沪科版几年级数学上册反比例函数测试题

合集下载

沪教版八年级数学上册《18.3反比例函数》同步练习题-带答案

沪教版八年级数学上册《18.3反比例函数》同步练习题-带答案

沪教版八年级数学上册《18.3反比例函数》同步练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.在下列函数中,y 是x 的反比例函数的是( ) A .21y x =+B .2x y =C .5y x-=D .2yx= 2.下列哪个点在反比例函数4y x=的图像上?( ) A .()11,4P - B .()24,1P - C .()32,4PD .()422,2P3.若反比例函数ky x=(0k ≠)的图象经过点2,1,则k 的值是( ) A .2B .2-C .12D .12-4.若点()23,是反比例函数ky x=图象上一点,则此函数图象一定经过点( ) A .()16, B .()16-, C .()32-, D .()3-2,5.函数21y x =的大致图像是( ) A . B . C . D .6.若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<7.反比例函数ky x=(k 为正整数)在第一象限的图象如图所示,已知图中点A 的坐标为(2,1),则k 的值是( )A .1B .2C .3D .4值范围是( ) A .1a <-B .11a -<<C .1a >D .1a <-或1a >二、填空题2ky x的图象,1k x-的图象的每一支上,完全平方式,则该反比例函数的解析式为三、解答题15.已知反比例函数k y x =的图象分别位于第二、第四象限,化简:2216(1)444k k k k k -++---.16.某工程队接受一项开挖水渠的工程,所需天数y (单位:天)是每天完成的工程量x (单位:m/天)的反比例函数,其图象经过点()24,50(如图).(1)求y 与x 的函数关系式;(2)已知该工程队每台挖掘机每天能够开挖水渠15m ,若要求该工程队恰好20天完成此项任务,那么需要几台这样的挖掘机?17.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.参考答案:1.C 2.D 3.B 4.A 5.A 6.C。

沪科版数学九年级数学上册第21章《二次函数与反比例函数》测试题

沪科版数学九年级数学上册第21章《二次函数与反比例函数》测试题

沪科版数学九年级数学上册第21章《二次函数与反比例函数》测试题测试范围:第21章时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.若A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,则a的值是()A.4B.﹣4C.2D.﹣22.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+33.已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点4.反比例函数y=与一次函数y=的图象有一个交点B(,m),则k的值为()A.1B.2C.D.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是()A.B.C.D.第5题图第6题图6.如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3B.S1:S2=1:1C.S1:S2=4:3D.S1:S2=5:37.若点A(a﹣1,y1),B(a+1,y2)都在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1 8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x 的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<<1B.>1C.0<<1D.>19.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,则m﹣n的最大值等于()A.B.4C.﹣D.﹣10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.第10题图第12题图二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.12.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.13.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为______min.14.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,则实数a的范围是.三、(本大题共2小题,每小题8分,满分16分)15.已知近视眼镜片的度数y(度)是镜片焦距x(cm)(x>0)的反比例函数,调查数据如下表:眼镜片度数y(度)4006258001000 (1250)镜片焦距x(cm)251612.510 (8)(1)求y关于x的函数表达式;(2)若近视眼镜镜片的度数为500度,求该镜片的焦距.16.已知反比例函数y=,(k为常数,k≠3).(1)若点A(2,3)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.已知抛物线y=(m+1)x|m|+1﹣4x+3.(1)求m的值及此抛物线的对称轴;(2)判断该抛物线与x轴交点的个数,并说明理由.18.2019年10月31日,三大运营商宣布5G商用正式启动,5G资费套餐上线,5G时代大步流星地走来.某电器城准备销售某种型号的5G手机,在销售过程中发现,当零售价为4000元时,每天可以售出8台,日销售利润为4000元,当零售价每降低50元时,每天多售出4台,设该型号5G手机的零售价降低x(元)时,日销售量为y(台).(1)求y关于x的函数表达式(写出x的取值范围);(2)当零售价为多少元时,日销售利润最大,最大利润为多少元?五、(本大题共2小题,每小题10分,满分20分)19.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连接OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.20.已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.六、(本题满分12分)21.如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m≠0)的一个交点为B(﹣1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△P AC的面积为4,求点P 的坐标.七、(本题满分12分)22.如图,二次函数y=﹣x2+(n﹣1)x+3的图象与y轴交于点A,与x轴的负半轴交于点B(﹣2,0).(1)求二次函数的解析式;(2)若点P是第二象限内二次函数图象上的一点,过点P作y轴的垂线与线段AB交于点C,求线段PC长度的最大值.八、(本题满分14分)23.如图1,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;(3)如图2所示,设抛物线与y轴交于点F,在第一象限内的抛物线上,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.参考答案1.B 2.C 3.C 4.C 5.C 6.C 7.B 8.A 9.C10.A 解析:如图1所示,当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.l l如图2所示,当2<x≤4时,过点G作GH⊥BF于H,则易得FJ=2+2-x=4-x,GH=FJ= (4-x),∴y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选A.11.(﹣1,4)12.2 13.3.7514.(1)0≤x<3(2)﹣≤a≤0 解析:由题意,当﹣1≤x<0时,[x]=﹣1,函数分别为:y1=x2+2a+3,y2=2,2a+3≥2,∴a≥﹣;当0≤x<1时,[x]=0,y1=x2﹣2a[x]+3=x2+3,y2=[x]+3=3,此时y1≥y2,即y1的图象在y2的图象上方或图象上;当1≤x<2时,[x]=1,y1=x2﹣2a+3,y2=4,又∵当1≤x<2时,y1随的x增大而增大,∴1﹣2a+3≥4,解得a≤0.综上所述,当﹣≤a≤0时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,故答案为﹣≤a≤0.15.解:(1)由表中数据可知y与x之积恒为10000,则函数的表达式是y=.(4分)(2)令y=500,则500=,解得x=20.即该镜片的焦距是20 cm.(8分)16.解:(1)∵点A(2,3)在这个函数的图象上,∴k﹣3=2×3,解得k=9.(4分)(2)由题意得k﹣3<0,解得k<3.(8分)17.解:(1)由题意得m+1≠0,且|m|+1=2,解得m=1.故抛物线的表达式为:y=2x2﹣4x+3,抛物线的对称轴为直线x=﹣=1.(4分)(2)该抛物线与坐标轴交点个数为0,理由如下:令y=0,即2x2-4x+3=0,则△=b2﹣4ac =16﹣4×2×3=﹣8<0,故方程2x2-4x+3=0没有实数根,即抛物线与x轴交点的个数为0.(8分)18.解:(1)由题意得:y=8+×4,即y=x+8.∵每天可以售出8台,日销售利润为4000元,∴每台利润为:4000÷8=500(元).∴0≤x<500.∴y关于x的函数表达式为y=x+8(0≤x<500).(4分)(2)设日销售利润为w元,根据题意得w=(﹣x)(x+8)=﹣x2+32x+4000=﹣(x﹣200)2+7200.∴当x=200时,w最大为7200,∴4000﹣200=3800(元).∴当零售价为3800元时,日销售利润最大,最大利润为7200元.(8分)19.解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形.∵OA=2,∴OD=AD=2,∴A(2,2).∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4.∴反比例函数的解析式为y=(x>0).(5分)(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∴∠AOE=∠AEO.∵在Rt△ABC中,∠ACB=90°,点E为AB的中点,∴CE=AE=BE,∴∠ECB=∠EBC.∴∠AEO=∠ECB+∠EBC=2∠ECB,又易得BC∥x轴,∴∠EOD=∠ECB.∴∠AOE=∠AEO=2∠ECB=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.(10分)20.解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1.(3分)(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1.∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1.(6分)(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.(10分)21.解:(1)∵直线y=kx+3(k≠0)与双曲线y=(m≠0)都经过点B(﹣1,4),∴﹣k+3=4,m=﹣1×4.∴k=﹣1,m=﹣4.∴直线的表达式为y=﹣x+3,双曲线的表达式为4yx.(6分)(2)由题意,得点C的坐标为C(﹣1,0),直线y=﹣x+3与x轴交于点A(3,0).∴AC=4.∵,∴y P=±2.∵点P在双曲线4yx上,∴点P的坐标为P1(﹣2,2)或P2(2,﹣2).(12分)22.解:(1)∵二次函数y=﹣x2+(n﹣1)x+3的图象与x轴的负半轴交于点B(﹣2,0),∴0=﹣(﹣2)2+(n﹣1)×(﹣2)+3,解得n=,∴y=﹣x2﹣x+3.即二次函数的解析式为y=﹣x2﹣x+3.(5分)(2)∵y=﹣x2﹣x+3,∴当x=0时,y=3,∴点A的坐标为(0,3).设过点A(0,3),B(﹣2,0)的直线解析式为y=kx+b,将坐标代入得,解得,即直线AB的解析式为y=x+3,设点P的坐标为(a,﹣a2﹣a+3),则点C的坐标为(a2﹣a,﹣a2﹣a+3),则PC=a2﹣a﹣a=﹣(a+1)2+.∵点P是第二象限内二次函数图象上的一点,∴﹣2<a<0.(12∴当a=﹣1时,线段PC的长度取得最大值,此时PC=,即线段PC长度的最大值是.分)23.解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5).把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+4x+5.(4分)(2)设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|.∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|.当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1(舍去)或x=6,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7).(8分)(3)存在这样的点Q,使得四边形OFQC的面积最大.如图,过点Q作QP⊥x轴于点P,设Q(n,﹣n2+4n+5)(n>0),则PO=n,PQ=﹣n2+4n+5,CP=5﹣n,∵F(0,5),∴OF=5.∴四边形OFQC的面积=S四边形PQFO+S△PQC=×(﹣n2+4n+5+5)•n+×(5﹣n)×(﹣n2+4n+5)=﹣n2+n+=﹣(n﹣)2+.当n=时,四边形OFQC的面积取得最大值,最大值为,此时点Q的坐标为(,).(14分)。

沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<02、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.4、如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k 的值是()A.5B.10C.15D.205、若是反比例函数,则必须满足()A. B. C. 或 D. 且6、小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个7、若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0B.-2C.2D.-68、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.9、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.10、将抛物线y=2x2平移,得到抛物线y=2(x+4)2+1,下列平移正确的是()A.先向左平移4个单位,再向上平移1个单位B.先向左平移4个单位,再向下平移1个单位C.先向右平移4个单位,再向上平移1个单位 D.先向右平移4个单位,再向下平移1个单位11、将抛物线y=(x﹣2)2+2向左平移2个单位,得到的新抛物线为()A.y=(x﹣2)B.y=(x﹣2)+4C.y=x +2D.y=(x﹣4)+212、已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>013、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2514、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-215、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。

沪科版数学九年级(上) 第1章 二次函数与反比例函数 单元综合测试卷 (含答案)

沪科版数学九年级(上) 第1章 二次函数与反比例函数 单元综合测试卷 (含答案)

第1章《二次函数与反比例函数》单元综合测试卷题号一二三总分得分第Ⅰ卷(选择题)一。

选择题(共12小题)1、关于反比例函数y=﹣,下列说法不正确的是( )A、点(3,﹣1)在它的图象上ﻩB、它的图象在第二、四象限C、当x〉3时,﹣1<y<0 D、当x〉0时,y随x的增大而减小2、若点A(﹣5,y1)、B(﹣3,y2)在反比例函数y=的图象上,则y1,y2的大小关系是( )A、y1>y2B、y1<y2C、y1=y2D、无法确定3、某品牌的笔记本成本是7元/本,经销商对其销量与售价的关系进行了调查、整理出如下表所示的4组对应值售价(元/本) 12 13 1415销量(本) 110 100 80 60 为获得最大利润,经销商应将该品牌笔记本售价定为( )(单位:元/本)A、13ﻩB、12C。

14 D、154、下列函数关系中,能够看做二次函数y=ax2+bx+c(a≠0)模型的是( )A、在一定距离内,汽车行驶的速度与行驶的时间的关系ﻩB、正方形周长与边长之间的关系C、正方形面积和正方形边长之间的关系D。

圆的周长与半径之间的关系5、如图,一次函数y=x+分别与x轴、y轴交于A、B两点,点P为反比例函数y=(k≠0,x〈0)图象上一点,过点P作y轴的垂线交直线AB交于C,作PD⊥PC交直线AB于D,若AC•BD=7,则k的值为( )A、﹣2ﻩB、﹣3C、﹣ﻩD、﹣ﻩ6、如图,反比例函数y1=和正比例函数y2═k2x的图象交于A(﹣2,﹣3),B(2,3)两点、若x,则x的取值范围是( )A、﹣2〈x<0ﻩB、﹣2〈x<2ﻩC、x<﹣2或0〈x<2D。

﹣2〈x<0或x>2ﻩ7、如图,将等腰直角三角形OAB放置于平面直角坐标系中,OA=AB=10,∠A=90°,D是AB边上的动点(不与端点A,B重合),作∠ACD=60°,交OA于点C,若点C,D都在双曲线y=(k>0,x>0)上,则k的值为( )A、B。

沪科版-数学-九年级上册- 反比例函数 综合练习1

沪科版-数学-九年级上册- 反比例函数 综合练习1

21.5 反比例函数学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数;当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、 ⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为_________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题6.已知函数x k y =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3= (B)x y 3-= (C)x y 31= (D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4(B)-4 (C)3 (D)-3三、解答题 8.已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=k x k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x (B)x y 100= (C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系;(2)如果S =3cm 2时,h =16cm ,求:①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.参考答案1.xk y =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)x wy =,反比例.3.②、③和⑧. 4.2,x y 1=.5.)0(100>⋅=x x y 6.B . 7.A . 8.(1)x y 6=; (2)x =-4.9.-2,⋅-=x y 410.反比例.11.B . 12.D . 13.(1)反比例; (2)①S h 48=;②h =12(cm), S =12(cm 2).14.⋅-=325x y15. .23x x y -=。

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。

沪科版-数学-九年级上册-九上22.6反比例函数测试卷及答案

沪科版-数学-九年级上册-九上22.6反比例函数测试卷及答案

沪科版九年级数学上学期单元试卷(三)内容:22.6 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.反比例函数xk y 3+=的图象在二、四象限,则k 的取值范围是( D ) A .k ≤3 B .k ≥-3 C .k >3 D .k <-3. 2.反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( D ) A .-1 B .0C .1D .23.已知2)1(-+=m xm y 是反比例函数,则函数图象在( A )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.如图,过双曲线y =kx(k 是常数,k >0,x >0)的图象上两点A 、B 分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则△AOC 的面积S 1和△BOD 的面积S 2的大 小关系为( C )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .S 1和S 2的大小无法确定 5.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是( D ) A .x y 4-= B .x y 4= C . x y 8= D .xy 8-=(第4题) (第5题)6.在同一平面直角坐标系中,一次函数1-=kx y 与反比例函数xky =(其 中0≠k )的图象的形状大致是( C )A .B .C .D .7.若M (-1,y 1),N (1,y 2),P (2,y 3)三点都在函数y= kx (k <0)的图象上,则y 1,y 2,y 3,的大小关系为( B )A .y 1 >y 2>y 3 B.y 1>y 3>y 2 C .y 3 >y 1>y 2 D.y 3>y 2>y 1 8.反比例函数)0(>=k xky 在第一象限内的图像如图,点M 是图像上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( B ) A .1 B .2 C .4 D .21 9. 如图所示,过双曲线xy 2=上两点A 、B 分别作x 轴、y 轴的垂线, 若矩形ADOC 与矩形BFOE 的面积分别为S 1、S 2,则S 1与S 2的关系是( B ) A. S 1<S 2 B. S 1=S 2 C. S 1>S 2 D. 不能确定 10.正比例函数y=-x 与反比例函数xy 1-=的图象相交于A 、C 两点。

沪科版九年级上册数学反比例函数同步测试

沪科版九年级上册数学反比例函数同步测试

沪科版九年级上册数学反比例函数同步测试一、选择题1.以下函数不是正比例函数的是〔〕A. y=B. y=C. y=x﹣1D. y=【答案】D2.假定函数y=〔m+1〕x|m|-2是正比例函数,那么m等于〔〕.A. 2B. -2C. 1D. ±1【答案】C3.正比例函数y=,当x=2时,y=﹣,那么k等于〔〕A. 1B. -1C. ﹣4D. ﹣【答案】B4.点P〔1,3〕在正比例函数的图象上,那么k的值是〔〕A. B. C. D.【答案】C5.如图,Rt△ABC的顶点A在双曲线的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,衔接OA,∠AOB=60°,那么k的值是A. B. C. D.【答案】B6. 某体育场方案修建一个容积一定的长方体游泳池,设容积为a〔m3〕,泳池的底面积S〔m2〕与其深度x〔m〕之间的函数关系式为S=〔x>0〕,该函数的图象大致是〔〕A. B. C. D.【答案】C7.如图,正比例函数y=﹣的图象与直线y=kx+b交于A〔﹣1,m〕,B〔n,1〕两点,那么△OAB的面积为〔〕A. B. 4 C. D.【答案】C8.一个直角三角形的两直角边区分为x,y,其面积为1,那么y与x之间的关系用图象表示为〔〕A. B.C. D.【答案】C9.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA区分在x轴、y轴的正半轴上,正比例函数y=〔x>0〕与AB相交于点D,与BC相交于点E,假定BD=3AD,且△ODE的面积是9,那么k=〔〕A. B. C. D. 12【答案】C10.如图,A、B是双曲线上的点,A、B两点的横坐标区分是a、3a,线段AB的延伸线交x 轴于点C,假定S△AOC=6,那么k的值为〔〕A. 2B. 3C. 4D. 6【答案】B二、填空题11.假定是正比例函数,那么m=________ .【答案】-312.点P(2m-3,1)在正比例函数y=的图象上,那么m=________.【答案】213.假定正比例函数y=〔m+1〕的图象在第二、四象限,m的值为________【答案】14.正比例函数的图象经过点P〔2,﹣3〕,那么在每个象限中,其函数值y随x的增大而________ .【答案】增大15. 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A〔3,0〕,B〔0,6〕区分在x轴,y 轴上,正比例函数y= 〔x>0〕的图象经过点D,且与边BC交于点E,那么点E的坐标为________.【答案】〔2,7〕16.如图,直线y=x向下平移b个单位后得直线l,l与函数y=〔x>0〕相交于点A,与x轴相交于点B,那么OA2﹣OB2=________ .【答案】217.如图,正方形ABOC的边长为2,正比例函数y=过点A,那么k的值是________【答案】-418. 如图,点A,B在正比例函数y= 〔k>0〕的图象上,AC⊥x轴,BD⊥x轴,垂足C,D区分在x轴的正、负半轴上,CD=k,AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,那么k的值是________【答案】19.如图,矩形OABC的边AB与x轴交于点D,与正比例函数(k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,那么k的值是________【答案】三、解答题20.如图,点A在正比例函数y=的图象在第二象限内的分支上,AB⊥x轴于点B,O是原点,且△AOB的面积为1.试解答以下效果:〔1〕比例系数k等于多少;〔2〕在给定直角坐标系中,画出这个函数图象的另一个分支;〔3〕当x>2时,写出y的取值范围;〔4〕试探求:由〔1〕中的k值所确定的正比例函数y=的图象与函数y=﹣+2的图象有什么关系?【答案】解:〔1〕由于△AOB的面积为1,那么|k|=2,又函数图象位于第一象限,k>0,那么k=2,正比例函数关系式为y=﹣.故答案为:﹣2;〔2〕如下图:〔3〕应用图象可得出:当x>2时:﹣1<y<0.〔4〕函数y=﹣+2的图象是正比例函数y=﹣向上平移2个单位失掉的.21.如图,一次函数y1=kx+b〔k≠0〕与正比例函数y2= 〔m≠0〕相交于A和B两点.且A点坐标为〔1,3〕,B点的横坐标为﹣3.〔1〕求正比例函数和一次函数的解析式;〔2〕依据图象直接写出使得y1≤y2时,x的取值范围.【答案】〔1〕解:把点A〔1,3〕代入y2= ,失掉m=3,∵B点的横坐标为﹣3,∴点B坐标〔﹣3,﹣1〕,把A〔1,3〕,B〔﹣3,﹣1〕代入y1=kx+b失掉,解得,∴y1=x+2,y2=〔2〕解:由图象可知y1≤y2时,x≤﹣3或0<x≤122. 如图,一次函数y=﹣x+5的图象与正比例函数y=〔k≠0〕在第一象限的图象交于A〔1,n〕和B两点.〔1〕求正比例函数的解析式〔2〕在第一象限内,当一次函数y=﹣x+5的值大于正比例函数y=〔k≠0〕的值时,写出自变量x的取值范围.【答案】〔1〕解:∵一次函数y=﹣x+5的图象过点A〔1,n〕,∴n=﹣1+5,∴n=4,∴点A坐标为〔1,4〕,∵正比例函数y=〔k≠0〕过点A〔1,4〕,∴k=4,∴正比例函数的解析式为y=;〔2〕解:联立,解得或,即点B的坐标〔4,1〕,假定一次函数y=﹣x+5的值大于正比例函数y=〔k≠0〕的值,那么1<x<4.23.在平面直角坐标系xOy中,正比例函数y1= 的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B 〔﹣3,m〕.〔1〕求正比例函数y1= 和一次函数y2=ax+b的表达式;〔2〕点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,衔接AC.假定AC= CD,求点C 的坐标.【答案】〔1〕解:∵正比例函数y1= 的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B〔﹣3,m〕,∴点A〔1,3〕在正比例函数y1= 的图象上,∴k=1×3=3,∴正比例函数的表达式为y1= .∵点B〔﹣3,m〕在正比例函数y1= 的图象上,∴m= =﹣1.∵点A〔1,3〕和点B〔﹣3,﹣1〕在一次函数y2=ax+b的图象上,∴,解得:.∴一次函数的表达式为y2=x+2.〔2〕解:依照题意画出图形,如下图.∵BC∥x轴,∴点C的纵坐标为﹣1,∵AD⊥BC于点D,∴∠ADC=90°.∵点A的坐标为〔1,3〕,∴点D的坐标为〔1,﹣1〕,∴AD=4,∵在Rt△ADC中,AC2=AD2+CD2,且AC= CD,∴,解得:CD=2.∴点C1的坐标为〔3,﹣1〕,点C2的坐标为〔﹣1,﹣1〕.故点C的坐标为〔﹣1,﹣1〕或〔3,﹣1〕。

沪科新版九年级上册第21章二次函数与反比例函数测试卷(含答案)

沪科新版九年级上册第21章二次函数与反比例函数测试卷(含答案)

一.选择题〔共10小题〕1.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣1〔k为常数,且k>0〕的图象可能是〔〕A.B.C.D.2.以下给出的函数中,其图象是中心对称图形的是〔〕①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是3.抛物线y=x2+2x﹣m﹣2与x轴没有交点,那么函数y=的大致图象是〔〕A.B.C.D.4.反比例函数y=的图象如下图,那么一次函数y=kx+b〔k≠0〕的图象的图象大致是〔〕A.B. C.D.5.一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如下图,那么二次函数y=ax2+bx+c的图象可能是〔〕A.B.C.D.6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是〔〕A. B. C.D.7.对于二次函数y=﹣〔x﹣1〕2+2的图象与性质,以下说法正确的选项是〔〕A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是28.以下函数中,是反比例函数的为〔〕A.y=B.y=C.y=2x+1 D.2y=x9.假设点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,那么函数y=的图象在〔〕A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限10.对于二次函数y=x2﹣2mx﹣3,以下结论错误的选项是〔〕A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小二.填空题〔共3小题〕11.对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1〔m、n为常数〕.例如y=x4+x2,那么y'=4x3+2x.:y=x3+〔m﹣1〕x2+m2x.〔1〕假设方程y′=0有两个相等实数根,那么m的值为;〔2〕假设方程y′=m﹣有两个正数根,那么m的取值范围为.12.假设二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么实数n=.13.方程3x2﹣5x+m=0的两个实数根分别为x1、x2,且分别满足﹣2<x1<1,1<x2<3,那么m的取值范围是.三.解答题〔共6小题〕14.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,假设S=4,△BOD〔1〕求反比例函数解析式;〔2〕求C点坐标.15.:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.16.在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B〔﹣3,m〕.〔1〕求反比例函数y1=和一次函数y2=ax+b的表达式;〔2〕点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.假设AC=CD,求点C的坐标.17.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;该商品的进价为每件30元,设销售该商品每天的利润为y 元.〔1〕求出y与x的函数关系式〔2〕问销售该商品第几天时,当天销售利润最大?最大利润是多少?〔3〕该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.18.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,假如这种水果每千克降价1元,那么每天可多售出20千克.〔1〕设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;〔2〕假设要平均每天盈利960元,那么每千克应降价多少元?19.某企业是一家专门消费季节性产品的企业,经过调研预测,它一年中获得的利润y〔万元〕和月份n之间满足函数关系式y=﹣n2+14n﹣24.〔1〕假设利润为21万元,求n的值.〔2〕哪一个月可以获得最大利润,最大利润是多少?〔3〕当产品无利润时,企业会自动停产,企业停产是哪几个月份?参考答案与试题解析一.选择题〔共10小题〕1.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣1〔k为常数,且k>0〕的图象可能是〔〕A.B.C.D.【分析】先根据k的符号,得到反比例函数y=与一次函数y=kx﹣1都经过第一、三象限或第二、四象限,再根据一次函数y=kx﹣1与y轴交于负半轴,即可得出结果.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项错误,B选项正确,应选:B.【点评】此题主要考察了反比例函数与一次函数的图象,解题时注意:系数k的符号决定直线的方向以及双曲线的位置.2.以下给出的函数中,其图象是中心对称图形的是〔〕①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.应选C【点评】此题考察正比例函数、反比例函数、二次函数的性质、中心对称图形的定义等知识,解题的关键是理解中心对称图形的定义,属于根底题.3.抛物线y=x2+2x﹣m﹣2与x轴没有交点,那么函数y=的大致图象是〔〕A.B.C.D.【分析】根据抛物线y=x2+2x﹣m﹣2与x轴没有交点,得方程x2+2x﹣m﹣2=0没有实数根求得m<﹣5,再判断函数y=的图象在哪个象限即可.【解答】解:∵抛物线y=x2+2x﹣m﹣2与x轴没有交点,∴方程x2+2x﹣m﹣2=0没有实数根,∴△=4﹣4×1×〔﹣m﹣4〕=4m+20<0,∴m<﹣5,∴函数y=的图象在二、四象限.应选C.【点评】此题考察了反比例函数的图象以及抛物线与x轴的交点问题,掌握反比例函数和二次函数的性质是解题的关键.4.反比例函数y=的图象如下图,那么一次函数y=kx+b〔k≠0〕的图象的图象大致是〔〕A.B. C.D.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,那么k<0,图象经过y轴正半轴,那么b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,那么k<0,图象经过原点,那么b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,那么k>0,图象经过y轴负半轴,那么b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,那么k>0,图象经过y轴正半轴,那么b>0,此时,k,b同号,故此选项符合题意;应选:D.【点评】此题主要考察了反比例函数以及一次函数的图象,正确得出k,b的符号是解题关键.5.一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如下图,那么二次函数y=ax2+bx+c的图象可能是〔〕A.B.C.D.【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.应选A.【点评】此题考察了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键.6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是〔〕A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;应选D.【点评】此题考察了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.7.对于二次函数y=﹣〔x﹣1〕2+2的图象与性质,以下说法正确的选项是〔〕A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2【分析】根据抛物线的图象与性质即可判断.【解答】解:由抛物线的解析式:y=﹣〔x﹣1〕2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,应选〔B〕【点评】此题考察二次函数的性质,解题的关键是正确理解抛物线的图象与性质,此题属于根底题型.8.以下函数中,是反比例函数的为〔〕A.y=B.y=C.y=2x+1 D.2y=x【分析】根据反比例函数的定义答复即可.【解答】解:A、是反比例函数,故A正确;B、不是反比例函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故D错误.应选:A.【点评】此题主要考察的是反比例函数的定义,掌握反比例函数的定义是解题的关键.9.假设点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,那么函数y=的图象在〔〕A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限【分析】由点A、B的坐标利用待定系数法可求出一次函数解析式,再根据k>0即可得出反比例函数y=的图象所在的象限.【解答】解:∵点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,∴,解得:,∴函数y=的图象在第一、三象限.应选A.【点评】此题考察了反比例函数的图象以及待定系数法求一次函数解析式,根据点A、B的坐标利于待定系数法可求出一次函数解析式是解题的关键.10.对于二次函数y=x2﹣2mx﹣3,以下结论错误的选项是〔〕A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【分析】直接利用二次函数与x轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A、∵b2﹣4ac=〔2m〕2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;应选:C.【点评】此题主要考察了抛物线与x轴的交点以及二次函数的性质、根与系数的关系等知识,正确掌握二次函数的性质是解题关键.二.填空题〔共3小题〕11.对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1〔m、n为常数〕.例如y=x4+x2,那么y'=4x3+2x.:y=x3+〔m﹣1〕x2+m2x.〔1〕假设方程y′=0有两个相等实数根,那么m的值为;〔2〕假设方程y′=m﹣有两个正数根,那么m的取值范围为且.【分析】根据新定义得到y′=x3+〔m﹣1〕x2+m2=x2+2〔m﹣1〕x+m2,〔1〕由判别式等于0,解方程即可;〔2〕根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=x2+2〔m﹣1〕x+m2,〔1〕∵方程x2﹣2〔m﹣1〕x+m2=0有两个相等实数根,∴△=[﹣2〔m﹣1〕]2﹣4m2=0,解得:m=,故答案为:;〔2〕y′=m﹣,即x2+2〔m﹣1〕x+m2=m﹣,化简得:x2+2〔m﹣1〕x+m2﹣m+=0,∵方程有两个正数根,∴,解得:且.故答案为:且.【点评】此题考察了抛物线与x轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.12.假设二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么实数n=4.【分析】二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么b2﹣4ac=0,据此即可求得.【解答】解:y=x2﹣4x+n中,a=1,b=﹣4,c=n,b2﹣4ac=16﹣4n=0,解得n=4.故答案是:4.【点评】此题考察了抛物线与x轴的交点,二次函数y=ax2+bx+c〔a,b,c是常数,a≠0〕的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.方程3x2﹣5x+m=0的两个实数根分别为x1、x2,且分别满足﹣2<x1<1,1<x2<3,那么m的取值范围是﹣12<m<2.=3x2﹣5x+m,由题意可得,可得m的取值范围.【分析】设f〔x〕=3x2﹣5x+m,【解答】解:设f〔x〕由题意可得,解得:﹣12<m<2,故答案为:﹣12<m<2.【点评】此题主要考察了抛物线与x轴的交点,利用函数思想是解答此题的关键.三.解答题〔共6小题〕14.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一=4,象限内的图象分别交OA、AB于点C和点D,连结OD,假设S△BOD〔1〕求反比例函数解析式;〔2〕求C点坐标.【分析】〔1〕根据反比例函数y=〔k≠0〕系数k的几何意义得到S=k=4,△BOD求出k即可确定反比例函数解析式;〔2〕先利用待定系数法确定直线AC的解析式,然后把正比例函数解析式和反比例函数解析式组成方程,解方程组即可得到C点坐标.【解答】解:〔1〕∵S=k,△BOD∴k=4,解得k=8,∴反比例函数解析式为y=;〔2〕设直线OA的解析式为y=ax,把A〔4,8〕代入得4a=8,解得a=2,所以直线OA的解析式为y=2x,解方程组得或,所以C点坐标为〔2,4〕.【点评】此题考察了反比例函数y=〔k≠0〕系数k的几何意义:从反比例函数y=kx〔k≠0〕图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.【分析】依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;此函数图象经过〔1,3〕、〔﹣1,1〕,即可用待定系数法求得y、x的函数解析式,进而可求出x=﹣时,y的值.【解答】解:依题意,设y1=mx2,y2=,〔m、n≠0〕∴y=mx2+,依题意有,∴,解得,∴y=2x2+,当x=﹣时,y=2×﹣2=﹣1.故y的值为﹣1.【点评】考察了待定系数法求二次函数解析式,可以正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.16.在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B〔﹣3,m〕.〔1〕求反比例函数y1=和一次函数y2=ax+b的表达式;〔2〕点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.假设AC=CD,求点C的坐标.【分析】〔1〕由点A在反比例函数图象上,利用待定系数法可求出反比例函数的表达式,由点B在反比例函数图象上,可求出点B的坐标,由点A、B的坐标利用待定系数法即可求出一次函数的表达式;〔2〕由BC∥x轴结合点B的坐标可得出点C的纵坐标,再由点A的坐标结合AD⊥BC于点D,即可得出点D的坐标,即得出线段AD的长,在Rt△ADC中,由勾股定理以及线段AC、CD间的关系可求出线段CD的长,再结合点D的坐标即可求出点C的坐标.【解答】解:〔1〕∵反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A 〔1,3〕和B〔﹣3,m〕,∴点A〔1,3〕在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的表达式为y1=.∵点B〔﹣3,m〕在反比例函数y1=的图象上,∴m==﹣1.∵点A〔1,3〕和点B〔﹣3,﹣1〕在一次函数y2=ax+b的图象上,∴,解得:.∴一次函数的表达式为y2=x+2.〔2〕按照题意画出图形,如下图.∵BC∥x轴,∴点C的纵坐标为﹣1,∵AD⊥BC于点D,∴∠ADC=90°.∵点A的坐标为〔1,3〕,∴点D的坐标为〔1,﹣1〕,∴AD=4,∵在Rt△ADC中,AC2=AD2+CD2,且AC=CD,∴,解得:CD=2.∴点C1的坐标为〔3,﹣1〕,点C2的坐标为〔﹣1,﹣1〕.故点C的坐标为〔﹣1,﹣1〕或〔3,﹣1〕.【点评】此题考察了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及解直角三角形,解题的关键是:〔1〕根据点的坐标利用待定系数法求函数解析式;〔2〕通过解直角三角形求出线段CD的长.此题属于根底题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.17.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;该商品的进价为每件30元,设销售该商品每天的利润为y 元.〔1〕求出y与x的函数关系式〔2〕问销售该商品第几天时,当天销售利润最大?最大利润是多少?〔3〕该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.【分析】〔1〕根据单价乘以数量,可得利润,可得答案;〔2〕根据分段函数的性质,可分别得出最大值,根据有理数的比拟,可得答案;〔3〕根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:〔1〕当1≤x<50时,y=〔200﹣2x〕〔x+40﹣30〕=﹣2x2+180x+2000,当50≤x≤90时,y=〔200﹣2x〕〔90﹣30〕=﹣120x+12000;〔2〕当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,当x=50时,y=6000,最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;〔3〕当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】此题考察了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.18.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,假如这种水果每千克降价1元,那么每天可多售出20千克.〔1〕设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;〔2〕假设要平均每天盈利960元,那么每千克应降价多少元?【分析】〔1〕根据“每天利润=每天销售质量×每千克的利润〞即可得出y关于x 的函数关系式;〔2〕将y=960代入〔1〕中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论.【解答】解:〔1〕根据题意得:y=〔200+20x〕×〔6﹣x〕=﹣20x2﹣80x+1200.〔2〕令y=﹣20x2﹣80x+1200中y=960,那么有960=﹣20x2﹣80x+1200,即x2+4x﹣12=0,解得:x=﹣6〔舍去〕,或x=2.答:假设要平均每天盈利960元,那么每千克应降价2元.【点评】此题考察了二次函数的应用,解题的关键是:〔1〕根据数量关系找出函数关系式;〔2〕将y=960代入函数关系式得出关于x的一元二次方程.此题属于根底题,难度不大,解决该题型题目时结合数量关系找出函数关系式是关键.19.某企业是一家专门消费季节性产品的企业,经过调研预测,它一年中获得的利润y〔万元〕和月份n之间满足函数关系式y=﹣n2+14n﹣24.〔1〕假设利润为21万元,求n的值.〔2〕哪一个月可以获得最大利润,最大利润是多少?〔3〕当产品无利润时,企业会自动停产,企业停产是哪几个月份?【分析】〔1〕把y=21代入,求出n的值即可;〔2〕根据解析式,利用配方法求出二次函数的最值即可;〔3〕根据解析式,求出函数值y等于0时对应的月份,根据开口方向以及增减性,再求出y小于0时的月份即可解答.【解答】解:〔1〕由题意得:﹣n2+14n﹣24=21,解得:n=5或n=9;〔2〕y=﹣n2+14n﹣24=﹣〔n﹣7〕2+25,∵﹣1<0,∴开口向下,y有最大值,即n=7时,y取最大值25,故7月可以获得最大利润,最大利润是25万;〔3〕〕∵y=﹣n2+14n﹣24=﹣〔n﹣2〕〔n﹣12〕,当y=0时,n=2或者n=12.又∵图象开口向下,∴当n=1时,y<0,当n=2时,y=0,当n=12时,y=0,那么该企业一年中应停产的月份是1月、2月、12月.【点评】此题主要考察了二次函数的应用,难度一般,解答此题的关键是纯熟运用配方法求二次函数的最大值,借助二次函数解决实际问题.。

沪科版九年级数学上册 反比例函数练习题及答案全套

沪科版九年级数学上册 反比例函数练习题及答案全套

1相关资料§21.5反比例函数一、判断题1.当与y 乘积一定时,就是的反比例函x y x 数,也是的反比例函数( ) x y 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.与成反比例时与并不成反比例y 2x y x ( )二.填空题 4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果与成反比例,z 与成正比例,则y x y z 与成____ ___; x 6.如果函数是反比例函数,那么222-+=k k kxy k =________,此函数的解析式是____ ____; 7. 有一面积为60的梯形,其上底长是下底长的,若下底长为x ,高为y ,则y 与x 的函31数关系是______________ 三、选择题: 8.如果函数为反比例函数,则的12-=m x y m 值是 ()A B CD 1-02119.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数与弟吃饺子数x 之间的函y 数关系式(不要求写的取值范围). xy ②虽然当弟吃的饺子个数增多时,兄吃的饺子数()在减少,但与x 是成反例吗? y y(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗?③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决. 五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=,DE 延长线交CB 的x 29 28 27 26 …… 3 2 1 兄(y )——……→逐渐减少1 2 3 4 …… 27 28 29弟(x )——……→逐渐增多用时t (小时) 10 5 31025 2 45 1——……→逐渐减少 出水速度乙(吨/小时) 1 2 34 5 8 10 ——……→逐渐增大 DC2延长线于F ,设CF =,求与之间的函数y y x 关系。

2023年秋沪科版九年级上册数学第21章 二次函数与反比例函数 单元测试题(含答案)

2023年秋沪科版九年级上册数学第21章 二次函数与反比例函数 单元测试题(含答案)

2023年秋沪科版九年级上册数学第21章《二次函数与反比例函数》单元测试题A .①③B .只有2.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最少的是( )A .甲B .乙3.已知二次函数y =ax 2+bx A .a =1,b =2B .4.如图,点是函数连接,,.若A .4A y =-AB CA CB AB5.如图,已知顶点为(﹣3,﹣6)的抛物线y =ax 2+bx +c 经过点(﹣1,﹣4),则下列结论中错误的是( )A .b 2>4acB .ax 2+bx +c ≥﹣6C .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >nD .关于x 的一元二次方程ax 2+bx +c =﹣4的两根为﹣5和﹣16.如图,已知二次函数的图象如图所示,对于下列结论,其中正确结论的个数是( )①;②;③;④若m 为任意实数;则.A .1B .2C .3D .47.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A→B→C 和A→D→C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x≤8)之间函数关系可以用图象表示为()20y ax bx c a =++≠0abc >()220a c b +-=30a c +=26am bm b a +->-.....已知二次函数的图象如图所示,关于的方程,则下列选项正确的是(A .B .9.如图,在平面直角坐标系中,二次函数将该抛物线经过平移,使其顶点为A.C .10.二次函数的图像可以由二次函数A .先向左平移2个单位,再向上平移C .先向右平移2个单位,再向上平移二、填空题(共8小题,满分32分)2y ax bx =+x )β31αβ-<<<3-()21222y x =--+()2222y x =+-243y x x =++13.如图,过作共点,则k 的取值范围是14.如图,在平面直角坐标系中,平行四边形象上,B 点在x 轴的负半轴上,延长(2,1)C AC(1)求反比例函数的表达式;(2)求的面积(3)在反比例函数第一象限图象上是否存在一点的横坐标23.已知:在平面直角坐标系中,抛物线AOB V C参考答案:OP==2;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版几年级数学上册反比例函数测试题
一、精心选一选!(30分)
1.下列函数中,图象经过点(11)-,的反比例函数解析式是( B ) A .1
y x
=
B .1y x
-=
C .2y x
=
D .2y x
-=
2.反比例函数2
k y x
=-(k 为常数,0k ≠)的图象位于( C )
A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限
3.已知反比例函数y =
x
2
k -的图象位于第一、第三象限,则k 的取值范围是( A ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2
4.反比例函数x
k
y =
的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( D ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比例函数2
y x
=
,下列说法不正确...的是( C ) A .点(21)--,在它的图象上
B .它的图象在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
6.反比例函数
2
2)12(--=m x
m y ,当x >0时,y 随x 的增大而增大,则m 的值时( C )
A 、±1
B 、小于
2
1
的实数 C 、-1 D 、1 7.如图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( D )。

A 、S 1<S 2<S 3
B 、S 2<S 1<S 3
C 、S 3<S 1<S 2
D 、S 1=S 2=S 3
8.在同一直角坐标系中,函数x
y 2
-
=与x y 2=图象的交点个数为( D ) A .3 B .2 C .1 D .0 9.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )
10.如图,直线y=mx 与双曲线y=
x
k
交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( A )
A .2
B 、m-2
C 、m
D 、4 二、细心填一填!(30分)
11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8
y x
=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6
y x
=-
图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .
15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)k
y k x
=
>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象
上,则当力达到10牛时,物体在力的方向上移动的距离是 米.
18.已知点P 在函数2
y x
=
(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线x
k
y =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.
20.如图,过原点的直线l 与反比例函数1
y x
=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)
21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得
到直线l .直线l 与反比例函数k
y x
=的图象的一个交点为(3)A a ,
,试确定反比例函数的解析式.(5分)
22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分) 23.已知点P (2,2)在反比例函数x
k
y =
(0≠k )的图象上,
(Ⅰ)当3-=x 时,求y 的值;
(Ⅱ)当31<<x 时,求y 的取值范围.(7分)
24.如图,已知双曲线k
y x
=
(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分) 25.若一次函数y =2x -1和反比例函数y =
2k
x
的图象都经过点(1,1).
(1)求反比例函数的解析式;
(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A
的坐标;(8分) 26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1) 求此反比例函数的解析式;
(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)
27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数k
y x
=(0,0)k x << 的图象上,点P(m ,n)是函数k
y x
=
(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .
(1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).
(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)
28.水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销
情况如下:
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都
按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内
全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么
新确定的价格最高不超过每千克多少元才能完成销售任务?(12分)
参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A;
三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k
y x
=的图象上,可求得9k =.所以反比例函数的解析式为9y x
=
. 22.解:设所求反比例函数的表达式为x k
y =
,因为S △AOT =k 21,所以k 2
1=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8
y x
=-;
又反比例函数x
y 4
=
在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为43
4
<<y . 24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -
2
1
×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =
2k x
的图象经过点(1,1),∴1=2k
解得k=2,
∴反比例函数的解析式为y=
1
x

∵点A 在第三象限,且同时在两个函数图象上, ∴A(1
2-,–2).
26.解:(1)设所求的反比例函数为x
k
y =
,依题意得: 6 =2k ,∴k=12. ∴反比例函数为
x
y 12
=
. (2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =
x
y
, ∴34≤m ≤26.
所以m 的取值范围是
3
4
≤m ≤3. 27.(1) 没有关系;(2) 当P 在B 点上方时,
28
4(2)S m m
=+
<- 242(20)S m m =+-<<;当P 在B 点下方时,
28.解:(1) 函数解析式为12000
y x
=. 填表如下: 第5天
第6天
第7天。

相关文档
最新文档