−所以1111111132332n n n p −−=−×−+=−−即n 次传球后球在甲手中的概率是11(1)132n n −−+.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复. (1)求该同学第二天中午选择米饭套餐的概率 (2)记该同学第n 天选择米饭套餐的概率为n P(Ⅰ)证明:25n P −为等比数列;(Ⅱ)证明:当2n ≥时,512n P ≤. 【解析】(1)设1A =“第1天选择米饭套餐”,2A =“第2天选择米饭套餐”,则1A =“第1天不选择米饭套餐”,于是,()123P A =,()113P A =,()2114|P A A =,()2111122|P A A =−=, 由全概率公式()()()()()21211212111134323||P A P A P A A P A P A A =+=×+×=;(2)(Ⅰ)设n A =“第n 天选择米饭套餐”,则()n n P P A =,()1n n P A P =−,()14|1n n P A A +=,()11|1122n n P A A +=−=, ()()()()()()111111111424|2|n n n n n n n n n n n P P A P A P A A P A P A P P P A ++++==+=+−=−+, 所以1212545n n P P + −=−− ,25n P − 是以124515P −=为首项,14−为公比的等比数列。
11章马尔可夫链习题课

pN ,1 p,
p1,N q,
第19页,共20页。
例5 试证Wiener过程B(t)是马尔可夫过程 .
证明
p{B(t s) y | B(s) x, B(u)(0 u s)} p{B(t s) B(s) y x | B(s) x,
B(u)(0 u s)} p{B(t s) B(s) y x} 独立增量性 p{B(t s) B(s) y | B(s) x}
为马氏链在时刻 m处于状态ai条件下,在时刻
m n转移到状态a m, m n) 1, i 1,2,.
j1
由转移概率组成的矩阵 P(m, m n)(Pij (m, n n))
称为马氏链的转移概率矩阵.
它是随机矩阵.
第7页,共20页。
马氏链的n步转移概率
马尔可夫链.
简记为: { Xn X (n),n 0,1,2,}
第5页,共20页。
齐次马尔可夫链
当转移概率Pij (m, n n)只与i, j及时间间距n
有关时, 称此链是齐次的或时齐的.
第6页,共20页。
转移概率、转移概率矩阵
称条件概率 Pij (m, n n) P{ X mn a j | X m ai }
第18页,共20页。
例4 一质点在圆周上做随机 游动,圆周上共有N格, 质点以概率 p顺时针移动一格 ,以概率 q 1 p逆时 针移动一格,试用马尔可夫链描述游 动过程,确定状 态空间和转移概率矩阵 .
解 状态空间为 S 1, 2, , N
pi,i1 p, i 1, 2, , N 1, pi,i1 q, i 2, , N .
j1
第11页,共20页。
三、典型例题
例1 艾伦非斯特(Ehrenfest)模型 设一个坛子装有 c个球,它们或是红色的,或
连续时间的马尔可夫链

成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。
证
由切普曼-柯尔莫哥洛夫方程有
kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim
k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。
随机过程Ch5-连续时间的马尔科夫链

连续时间马尔可夫链I 马尔可夫链543210 1 2 3 4 5 T25.1 连续时间马尔可夫链定义5.1 设随机过程{X(t),t 0},状态空间I={0,1,2,},若对任意0t1<t2<<t n+1 及非负整数i1,i2, ,i n+1 I,有P{X(t n+1)=i n+1|X(t1)=i1, X(t2)=i2,, X(t n)=i n}=P{X(t n+1)=i n+1|X(t n)=i n},则称{X(t),t 0}为连续时间马尔可夫链。
转移概率:在s时刻处于状态i,经过时间t后转移到状态j的概率p ij(s,t)= P{X(s+t)=j|X(s)=i} 35.1 连续时间马尔可夫链定义5.2 齐次转移概率p ij(s,t)=p ij(t)(与起始时刻s无关,只与时间间隔t有关) •转移概率矩阵P(t)=(p ij(t)) ,i,j I,t 0,称为齐次马尔科夫过程性质:若i为过程在状态转移之前停留在状态i的时间,则对s, t0有P{ s t | s} P{ t}i(1)i i(2)i 服从指数分布45.1 连续时间马尔可夫链证(1) 事实上i i i its s+ti{ s} {X(u) i,0 u s | X(0) i} i{ s t} {X(u) i,0 u s,iX(v) i, s v s t | X(0) i}55.1 连续时间马尔可夫链P{ s t | s} P{X (u) i,0 u s,i iX (v) i,s v s t | X (u) i,0 u s} P{X (v) i,s v s t | X (u) i,0 u s}条件概率P{X (v) i,s v s t | X (s) i}马尔可夫性P{X (u) i,0 u t | X (0) i}齐次性P{ t}i65.1 连续时间马尔可夫链(2)设i的分布函数为F(x), (x0),则生存函数G(x)=1-F(x)P{ t} P{ s t | s }i i iP {isP { t,i s}Ps}iP { s t}t}P{ s}P {iiiG (s t) G(s)G (t)7 由此可推出G(x)为指数函数,G(x)=e -x,则F(x)=1-G(x)=1-e -x为指数分布函数。
连续时间马氏链

X (n) i 有关,而与以前的状态 X(n 1 ) in1 ,…, X( 0 ) i0 无关。
一、连续时间马尔科夫链的有关定义及其性质
现在讨论时间连续状态离散的马尔可夫过程,取时间参数 t 0 ,状态空间 I={0,1,2,…} 定义 4.17 设随机过程 { X (t ), t 0} 的状态空间为 I={in,n0},若对任意的 0t1<t2<…<tn<tn+1,及 i1 , i2 ,
pij ( s,t ) P{ X (t s ) j | X ( s ) i }
它表示系统在 s 时刻处于状态 i,经过时间 t 后转移到状态 j 的转移概率。 若上述概率与 s 无关,则称连续时间马尔科夫链为齐次马尔科夫链,此时转移概率简 记为
pij ( s,t ) pij (t )
定义 4.16 设随机过程 { X(t),t T } ,其中时间 T={0,1,…},状态空间 I={0,1,2,…}, 若对任一时刻 n,以及任意状态 i0 ,i1, ,in1,i,j ,
1 2014 年 12 月 11 日星期四 大连海事大Байду номын сангаас数学系
第五章 连续时间马氏链
有 P{ X(n 1 ) j | X(n) i, X(n 1 ) in1 ,
定义 4.18 对于任一 t0,记
p j (t ) P{ X (t ) j }
p j p j (0) P{ X (0) j }, j I
分别称 { p j (t ), j I } 和 { p j , j I } 为齐次马氏链的绝对概率分布和初始概率分布。 性质 2:对任意 0 t0 t1 tn , i0 ,i1, ,in I ,有
2025高考数学专项复习马尔科夫链含答案

2025高考数学专项复习马尔科夫链含答案马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A,B两个盒子,各装有2个黑球和1个红球,现从A,B两个盒子中各任取一个球交换放入另一个盒子,重复进行n n∈N*次这样的操作后,记A盒子中红球的个数为X n,恰有1个红球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1⋯,X t-2,X t-1,X t=P X t+1X t.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A∈N*,A<B一种是赌金达到预期的B元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n元-A≤n≤B,n∈Z时,最终欠债A元(可以记为该赌徒手中有-A元)概率为P(n),请回答下列问题:(1)请直接写出P(-A)与P(B)的数值.(2)证明{P(n)}是一个等差数列,并写出公差d.(3)当A=100时,分别计算B=300,B=1500时,P(A)的数值,论述当B持续增大时,P(A)的统计含义.状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n.(1)求a1,b1和a2,b2.为等比数列.(2)证明:a n+2b n-65(3)求X n的数学期望(用n表示).5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a>0,都有Pξ≥a≤Eξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A,其概率为P A.则P A的最大值为()A.271000B.2431000C.427D.496.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n(n∈N*)次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,则p1的值是;X n的数学期望E X n是.7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N∗次这样的操作,记甲口袋中黑球个数为X n,恰有1个黑球的概率为p n,则p1=;p n=.8.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.9.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n∈N*次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列a n的通项公式;(3)求X n的期望.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,恰有2个黑球的概率为q n,恰有0个黑球的概率为r n.(1)求p1,p2的值;(2)根据马尔科夫链的知识知道p n=a⋅p n-1+b⋅q n-1+c⋅r n-1,其中a,b,c∈0,1为常数,同时p n+q n+ r n=1,请求出p n;(3)求证:X n的数学期望E X n为定值.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i为以下事件发生的概率:小球开始位于第i个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A ,B 两个盒子,各装有2个黑球和1个红球,现从A ,B 两个盒子中各任取一个球交换放入另一个盒子,重复进行n n ∈N * 次这样的操作后,记A 盒子中红球的个数为X n ,恰有1个红球的概率为p n .(1)求p 1,p 2的值;(2)求p n 的值(用n 表示);(3)求证:X n 的数学期望E X n 为定值.【解析】(1)设第n n ∈N * 次操作后A 盒子中恰有2个红球的概率为q n ,则没有红球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,p 2=p 1⋅C 12C 12+C 11C 11C 13C 13+q 1⋅C 12C 13C 13C 13+1-p 1-q 1 ⋅C 13C 12C 13C 13=4981.(2)因为p n =p n -1⋅C 12C 12+C 11C 11C 13C 13+q n -1⋅C 12C 13C 13C 13+1-p n -1-q n -1 ⋅C 13C 12C 13C 13=-19p n -1+23.所以p n -35=-19p n -1-35 .又因为p 1-35=-245≠0,所以p n -35 是以-245为首项,-19为公比的等比数列.所以p n -35=-245×-19 n -1,p n =-245×-19 n -1+35.(3)因为q n =C 12C 11C 13C 13p n -1+C 11C 13C 13C 13q n -1=29p n -1+13q n -1,①1-q n -p n =C 11C 12C 13C 13p n -1+C 13C 11C 13C 131-q n -1-p n -1 =29p n -1+131-q n -1-p n -1 ,②.所以①一②,得2q n +p n -1=132q n -1+p n -1-1 .又因为2q 1+p 1-1=0,所以2q n +p n -1=0,所以q n =1-p n 2.X n 的可能取值是0,1,2,P X n =0 =1-p n -q n =1-p n 2,P X n =1 =p n ,P X n =2 =q n =1-p n 2.所以X n 的概率分布列为X n012p 1-p n2p n 1-p n2所以E X n =0×1-p n 2+1×p n +2×1-p n 2=1.2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1⋯,X t -2,X t -1,X t =P X t +1X t .现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A ∈N *,A <B 一种是赌金达到预期的B 元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A 元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n 元-A ≤n ≤B ,n ∈Z 时,最终欠债A 元(可以记为该赌徒手中有-A 元)概率为P (n ),请回答下列问题:(1)请直接写出P (-A )与P (B )的数值.(2)证明{P (n )}是一个等差数列,并写出公差d .(3)当A =100时,分别计算B =300,B =1500时,P (A )的数值,论述当B 持续增大时,P (A )的统计含义.【解析】(1)当n =-A 时,赌徒已经欠债-A 元,因此P (-A )=1.当n =B 时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率P (B )=0;(2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元上一场赢的事件,P M =P N P M N +P N P M N ,即P (n )=12P (n -1)+12P (n +1),所以P (n )-P (n -1)=P (n +1)-P (n ),所以{P (n )}是一个等差数列,设P (n )-P (n -1)=d ,则P (n -1)-P (n -2)=d ,⋯,P (-A +1)-P (-A )=d ,累加得P (n )-P (-A )=(n +A )d ,故P (B )-P (-A )=(A +B )d ,得d =-1A +B ;(3)A =100,由(2)P (n )-P (-A )=(n +A )d =-n +A A +B ,代入n =A 可得P (A )-P (-A )=-2A A +B ,即P (A )=1-2A A +B ,当B =300时,P A =12,当B =1500时,P (A )=78,当B 增大时,P (A )也会增大,即输光欠债的可能性越大,因此可知久赌无赢家,即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光并负债.3.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.【解析】(1)设恰有2个黑球的概率为q n,则恰有0个黑球的概率为1-p n-q n.由题意知p1=C12C12+C11C11C13C13=59,q1=C12C11C13C13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②.所以①-②,得2q n+p n-1=132q n-1+p n-1-1.又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为bn.(1)求a1,b1和a2,b2.(2)证明:a n+2b n-65为等比数列.(3)求X n的数学期望(用n表示).【解析】(1)若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率a1 =23;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率b1=1 3,研究第2次交换球时的概率,根据第1次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a1=2 3,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×13×12=16a1;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a1×13×12=16a1;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a1×23×12=13a1;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×23×12=13a1,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b1=1 3,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b1×23=23b1若甲盒取白球,乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b1×13=13b1,综上,a2=16a1+13a1+23b1=59,b2=13a1+13b1=13.(2)依题意,经过n次这样的操作,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n,则甲盒中恰有3个白球的概率为1-a n-b n,研究第n+1次交换球时的概率,根据第n次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a n,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×13×12=16a n;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a n×13×12=16a n;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a n×23×12=13a n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×23×12=13a n,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b n,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b n×2 3=23b n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b n ×13=13b n ,③当甲盒中的球为3白,乙盒中的球为2黑时,对应概率为1-a n -b n ,此时,甲盒只能取白球、乙盒只能取黑球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为1-a n -b n ,综上,a n +1=13a n +16a n +23b n +1-a n -b n =1-12a n -13b n ,b n +1=13a n +13b n 则a n +1+2b n +1-65=1-12a n -13b n +23a n +23b n -65=16a n +13b n -15,整理得a n +1+2b n +1-65=16a n +2b n -65 ,又a 1+2b 1-65=215>0,所以数列a n +2b n -65 是公比为16的等比数列.(3)由(2)知a n +2b n -65=215×16 n -1,则a n +2b n =65+215×16n -1,随机变量X n 的分布列为X n123P b n a n 1-a n -b n所以E (X n )=b n +2a n +3-3b n -3a n =3-(a n +2b n )=95-215×16 n -1.5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξ a.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000 B.2431000 C.427 D.49【答案】B【解析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max =2431000.故选:B6.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n (n ∈N *)次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,则p 1的值是;X n 的数学期望E X n 是.【答案】4932-1213 n【解析】考虑到乙袋中拿出的球可能是黑的也可能是白的,由全概率公式可得p 1=13×23+23×13=49;记X n -1取0,1,2,3的概率分别为p 0,p 1,p 2,p 3,推导X n 的分布列:P X n =1 =p 0+49p 1+49p 2,P X n =2 =49p 1+49p 2+p 3,P X n =3 =19p 2,则E X n =0⋅P X n =0 +1⋅P X n =1 +2⋅P X n =2 +3⋅P X n =3 =p 0+43p 1+53p 2+2p 3=1+13p 1+2p 2+3p 3 =1+13E X n -1 ,则E X n -32=13E X n -1 -32,故E X n -32=E X 1 -32 ×13n -1给合E X 1 =43,可知E X n =32-1213 n .故答案为:49;32-1213n .7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N ∗ 次这样的操作,记甲口袋中黑球个数为X n ,恰有1个黑球的概率为p n ,则p 1=;p n =.【答案】5925⋅-19 n +35【解析】由题意,p 1=C 12C 12+C 11C 11C 13C 13=59;当n ≥2n ∈N ∗ 时,p n =C 12C 12+C 11C 11C 13C 13p n -1+C 12C 13C 13C 13P X n -1=0 +C 13C 12C 13C 13P X n -1=2 =59p n -1+23P X n -1=0 +P X n -1=2 =59p n -1+231-p n -1 =-19p n -1+23,整理得p n -35=-19p n -1-35 ,p 1-35=59-35=-245,故可知p n -35 是以-245为首项,以-19为公比的等比数列,所以p n =25⋅-19 n +35.故答案为:59;25⋅-19 n +358.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1∣⋯,X t -2,X t -1,X t =P X t +1∣X t .著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.【答案】93100/0.93【解析】设当赌徒手中有n 元0≤n ≤1000,n ∈N 时,最终输光的概率为P (n ),当n =0时,赌徒已经输光了,所以P (0)=1,当n =1000时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率为P (1000)=0,记M :赌徒有n 元最后输光的事件,N :赌徒有n 元下一次赢的事件,所以P M =P N P (M |N )+P N P (M |N ),即P (n )=12P (n -1)+12P (n +1),所以P (n +1)-P (n )=P (n )-P (n -1),所以P (n ) 为等差数列,设P (n )-P (n -1)=d ,由于P (1000)=P (0)+1000d =1+1000d =0,所以d =-11000,所以P (n )=P (0)+nd =1-n 1000,故P (70)=1-701000=93100故答案为:931009.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n ∈N * 次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n .(1)求X 1的分布列;(2)求数列a n 的通项公式;(3)求X n 的期望.【解析】(1)(1)由题可知,X 1的可能取值为0,1,2.由相互独立事件概率乘法公式可知:P X 1=0 =13×23=29;P X 1=1 =13×13+23×23=59;P X 1=2 =23×13=29,故X 1的分布列如下表:X 1012P 295929(2)由全概率公式可知:P X n +1=1=P X n =1 ⋅P X n +1=1X n =1 +P X n =2 ⋅P X n +1=1X n =2 +P X n =0 ⋅P X n +1=1X n =0=13×13+23×23 P X n =1 +23×1 P X n =2 +1×23 P X n =0 =59P X n =1 +23P X n =2 +23P X n =0 ,即:a n +1=59a n +23b n +231-a n -b n ,所以a n +1=-19a n +23,所以a n +1-35=-19a n -35 ,又a 1=P X 1=1 =59,所以,数列a n -35 为以a 1-35=-245为首项,以-19为公比的等比数列,所以a n -35=-245⋅-19 n -1=25⋅-19 n ,即:a n =35+25⋅-19n .(3)由全概率公式可得:P X n +1=2 =P X n =1 ⋅P X n +1=2X n =1 +P X n =2 ⋅P X n +1=2X n =2 +P X n =0 ⋅P X n +1=2X n =0=23×13 ⋅P X n =1 +13×1 ⋅P X n =2 +0⋅P X n =0 ,即:b n +1=29a n +13b n ,又a n =35+25⋅-19 n ,所以b n +1=13b n +2935+25-19 n ,所以b n +1-15+15-19 n +1=13b n -15+15-19 n,又b 1=P X 1=2 =29,所以b 1-15+15×-19 =29-15-145=0,所以b n -15+15-19 n =0,所以b n =15-15-19n ,所以E X n =a n +2b n +01-a n -b n =a n +2b n =1.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N * 次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,恰有2个黑球的概率为q n ,恰有0个黑球的概率为r n .(1)求p 1,p 2的值;(2)根据马尔科夫链的知识知道p n =a ⋅p n -1+b ⋅q n -1+c ⋅r n -1,其中a ,b ,c ∈0,1 为常数,同时p n +q n +r n =1,请求出p n ;(3)求证:X n 的数学期望E X n 为定值.【解析】(1)由题意恰有0个黑球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②所以①-②,得2q n+p n-1=132q n-1+p n-1-1 .又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i 为以下事件发生的概率:小球开始位于第i 个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.【解析】(1)记事件A 为一辆德国市场的电车性能很好,事件B 为一辆德国市场的车来自W 公司.由全概率公式知:P A =P A |B P B +P A |B P B ,故:P A |B =P A -P A |B ⋅P B P B=10%-0.25×3%97%≈0.095.(2)记事件A i i =0,1,⋯,10 表示小球开始位于第i 个格子,且最终停留在第10个格子,事件C 表示小球向右走一格.小球开始于第i 格,此时的概率为P i ,则下一步小球向左或向右移动,当小球向右移动,即可理解为小球始于P i +1,当小球向左移动,即可理解为小球始于P i -1,即P i =14P i +1+34P i -1.由题知P 0=0,P 10=1,又4P i =3P i -1+P i +1,故P i +1-P i =3P i -P i -1 ,所以P i -P i -1 是以P 1-P 0为首项,3为公比的等比数列,即:P i -P i -1=3i -1P 1-P 0 ,即:P 10-P 9=39P 1-P 0 ,P 9-P 8=38P 1-P 0 ,⋯P 1-P 0=30P 1-P 0 ,故P 10=39+38+⋯+30P 1-P 0 =310-12P 1,P 5=34+33+⋯+30 P 1-P 0 =35-12P 1,则P 5=P 5P 10=35-1310-1=135+1=1244,故这名顾客获得代金券的概率为1244.。
5--连续时间马尔可夫链--beamer

������ (������ (������) = ������, ������ (2������) = ������, · · · , ������ (������������) = ������|������ (0) = ������) = [������������������ (������)] .
(������ −������)!
当 ������
������,
⎩ 0, ������ = ������, ������ ̸= ������.
第五章: 连续时间马尔可夫链
当 ������ < ������,
其中 ������������������ 是马氏链.
������������������ (0) = ������������������
并且对于 ������ ������, 有
∞ ∞ ∑︁ ������������ (������) ∑︁ ������������ ������ −������ ������������������ = (������)������ ������������ (−1)������−������ ������! ������! ������=0 ∞ ∑︁
称矩阵 ������ = (������������������ (������))������,������ ∈������ 为马氏链的一步转移概率矩阵, 简称为转移矩阵.
韩参变量 (某某大学)
第五章: 连续时间马尔可夫链
3 / 61
连续时间马氏链的性质
1. ������������������ 是 ������ 函数, 即 ������������������ (0) = ������������������ = ⎧ ⎨ 1, ⎩ 0, ������ = ������, ������ ̸= ������.
连续时间马尔可夫链例题

连续时间马尔可夫链例题假设有一个连续时间马尔可夫链,描述一个人的健康状态。
该马尔可夫链包含三个状态:健康、生病和康复。
人的健康状态可以根据以下转移概率进行模拟:1. 在任何时间点,一个健康的人以0.1的速率生病。
2. 在任何时间点,一个生病的人以0.2的速率康复。
3. 在任何时间点,一个康复的人以0.05的速率重新生病。
现在假设一个人的初始状态是健康,我们可以使用连续时间马尔可夫链模型来模拟他的健康状态随时间的变化。
假设每个时间单位是一周,我们希望模拟他一年内的健康状态。
根据上面的转移概率,我们可以得到如下的转移矩阵:```| 健康 | 生病 | 康复 |----------------------------健康 | 0.9 | 0.1 | 0 |生病 | 0.05 | 0.75 | 0.2 |康复 | 0 | 0.05 | 0.95|```该矩阵中的每个元素表示从当前状态转移到下一个状态的概率。
例如,一个健康的人在一周后仍然健康的概率为0.9,在一周后生病的概率为0.1,在一周后康复的概率为0。
使用该转移矩阵,我们可以模拟一个人一年内的健康状态。
假设每个时间单位是一周,则一年共有52个时间单位。
我们可以使用随机数生成器来生成每个时间单位的状态。
假设生成的随机数在[0,1)之间,我们可以根据转移概率进行状态转移。
例如,如果生成的随机数小于0.9,则人在下一个时间单位仍然健康;如果生成的随机数介于0.9和0.95之间,则人在下一个时间单位康复;如果生成的随机数大于等于0.95,则人在下一个时间单位重新生病。
使用这种方法,我们可以模拟一个人一年的健康状态,并观察他在这段时间内的状态变化。
这可以帮助我们更好地了解和预测一个人的健康动向。
第三节连续时间马尔可夫链

根据 j'(t) i(t)qij 若存在平稳分i 布,则 lti m j'(t)lti m i i(t)qij
i
iqij 0 i 1
i
写 成 矩 阵 形 式 : Q0
12
4 平稳概率例题
一个连续时间的马氏链E={0,1,2},其状态强度转移矩阵和状
态转移图为
平衡方程:
(0,1,2)Q 0
马尔可夫链的平稳分布 j 如何判别连续马尔可夫链的平稳分布必定存在?
转移概率矩阵是标准的 不可约的齐次马氏链,则极限存在,且与初始分布无关 正常返的齐次马氏链,则此极限值为平稳分布,且全部大 于0
11
5 平稳分布
如何求离散马尔可夫链的平稳分布? 定理3.1 若 lti m j(t)j (jE)存在,则 ltimj '(t) 0 。
有:
1 i j
pij (0)
0
i j
P(0) I
5
2 K-C方程
1.K-C方程: pij(ts) pik(t)pkj(s)
写成矩阵的形式:
k
P(t+s)=P(t)·P(s)
2. K氏前向方程 P '(t) P (t)Qp ij'(t)p ik (t)q k j k
3. K氏后向方程 P '(t) Q P (t) p ij'(t)q ikp k j(t)
pij(t s) pik(t)pkj(s) k
P(t s) P(t)P(s)
前向 方程
后向 方程
P'(t) P(t)Q
pij '(t) pik (t)qkj
k
P'(t) Q P(t)
pij '(t) qik pkj (t)
连续时间马尔可夫链例题

连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。
它受到时间的连续性限制,可以用于描述一些随机过程。
马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。
在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。
这个过程可以用一个状态转移概率矩阵来描述。
在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。
与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。
连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。
该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。
连续时间马尔可夫链的演变是通过指数分布来描述的。
在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。
连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。
设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。
矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。
在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。
转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。
连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。
•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。
•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。
稳态概率分布表示在长时间内各个状态的概率分布。
•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。
连续时间马尔可夫链

于是,记:
P X ( s t ) j X ( s ) i pij ( s, t )
2、齐次马氏链:
pij (s, t ) pij (t s)
齐次马氏链的转移矩阵:
P(t ) pij (t )
t1 0, t2 0, t3 这些点处取状态值 0,
pij (t ) t
i
对跳变现象,考察转移概率:pij (t ),i j
以及跳变强度
t 0
lim
,i j
(二) 停留现象(P75)
引入“停留之前停留在状态
f (t ) vi e
pii (0) 1, pij (0) 0, 当i j
为了以后能对转移概率 pij (t ) 作微分运算
(即,对连续时间变量 t ,分析
(t )与pij (t ) pij
的关系,找到它们之间的等量表达式。)
它是一个微分方程。 需要作出正则性规定,才能保证其一致连续性。 正则性条件的物理意义: P 74
可以看出,连续时间下,马尔可夫链的状态是“跳
跃式”变化。
3、跃变(或跳变)与停留现象
X(t)
..………….....
i2 …… i1
t
0
t1
t2
t3
t4
t5
(一)跳变现象: 跳变时刻
t1 , t2 , t3 , 与跳变强度都是随机的。
) xt
(为连续性考虑,一般认为X(t)在跃变点是右连续的, 即X(t)在
1 E i vi
vi t
i 的时间。
i 服从指数分布(参数为 v i ), 其特征是无记忆性。
课上练习题_连续时间马尔科夫链 619

6.2 Suppose that a one-celled organism can be in one of two states-either A or B. An individual in state A will change to state B at an exponential rate α; an individual in state B divides into two new individuals of type A at an exponential rate β. Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model.6.3 Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μbefore breaking down, i = 1,2. The repair times (for either imachine) are exponential with rate μ. Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?6.8 Consider two machines, both of which have an exponential1. There is a single repairman that can lifetime with meanλservice machines at an exponential rate μ. Set up the Kolmogorov backward equations; you need not solve them.6.9 The birth and death process with parameters λ=μμ,0,n>0 is called a pure death process. Find P ij(t).=nn6.13 A small barbershop, operated by a single barber, has room for at most two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean 1/4 hour. What is(a) the average number of customers in the shop?(b) the proportion of potential customers that enter the shop?(c) If the barber could work twice as fast, how much more business would he do?6.14 Potential customers arrive at a full-service, one-pump gasstation at a Poisson rate of 20 cars per hour. However, customers will only enter the station for gas if there are no more than two cars(including the on currently being attended to) at the pump. Suppose the amount of time required to service a car is exponentially distributed with a mean of five minutes.(a) What fraction of the attendant ’s time will be spentservicing cars?(b) What fraction of potential customers are lost?6.19 A single repairperson looks after both machines 1 and 2. Each time it is repaired, machine i stays up for an exponential time with rate 2,1,=i i λ. When machine i fails, it requires an exponential distributed amount of time with rate i μ to complete its repair. The repairperson will always service machine 1 when it is down. For instance, if machine 1 fails when 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on 1. What proportion of time is machine 2 down?6.23 A job shop consists of three machines and two repairmen. The amount of time a machine works before breaking down is exponentially distributed with mean 10. If the amount of time it takes a single repairman to fix a machine is exponentially distributed with mean 8, then(a) What is the average number of machines not in use?(b) What proportion of time are both repairmen busy?6.24 Consider a taxi station where taxis and customers arrive in accordance with Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, an arriving customer that does not find a taxi waiting leaves. Find(a) the average number of taxis waiting(b) the proportion of arriving customers that get taxis.。
1140503102450451连续时间马尔可夫链

5 连续时间马尔可夫链5.1引言本章中我们考虑与离散时间马尔可夫链类似的连续时间马尔可夫链。
如离散情形一样,它们由马尔可夫性刻画,即已知现在的状态时将来与过去独立。
在5.2节中。
我们定义连续时间马尔可夫链且把它们与第四章的离散时间马尔可夫链相联系。
在5.3节中,我们引入一类重要的连续时间马尔可夫链,即所谓生灭过程。
这些过程可用作在任何时刻其总量的变化仅为一个单位的群体的模型。
在5.4节中,我们导出两组描述系统的概率规律的微分方程——向前与向后方程。
5.5节的内容是确定连续时间马尔可夫链的有关的极限(或长时间后的)概率。
在5.6节中,我们考虑时间可逆的问题。
其中,我们证明一切生灭过程是时间可逆的,而后阐明这事实对于排队系统的重要性。
在这一节中也提供了时间可逆性对随机群体模型的应用。
在5.7节中,我们阐明逆向链的重要性,即使过程不是时间可逆的。
利用它我们研究排队网络模型。
导出爱尔朗消失公式,分析共用加工系统。
5.8节中我们表面如何“一致化”马尔可夫链——对于数值计算有用的一种技巧。
5.2连续时间马尔可夫链考虑取非负整数值的连续时间随机过程t,0X t,与第四章中给出的离散时间马尔可夫链的定义类似,过程t,0X t称为连续时间马尔可夫链,如果对一切,0s t及非负整数,i j,x u,0u s,有|X,X,0P X t s j s i u x u u sP X t s j X s i|换言之,连续时间马尔可夫链是具有马尔可夫性的随机过程,即已知现在s时是状态及一切过去的状态的套件下在将来时刻t s的状态的条件分布只依赖现在的状态而与过去独立。
若又有|P X t s j X s i与s无关则称连续时间马尔可夫链具有平稳的或其次的转移概率。
将假定我们所考虑的马尔可夫链都有平稳转移概率。
假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且假设在接下来的s个单位时间中过程未离开状态i(即未发生转移)。
在随后的t个单位时间中过程仍不离开状态i的概率是多少呢?为了回答这个问题。
应用随机过程考试题

一、选择题1.在随机过程中,若某一过程的所有可能状态及其概率在时间上保持不变,则称该过程为:A.平稳过程B.非平稳过程C.马尔可夫过程D.遍历过程2.下列哪个不是描述随机变量分布特性的重要参数?A.期望值(均值)B.方差C.协方差D.样本容量3.马尔可夫链中,若当前状态仅依赖于前一个状态,则称该链具有:A.一阶记忆性B.无记忆性C.高阶记忆性D.完全记忆性4.在随机游走模型中,若每一步的位移是独立同分布的随机变量,且均值为0,则该模型属于:A.布朗运动B.泊松过程C.几何布朗运动D.平稳独立增量过程5.泊松分布常用于描述:A.单位时间内某事件发生次数的概率分布B.连续型随机变量的概率分布C.样本均值的分布D.两个随机变量之间的线性关系6.若一个随机过程的任意两个时间点上的随机变量之间都存在线性关系,则称该过程具有:A.平稳性B.相关性C.正态性D.独立性7.在连续时间马尔可夫链中,状态转移率矩阵描述了:A.各状态间的直接转移概率B.各状态间的间接转移概率C.单位时间内从某状态转移到其他状态的概率D.所有状态的总转移概率8.布朗运动的一个关键性质是:A.路径可预测性B.路径连续但几乎处处不可导C.路径分段平滑D.路径与时间呈线性关系9.对于随机过程X(t),若对任意t,X(t)的概率分布函数与时间t无关,则X(t)是:A.平稳过程B.严格平稳过程C.弱平稳过程D.遍历过程10.下列哪个随机过程模型常用于金融市场中的股票价格模拟?A.几何布朗运动B.泊松过程C.平稳独立增量过程D.线性回归过程。
EXANS_C4马尔可夫链

练习四:马尔可夫链 随机进程练习题1.设质点在区间[0,4]的整数点作随机游动,抵达0点或4点后以概率1停留在原处,在其它整数点别离以概率31向左、右移动一格或停留在原处。
求质点随机游动的一步和二步转移的概率矩阵。
2.独立地重复抛掷一枚硬币,每次抛掷显现正面的概率为p ,关于2≥n 求,令n X =0,1,2或3,这些值别离对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。
求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。
3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P}|,,,{111100++=====n n n n i X i X i X i X P ==⋅+++m n n n X i X P ,,{22 }|11+++=n n m n i X i4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始散布和转移概率矩阵为==0{X P p i4,3,2,1,41}==i i ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证}41|4{}41,1|4{12102<<=≠<<==X X P X X X P5.设}),({T t t X ∈为随机进程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独立同散布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。
随机过程课后试题答案

随机过程课后试题答案1. 题目:简述离散时间马尔可夫链和连续时间马尔可夫链的基本概念和性质。
答案:离散时间马尔可夫链(Discrete-time Markov Chain)是指在时间上的变化是离散的、状态空间是有限或可列无限的马尔可夫链。
其基本概念和性质如下:1.1 基本概念:- 状态空间:马尔可夫链的状态空间是指系统可能处于的状态集合,记作S。
离散时间马尔可夫链的状态空间可以是有限集合或可列无限集合。
- 转移概率:转移概率是指在给定前一个状态的条件下,系统转移到下一个状态的概率。
用P(i, j)表示系统从状态i转移到状态j的概率,其中i和j属于状态空间S。
- 转移概率矩阵:转移概率矩阵P是指表示从任一状态i到任一状态j的转移概率的矩阵。
对于离散时间马尔可夫链,转移概率矩阵是一个方形矩阵,维数与状态空间大小相同。
- 平稳概率分布:对于离散时间马尔可夫链,如果存在一个概率分布π,满足π = πP,其中π是一个行向量,P是转移概率矩阵,则称π为马尔可夫链的平稳概率分布。
1.2 性质:- 马尔可夫性:离散时间马尔可夫链具有马尔可夫性,即将来状态的发展只与当前状态有关,与过去的状态无关。
- 遍历性:若马尔可夫链中任意两个状态之间都存在路径使得概率大于零,则称该马尔可夫链是遍历的。
遍历性保证了马尔可夫链具有长期稳定的性质。
- 正常概率性:对于离散时间马尔可夫链,转移概率矩阵P的元素都是非负的,并且每一行的元素之和等于1。
- 可约性和不可约性:如果一个马尔可夫链中的所有状态彼此之间都是可达的,则称该马尔可夫链是不可约的。
反之,则称它是可约的。
不可约性保证了任意状态之间都可以相互转移。
- 周期性:对于不可约的离散时间马尔可夫链,如果存在某个状态,从该状态出发回到该状态所需的步数的最大公约数大于1,则称该状态是周期的。
若所有状态都是非周期的则称该马尔可夫链是非周期的。
2. 题目:连续时间马尔可夫链的定义和性质有哪些?答案:连续时间马尔可夫链(Continuous-time Markov Chain)是指在时间上的变化是连续的、状态空间是有限或可列无限的马尔可夫链。
随机过程Ch5连续时间的马尔可夫链ppt课件

由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h
连续时间马尔可夫链

P{X (t s) j | X (t) k, X (0) i} kI P{X(t) k | X(0) i}
P{X (t s) j | X (t) k}P{X (t) k | X (0) i}
P{X(tn+1)=in+1|X(t1)=i1, X(t2)=i2,, X(tn)=in} =P{X(tn+1)=in+1|X(tn)=in},
则称{X(t), t 0 }为连续时间马尔可夫链.
10.1 连续时间马尔可夫链的性质
定义10.2 过程在s时刻处于状态i, 经过时间t后转移到 状态j的概率pij(s,t)= P{X(s+t)=j|X(s)=i} 称为转移概率. 若 转移概率与起始时刻s无关, 只与时间间隔t有关, 则称连 续时间马尔可夫链具有平稳的或齐次的转移概率, 记为
定义10.3 设{X (t),t 0} 为连续时间的马尔可夫过程, 则 (1) 初始概率 pj pj (0) P{X (0) j}, j I; (2) 绝对概率 pj (t) P{X (t) j}, j I , t 0; (3) 初始分布 { pj , j I }; (4) 绝对分布 { pj (t) , j I } (t 0).
pi pii1 (t1 ) pi1i2 (t2 t1 ) pin1in (tn tn1 ). iI
10.1 连续时间马尔可夫链的性质
例10.1 证明泊松过程{X(t), t0}为连续时间齐次马尔可夫链. 证 先证泊松过程的马尔可夫性.
P{ i
s t, i
s}
P{ i
s t} ,
P{ i s}
P{ i s}
10.1 连续时间马尔可夫链的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 Suppose that a one-celled organism can be in one of two states-either A or B. An individual in state A will change to state B at an exponential rate α; an individual in state B divides into two new individuals of type A at an exponential rate β. Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model.
6.3 Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μbefore breaking down, i = 1,2. The repair times (for either i
machine) are exponential with rate μ. Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?
6.8 Consider two machines, both of which have an exponential
1. There is a single repairman that can lifetime with mean
λ
service machines at an exponential rate μ. Set up the Kolmogorov backward equations; you need not solve them.
6.9 The birth and death process with parameters λ=
μ
μ
,0,n>0 is called a pure death process. Find P ij(t).
=
n
n
6.13 A small barbershop, operated by a single barber, has room for at most two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean 1/4 hour. What is
(a) the average number of customers in the shop?
(b) the proportion of potential customers that enter the shop?
(c) If the barber could work twice as fast, how much more business would he do?
6.14 Potential customers arrive at a full-service, one-pump gas
station at a Poisson rate of 20 cars per hour. However, customers will only enter the station for gas if there are no more than two cars(including the on currently being attended to) at the pump. Suppose the amount of time required to service a car is exponentially distributed with a mean of five minutes.
(a) What fraction of the attendant ’s time will be spent
servicing cars?
(b) What fraction of potential customers are lost?
6.19 A single repairperson looks after both machines 1 and 2. Each time it is repaired, machine i stays up for an exponential time with rate 2,1,=i i λ. When machine i fails, it requires an exponential distributed amount of time with rate i μ to complete its repair. The repairperson will always service machine 1 when it is down. For instance, if machine 1 fails when 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on 1. What proportion of time is machine 2 down?
6.23 A job shop consists of three machines and two repairmen. The amount of time a machine works before breaking down is exponentially distributed with mean 10. If the amount of time it takes a single repairman to fix a machine is exponentially distributed with mean 8, then
(a) What is the average number of machines not in use?
(b) What proportion of time are both repairmen busy?
6.24 Consider a taxi station where taxis and customers arrive in accordance with Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, an arriving customer that does not find a taxi waiting leaves. Find
(a) the average number of taxis waiting
(b) the proportion of arriving customers that get taxis.。