勾股定理知识点的总结及练习
勾股定理知识点总结及练习
A D勾股定理知识点总结及训练一.基础知识点: 1:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
勾股定理典型例题及专项训练专题一:直接考查勾股定理及逆定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:练习:1、如图所示,在四边形ABCD 中,∠BAD=︒90,∠DBC=︒90,AD=3,AB=4,BC=12,求CD 。
2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
3、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求: 四边形ABCD 的面积。
例2:已知直角三角形的两边长分别为5和12,求第三边。
练习:在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长为多少?例3:(1).已知∆ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则∆ABC 为 三角形 (2).在∆ABC 中,若2a =(b +c )(b -c ),则∆ABC 是 三角形,且∠ ︒90 练习:1、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。
2、.若∆ABC 的三边a 、b 、c 满足条件2a c b a c b 26241033822++=+++,试判断∆ABC 的形状。
勾股定理(知识点+题型分类练习)
ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
初二数学:勾股定理专题知识点与同步练习(含答案)
勾股定理1.勾股定理勾股定理:直角三角形的两条直角边a、b的__________等于斜边c的平方,即:a2+b2=c2.【注意】(1)应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是__________;若a为斜边,则关系式是b2+c2=a2.(2)如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.2.勾股定理的应用勾股定理是直角三角形的一个重要性质,它把直角三角形有一个直角的“形”的特点转化为三边“数”的关系.利用勾股定理,可以解决与直角三角形有关的计算和证明问题,还可以解决生活、生产中的一些实际问题.其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边确定另两边的关系;(3)证明包含平方(算术平方根)关系的几何问题;(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题.一、勾股定理已知直角三角形的两边长,求第三边长,关键是先明确所求边是斜边还是直角边,再决定用勾股定理的原式还是变式.【例1】已知直角三角形的两条直角边的长分别为3和4,则第三边长为A.5 B C或5 D二、勾股定理的证明勾股定理的证明是通过拼图法或割补法完成的,探索时利用面积关系,将“形”的问题转化为“数”的问题.【例2】中国古代数学家们对勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°,若AC b =,BC a =.请你利用这个图形解决下列问题:(1)试说明222a b c +=;(2)如果大正方形的面积是10,小正方形的面积是2,求()2a b +的值.三、勾股定理点的应用利用勾股定理解应用题的关键是寻找直角三角形,若不存在直角三角形,可通过添加辅助线构造出直角三角形.【例3】如图,有一只小鸟在一棵高13 m 的大树树梢上捉虫子,它的伙伴在离该树12 m ,高8 m 的一棵小树树梢上发出友好的叫声,它立刻以2 m /s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?习题1.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为 A .119 B .13 C .18D .1692.如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是 A .2kB .k +1C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为 A .22B .32C .62D .827.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.8.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.9.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________.10.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D 两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.11.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75 cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ;(4)若∠A =30°,c =24,求c 边上的高h c ; (5)若a 、b 、c 为连续整数,求a +b +c .12.已知:△ABC 中,AD 为BC 中线,求证:22222()AB AC BD AD +=+.13.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB =8 cm ,BC =10 cm ,求EC 的长.14.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A 爬到上底B 处,则小虫所爬的最短路径长是(π取3)A .50 cmB .40 cmC .30 cmD .20 cm15.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为A .22B .32C .62D .8216.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为A .12米B .3米C .6米D .317.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m,木板顶端向下滑动了0.9 m,则小猫在木板上爬动了__________m.19.古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的湖面上,一朵荷花亭亭玉立,露出水面10 cm,忽见它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地40 cm(如图).请部:水深多少?20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
中考数学复习----勾股定理知识点总结与专项练习题(含答案解)
中考数学复习----勾股定理知识点总结与专项练习题(含答案解) 知识点总结1. 勾股民定理的内容:在直角三角形中,两直角边的平方的和等于斜边的平方。
若直角三角形的两直角边是b a ,,斜边是c ,则222b a c +=。
2. 勾股数:满足直角三角形勾股定理的三个正整数是一组勾股数。
3. 勾股定理的逆定理:若三角形的三条边分别是c b a ,,,且满足222b a c +=,则三角形是直角三角形,且∠C 是直角。
4. 特殊三角形三边的比:①含30°的直角三角形三边的比例为(从小打大):2:3:1。
②45°的等腰直角三角形三边的比例为(从小到大):2:1:1。
5. 两点间的距离公式:若点()11y x A ,与点()22y x B ,,则线段AB 的长度为:()()221221y y x x AB −+−=。
练习题 1、(2022•攀枝花)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =,BC =1,∠AOB =30°,则OA 的值为( )A .3B .23C .2D .1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=,BC=1,∴OB===2,∵∠A=90°,∠AOB=30°,∴AB=OB=1,∴OA===,故选:A.2、(2022•荆门)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为()A.120m B.603m C.605m D.1203m【分析】根据底部是边长为120m的正方形求出BC的长,再由含30°角的直角三角形的性质求解AB的长,利用勾股定理求出AC的长即可.【解答】解:如图,∵底部是边长为120m的正方形,∴BC=×120=60m,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∴AB =2BC =120m ,∴AC ==m . 故选:B .3、(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC 中,∠A =30°,AC =3,∠A 所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A .23B .23﹣3C .23或3D .23或23﹣3【分析】根据题意知,CD =CB ,作CH ⊥AB 于H ,再利用含30°角的直角三角形的性质可得CH ,AH 的长,再利用勾股定理求出BH ,从而得出答案.【解答】解:如图,CD =CB ,作CH ⊥AB 于H ,∴DH =BH ,∵∠A =30°,∴CH =AC =,AH =CH =,在Rt △CBH 中,由勾股定理得BH ==,∴AB =AH +BH ==2,AD =AH ﹣DH ==, 故选:C . 4、(2022•荆州)如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若CE =31AE =1,则CD = .【分析】如图,连接BE ,根据作图可知MN 为AB 的垂直平分线,从而得到AE =BE =3,然后利用勾股定理求出BC ,AB ,最后利用斜边上的中线的性质即可求解.【解答】解:如图,连接BE ,∵CE =AE =1,∴AE =3,AC =4,而根据作图可知MN 为AB 的垂直平分线,∴AE =BE =3,在Rt △ECB 中,BC ==2,∴AB ==2, ∵CD 为直角三角形ABC 斜边上的中线,∴CD =AB =.故答案为:. 5、(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于21AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .25B .3C .22D .310 【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB ===10, ∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴=, ∴=,∴AE =,故选:A .6、(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .42B .6C .210D .35【分析】在网格中,以MN 为直角边构造一个等腰直角三角形,使PM 最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,此时PM最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.7、(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.8、(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE 的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.14B.15C.4D.17【分析】方法一:根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.方法二:延长ED到F,使得DE=DF,连接CF,BF,然后根据全等三角形的判定和性质,以及勾股定理,可以求得CE的长.【解答】解:方法一:作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,∵DB=DE=2,∠BDE=90°,点A是DE的中点,∴BE===2,DA=EA=1,∴AB===,∵AB=BC,∴BC=,∵=,∴,解得EG=,∵EG⊥BG,EF⊥BF,∠ABF=90°,∴四边形EFBG是矩形,∴EG=BF=,∵BE=2,BF=,∴EF===,CF=BF+BC=+=,∵∠EFC=90°,∴EC===,故选:D.方法二:延长ED到F,使得DE=DF,连接CF,BF,如图所示,∵BD=DE=2,∠BDE=90°,∴∠BDE=∠BDF=90°,EF=4,∴△BDE≌△BDF(SAS),∴BE=BF,∠BEA=∠BF A=45°,∵∠EBA+∠ABF=90°,∠ABF+∠FBC=90°,∴∠EBA=∠FBC,∵BE=BF,BA=BC,∴△EBA≌△FBC(SAS),∴∠BEA=∠BFC=45°,AE=CF,∴∠CFE=∠BFC+∠AFB=90°,∵点A为DE的中点,∴AE=1,∴CF=1,∴EC===,故选:D.9、(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.10、(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE ∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.11、(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CP A=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CP A=30°.∵∠PCB=30°,∴∠PCB=∠CP A,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.12、(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【分析】过点D作DM⊥CI于点M,过点F作FN⊥CI于点N,由正方形的性质可证得△ACJ≌△CDM,△BCJ≌△CFN,可得DM=CJ,FN=CJ,可证得△DMI≌△FNI,由直角三角形斜边上的中线的性质可得DI=FI=CI,由勾股定理可得MI,NI,从而可得CN,可得BJ与AJ,即可求解.【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.13、(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【分析】由勾股定理和乘法公式完成计算即可.【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.14、(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=.【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH =BG=x,结合图形得出AE=x﹣1,利用勾股定理列方程求解.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.15、(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,径隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【解答】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2﹣1,∴弦是a+2=m2﹣1+2=m2+1,故答案为:m2+1.16、(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:3≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.17、(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.18、(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.【分析】根据勾股定理即可得到结论.【解答】解:如图,第一步到①,第二步到②,故走两步后的落点与出发点间的最短距离为=,故答案为:.。
85班勾股定理知识点与常见题型总结
第17章8.5班数学 勾股定理复习资料一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b c cbaE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边 在ABC ∆中,90C ∠=︒,则c,b,a②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒ Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD =答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用 例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。
勾股定理知识点和典型例题
cbaHG F EDCBAbacbac cabcab a bcc baE D CBA 勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法: 1、方法一:ABCD EFG H D AF S S S 正方形正方形=+∆42、方法二:大正方形小正方形S S S =+∆43、BCE ABE AD E S S S S ∆∆∆++=梯形针对练习一:勾股数能够构成直角三角形的三边长的三个整数称为勾股数,即:222c b a =+中,c b a 、、为正整数时, 称c b a 、、为一组勾股数。
1、记住常见的勾股数可以提高解题速度:⎪⎩⎪⎨⎧25247131251086543、、、、、、、、2、用含有字母n 的代数式表示勾股数:⎪⎪⎩⎪⎪⎨⎧++++++2222222221222212121n m m n n m n n n n n n n n 、、—、、、、—针对练习一: 判断题1、由于0.3、0.4、0.5不是勾股数,故以0.3、0.4、0.5为边长的三角形不是直角三角形。
( )2、由于以0.5、1.2、1.3为边长的三角形是直角三角形,所以0.5、1.2、1.3是勾股数。
( )考点一:直接考察勾股定理1、在ABC ∆中,︒=∠90C(1)已知6=AC ,8=BC ,求AB 的长 (2)已知17=AB ,15=AC ,求BC 的长2、梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少?3、水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.考点二:木箱木棒问题1、有一根长70厘米的木棒,要放在长、宽、高分别是50cm,40cm,30cm的木箱中,能放进去吗?2、如图所示,在一个高48厘米、底面半径7厘米的圆柱中,放入一根木棒,木棒最长可以是多少厘米?3、在一个长、宽、高都是30厘米的正方体中,放入一根长45厘米的木棒,能否放的进去?4、在一个高12厘米、直径5厘米的圆柱体中放入一根15厘米的木棒,木棒露在外面的部分最短是多少厘米?木棒露在外面的长度x取值范围是多少?考点三:蚂蚁找食题1、如图,在一块长方形纸盒,蚂蚁要从A 点爬到B 点吃食,最短路线是多少?2、如图,一块砖宽CD cm ND cm AN ,,长105==上的点B 距地面的高cm BD 8=,地面上A 处的一只蚂蚁到B 处吃食,要爬行的最短路线是多少?3、底面周长为12,高为8的圆柱体上有一只蚂蚁要从A 点爬到B 点,则蚂蚁爬行的最短距离是多少?4、底面周长为12,高为8的圆柱体上有一只蚂蚁要从O 点爬到B 点,则蚂蚁爬行的最短距离是多少? C B DM E NAAB 7厘米6厘米6厘米B AO B A。
勾股定理知识点及典型例题
勾股定理知识点一、勾股定理的证明例1试通过等积法得出啊a ,b ,c 三者的关系。
首先勾股定理只在直角三角形中才存在;其次就是三边存在关系a 2+b 2=c 2。
即勾股定理可以表述为:二、勾股定理的定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
简单的说,勾股定理就是直角三角形三边的一种数量关系。
其中较短的直角边我们叫它:勾;较长长边我们叫它:股;斜边叫它:弦。
ABCa b c弦股勾既然直角三角形三边是这样关系,那么对于锐角三角形和钝角三角形又是怎样的关系呢?这里大家可以通过特殊三角形来记忆:锐角三角形就通过边长为1的等边三角形来特殊化,显然a 2+b 2>c 2对于钝角三角形,可以通过底角为30度,腰为2的等腰三角形来记忆,计算可知a 2+b 2<c 2大家不仅要掌握勾股定理,对于勾股定理的逆定理也是必须掌握的,它是我们判断直角三角形时一个很好的方法,那我们看看它的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是: A 、若已知边长:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)B 、若未知边长,则直接进行第二步。
b ccaa bDCAEB例2:在∆ABC 中,若2a =(b +c )(b -c ),则∆ABC是 三角形,且∠︒90三、对于勾股定理,还有个很重要的概念:勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 四、勾股定理的作用:(1)已知直角三角形的两边求第三边。
勾股定理知识点与常见题型总结
第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC ==题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD =答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。
勾股定理知识点与常见题型总结
第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC =题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。
勾股定理知识点及典型例题
勾股定理知识点及典型例题一、勾股定理:勾股定理定义为:直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²,其中a和b是直角三角形的两条直角边,c是斜边。
勾股定理的逆定理为:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。
勾股数是满足a²+b²=c²的三个正整数a,b,c。
注意,若a,b,c为勾股数,那么ka,kb,kc同样也是勾股数。
常见的勾股数有3,4,5;6,8,10;9,12,15;5,12,13.判断直角三角形的方法有两种:一是如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
二是如果有一个角为90°或两个角互余,那么这个三角形是直角三角形。
具体判断方法是确定最大边(不妨设为c),若c=a+b,则为直角三角形;若a+bc,则为锐角三角形。
直角三角形斜边上的中线等于斜边的一半,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
勾股定理的作用有四个:一是已知直角三角形的两边求第三边;二是已知直角三角形的一边,求另两边的关系;三是用于证明线段平方关系的问题;四是利用勾股定理,作出长为a,b,c的直角三角形。
二、勾股定理的证明:勾股定理的证明方法有很多种,其中常见的是拼图的方法。
具体证明过程如下:在直角三角形ABC中,以BC为底边,作等腰直角三角形ABD,连接AD,则AD=AB,BD=BC。
因此,AB²=AD²+BD²=AD²+BC²,即a²=b²+c²。
1.一个无盖的正方体盒子内有两只昆虫,昆虫甲在顶点C1处,昆虫乙在棱BB1的中点E处。
昆虫乙要在最短时间内捕捉到昆虫甲,可以沿着路径A→E→C1爬行。
第18章.勾股定理知识点与常见题型总结
第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在A B C ∆中,90C ∠=︒,则c =b =,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n-+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在A B C ∆中,90C ∠=︒.⑴已知6AC =,8B C =.求AB 的长 ⑵已知17AB =,15A C =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB ==⑵8BC =题型二:应用勾股定理建立方程 例2.⑴在A B C ∆中,90AC B ∠=︒,5A B =cm ,3B C =cm ,C D AB ⊥于D ,C D = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BC CD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S = ⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图A B C ∆中,90C ∠=︒,12∠=∠, 1.5C D =, 2.5BD =,求A C 的长21DCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5D E C D == 在BD E ∆中90,2BED BE ∠=︒==Rt AC D Rt AED ∆≅∆AC AE∴=在R t A B C ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图R t A B C ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8A B =m ,2C D =m ,8B C =m ,过点D 作DE AB ⊥,垂足为E ,则6A E =m ,8D E =m在R t A D E ∆中,由勾股定理得10AD ==答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定A B C ∆是否为R t ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =解:①22221.52 6.25a b +=+= ,222.5 6.25c == ∴A B C ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222b c a +≠ABC ∴∆不是直角三角形例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-= ,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知A B C ∆中,13AB =cm ,10B C =cm ,BC 边上的中线12AD =cm ,求证:A B A C =证明:D CB AAD为中线,5BD D C ∴==cm在ABD ∆中,22169AD BD += ,2169AB =222AD BD AB ∴+=,90AD B ∴∠=︒,222169AC AD DC ∴=+=,13A C =cm ,AB AC ∴=。
勾股定理知识点及例题讲解
第九讲勾股定理知识概要1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.(注:应用勾股定理的关键在于构造直角三角形)2、勾股定理逆定理:如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形,其a b c中c为斜边。
3、勾股定理的作用|(1)已知直角三角形的两边求第三边.(2)已知在特殊直角三角形中,直角三角形的一边,求另两边的关系.(3)用于证明平方关系的问题.4、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与2a+2b是否具有相等关系.若2c=2a+2b,则△ABC是以∠C=90°的直角三角形;:若2c≠2a+2b,则△ABC不是直角三角形.【注意】当2c≠2a+2b时有两种情况.(1)当2a+2b<2c时,此三角形为钝角三角形;(2)当2a+2b>2c时,此三角形为锐角三角形,其中c为三角形的最大边.5、常用勾股数组:(3, 4 ,5); (5, 12 ,13); (6, 8, 10); (7, 24, 25); (8, 15, 17) ; (9, 40 ,41);(20,21,29)……6、一组勾股数中各数的相同的正整数倍得到的一组新数还是勾股数。
7、一组勾股数中各数的相同的正数倍得到的一组新数为边,仍构成直角三角形。
8、(9、直角三角形的性质:(1)直角三角形中斜边最大;(2)直角三角形中有勾股定理;(3)直角三角形中,30度角所对应直角边等于斜边的一半;(4)直角三角形中,斜边上的中线等于斜边的一半;(5)等积原理(ab=ch )10、双垂图中的射影定理例题精讲~【例1】如图,证明勾股定理.【例2】填空题:》在△ABC 中,∠C 为直角.(1)若BC =2, AC=3则AB = ; 若BC =5, AB=13.则AC = ;若AB=61, AC=11.则BC = .(2)若BC ∶AB =3∶5且AB =20则AC= .(3)若∠A=60°且AC=2cm 则AB= cm ,BC= cm.【巩固练习】1、2、Rt △ABC 中,C ∠是直角,3、(1)已知6BC =,8AC =,求AB 之长;4、(2)已知25AB =,14BC =,求AC 之长;(3)板块一 勾股定理aaa ab b] b@(3)已知13AC =,19AB =,求BC 之长.2、已知等边三角形的边长为a ,求等边三角形一边上的高和这等边三角形的面积.¥【例 3】已知60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 和AD 的长.>【巩固练习】已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.《【例 4】如图,已知AB =13,BC =14,AC =15,BC AD ⊥于D ,求AD 的长.'ABCD【 BA DCB AD【例 5】如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP += ."【例 6】如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .$【巩固练习】 1、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.`P M B C A ; A B S 12、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.94^3、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则1S+2S+3S+4S=____$"1S2S3S4231【例7】在△ABC 中,如果a ∶b ∶c =1∶3∶2, 那么∠A= °,∠B= °∠C= °如果a ∶b ∶c =1∶1∶2, 那么∠A= °,∠B= °∠C= °`【例 8】判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)15a =,8b =,17c =;(2)13a =,14b =,15c =;(3)7a =,24b =,25c =.【例 9】已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c , 《试判断△ABC 的形状《【例 10】如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .,板块二 勾股定理逆定理A【例 11】已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点即3CE =EB求证:AF ⊥FE .(》【例 12】如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.|【巩固练习】1.若一个三角形的周长为123cm,一边长为33cm,其他两边之差为3cm,则这个三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°>3.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.~ 4.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数。
勾股定理知识点及复习题
四个直角三角形的面积与小正方形面积的和为 S = 4 - ab c^ 2ab c 22大正方形面积为 S =(a - b)2=a 22ab - b 2化简可证方法三:S 弟形=-(a b) (a b)2S 弟形1 1=2S ADE • S ABE =2 — ab — C 2,化简得证3 .勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所适用于直角三角形,对于锐角三角形和钝角 这一特征,因而在应用勾股定理时,必须明存在的数量关系,它只 三角形的三边就不具有 了所考察的对象是直角勾股定理的复习—、勾股定理的内容1、 内容:直角三角形两直角边的平方和等于斜边的平方;2、 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么a 2亠b 2 =c 23、 证明:勾股定理的证明方法很多,常见的是用拼图的方法验证勾股定理思路:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式推导出勾股定理4 1 ab (b -a)2=c 2,化简可证: a? - b =c 22方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.三角形4 .勾股定理的应用 ①已知直角三角形的任意两边长,求第三边。
在AABC 中, /C=90,贝V c = . a 2■ b 2, b = ,c 2—a 2, a = .c 2-b 2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题(注:在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜 边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线), 构造直角三角形,以便正确使用勾股定理进行求解.)5、在数轴上作出表示、n (n 为正整数)的点.ab易错点:(1)已知直角三角形中两边长,求第三边长,要弄清哪条边是斜边,哪条边是直角边,不能确定时,要分类讨论.(2)另外不论是否是直角三角形就用勾股定理;使用勾股定理的前提是直角三角形;(2)在求解问题的过程中,常列方程或方程组来求解;例3.若(二)、例题解析 考点一:已知两边求第三边 例1 .在 ABC 中,.C =90 . ⑴已知 AC =6, BC =8 .求AB 的长 ⑵已知AB =17, AC =15,求BC 的长例4:在Rt △ ABC 中, a , b , c 分别是三条边, 求边长c . 剖析:由于审题不仔细,容易忽视了/B=90°错把c 当成了斜边.温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用 c2=a2+b2例2.如图,由Rt △ ABQ 的三边向外作正方形,若最大正方形的边长为8cm,则正方形M 与正方形N 的面积之和为 ______________ cm 2a 、b 、c, a 2 =144,b 2 =25,则c 2 二 ______________例5:已知一个Rt △ ABC 的两边长分别为3和4,则第三边长的平方是 剖析:此题并没有告诉我们已知的边长 4一定是直角边,而4有可能是斜边,因此要分类讨论.温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.例6:已知a,b,c 为/ ABC 三边,a=6, b=8, b<c ,且c 为整数,则c= 剖析:此题并没有告诉你/ ABC 为直角三角形,因此不能乱用勾股定理.正解:由b<c ,结合三角形三边关系得 8vcv6+8,即8vcv14,又因c 为整数,故c 边 长为 9、10、11、12、13.温馨提示:只有在直角三角形中,才能用勾股定理,因此解题时一定注意已知条件中 是否为直角三角形.例2.已知两线段的长为6cm 和8cm 当第三条线段取 ___________________ 时,这三条线段能组 成一个直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 课时第十八章 勾股定理一.基础知识点: 1:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c,b,a =)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=cba HG FEDCBAa bcc baED CBA cb aHG F EDCBA ba cbac cabcab方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
二、经典例题精讲题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米解析:这是一道大家熟知的典型的“知二求一”的题。
把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12.CBDA例题2如图(8),水池中离岸边D点米的C处,直立长着一根芦苇,出水部分BC 的长是米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD中,∠ACD=90°,在Rt△ACD中,只知道CD=,这是典型的利用勾股定理“知二求一”的类型。
标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC2+CD2=AD2设水深AC= x米,那么AD=AB=AC+CB=x+x2+=(x+)2解之得x=2.故水深为2米.题型四:利用勾股定理求线段长度——例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE 折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
合理设元是关键。
详细解题过程如下:解:根据题意得Rt△ADE≌Rt△AEF∴∠AFE=90°, AF=10cm, EF=DE设CE=xcm,则DE=EF=CD-CE=8-x在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm∴CF=BC-BF=10-6=4(cm)在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8-x)2=x2+42∴64-16x+x2=2+16∴x=3(cm),即CE=3 cm注:本题接下来还可以折痕的长度和求重叠部分的面积第课时第十八章勾股定理一.基础知识点:1:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)2:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
3:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)二、经典例题精讲题型一:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗为什么 解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。
仔细读题会意CBDA可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41可以设AB=4a ,那么B E=CE=2 a,AF=3 a,BF= a,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。
详细解题步骤如下:解:设正方形ABCD 的边长为4a,则BE=CE=2 a,AF=3 a,BF= a 在Rt △CDE 中,DE 2=CD 2+CE 2=(4a)2+(2 a)2=20 a 2同理EF 2=5a 2, DF 2=25a 2在△DEF 中,EF 2+ DE 2=5a 2+ 20a 2=25a 2=DF 2∴△DEF 是直角三角形,且∠DEF=90°.注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型二:利用勾股定理逆定理判断垂直——例题5 如图5,王师傅想要检测桌子的表面AD 边是否垂直与AB 边和CD 边,他测得A D=80cm ,AB=60cm ,BD=100cm ,AD 边与AB 边垂直吗怎样去验证AD 边与CD 边是否垂直解析:由于实物一般比较大,长度不容易用直尺来方便测量。
我们通常截取部分长度来验证。
如图4,矩形ABCD 表示桌面形状,在AB 上截取AM=12cm,在AD 上截取AN=9cm(想想为什么要设为这两个长度),连结MN ,测量MN 的长度。
①如果MN=15,则AM 2+AN 2=MN 2,所以AD 边与AB 边垂直; ②如果MN=a ≠15,则92+122=81+144=225, a 2≠225,即92+122≠ a 2,所以∠A 不是直角。
利用勾股定理解决实际问题——例题6 有一个传感器控制的灯,安装在门上方,离地高米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高米的学生,要走到离门多远的地方灯刚好打开解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该是头先距离灯5米。
转化为数学模型,如图6 所示,A 点表示控制灯,BM 表示人的高度,BC ∥MN,BC ⊥AN 当头(B 点)距离A 有5米时,求BC 的长度。
已知AN=米,所以AC=3米,由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打开。
题型三:旋转问题:例1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中, 根据它们的数量关系,由勾股定理可知这是一个直角三角形.变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°, 试探究222BE CF EF 、、间的关系,并说明理由.题型四:关于翻折问题例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.题型五:关于勾股定理在实际中的应用:例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少 题型六:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫(π取,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟第课时勾股定理练习一.填空题:1. 在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。