三角形的分类练习答案
四年级下册数学一课一练-5.2三角形的分类 人教版(含答案)
四年级下册数学一课一练-5.2三角形的分类一、单选题1.一个三角形的三个内角中,如果∠1=∠2+∠3,那么它一定是( )三角形。
A. 锐角B. 直角C. 钝角D. 无法确定2.两个角都是60°的三角形是()三角形。
A. 一般B. 等腰C. 等边D. 直角3.如图所示,图形是()三角形。
A. 锐角B. 直角C. 钝角D. 等腰4.如图所示,张海将自己剪的一个三角形给损坏了,你能判断它是一个()三角形.A. 锐角三角B. 直角三角形C. 钝角三角形D. 无法准确判断二、判断题5.等腰三角形的底角一定是锐角。
()6.所有的等边三角形都是等腰三角形。
()7.等腰三角形是轴对称图形,它有三条对称轴.()8.有三个角是钝角的三角形叫做钝角三角形.()三、填空题9.三角形的两个内角和是85°,这个三角形是________三角形,另一个角是________°。
10.一个等腰三角形的顶角是30°,一个底角是________。
11.一个等腰三角形的一条边是6cm,另一条边是4cm,围成这个等腰三角形至少需要________厘米长的铁丝.12.如图,在直角三角形中,∠1=________,∠2=________.四、解答题13.下面方格图中每个小方格的边长都是1cm,画一个直角三角形,使它两条直角边分别是4cm、5cm。
并画出最长边上的高。
(三个顶点必须在图中交叉点上)14.在下图中描出点A(1,1),点B(5,1),点C(3 ,5),然后把三个点顺次连接________,得到的图形是________三角形(按边分类)。
五、应用题15.已知等腰三角形的顶角是30°,它的底角是多少度?参考答案一、单选题1.【答案】B【解析】【解答】因为∠1=∠2+∠3,所以∠1=180°÷2=90°,所以这个三角形是直角三角形.故答案为:B.【分析】此题考查了三角形的内角和定理以及三角形的分类,三角形按角分类有锐角三角形、直角三角形、钝角三角形.根据三角形的内角和为180°结合已知,可求∠1=90°,即可判断三角形的形状.2.【答案】C【解析】【解答】180°60°-60°=60°,三角形的三个内角都是60°,三角形是等边三角形.故答案为:C。
【同步培优】人教版 四年级下册数学试题-第18讲:三角形的分类 (含解析)
2020-2021学年人教版四年级下册同步培优练习【第18讲:三角形的分类】一、我会选:1.下列选项的图形中,不能直接判断出三角形种类的是()A. B. C.2.有长度分别为3 cm、4 cm、5 cm、7 cm的小棒各一根,任选其中三根围成三角形,可以围成( )种不同形状的三角形。
A.3B.4C.53.一个直角三角形的三条边分别是3厘米、4厘米、5厘米,这个直角三角形互相垂直的两条边的长度分别是()。
A.3厘米和4厘米B.3厘米和5厘米C.4厘米和5厘米4.等腰三角形有()条边相等A.1B.2C.35.正三角形的三条边()A.不相等B.无法确定C.相等6.锐角三角形有()个锐角。
A.1B.2C.37.如图所示,张海将自己剪的一个三角形给损坏了,你能判断它是一个()三角形.A.锐角三角B.直角三角形C.无法准确判断8.一个三角形如果有两条边一样长,下面描述不正确的是( )。
A.一定也有两个角相等B.一定是一个等腰三角形C.一定是一个锐角三角形9.下面的关系图,( )是错误的。
A. B. C.二、我会判:10.等腰三角形都是锐角三角形。
()A.正确B.错误11.三条长度相等的线段一定能围成一个三角形。
()A.正确B.错误12.三角形按边分为等腰三角形和等边三角形。
()A.正确B.错误13.一个三角形不是锐角三角形,就是钝角三角形。
()A.正确B.错误14.用6 cm,6 cm,15 cm的三根小棒可以围成一个等腰三角形。
()A.正确B.错误三、我会填:15.三角形按照内角大小不同可以分成________三角形、________三角形和________三角形。
16.三角形按边的长短可以分为________三角形、________三角形和________三角形。
17.选一选,填一填锐角三角形有________;钝角三角形有________;直角三角形有________;等腰三角形有________;等边三角形有________.18.现有三种小棒,3cm、6cm、9cm,选一根6cm的小棒和两根________的小棒可以围城一个等腰三角形。
全等三角形题型分类及练习
全等三角形知识要点② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 3. 请填空1) 全等形的概念两个______________的图形叫全等形。
2) 全等形的性质全等图形的________和__________都相同。
3) 全等三角形的判定____________________________________________________ 4)角平分线的性质角平分线的性质:___________________________ 5)角平分线的判定角平分线的判定的判定定理:_________________________________________ 6)三角形角平分线的性质三角形的三条内角平分线交于一点,并且这一点到三条边的距离相等。
题型汇总一、填空题(3分×10=30分) 题型:边角边证明三角形全等 1.如图(1),△ABC 中,AB =AC ,AD 平分∠BAC ,则__________≌__________.2.如图4,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .3、如图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:CB=ED4、已知:如图,AB =CD ,AB ∥DC. 求证:,AD∥BC , AD =BCAB CDE5、如图,D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED ,求证:AB=AC 。
6、如图,已知AB=AD ,且AC 平分∠BAD ,求证:BC=DC题型:角角边证明三角形全等 1.如图(3),若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由______________________.2.如图(5),AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,则PD __________PE (填“<”或“>”或“=”).AB C D题型:角边角证明三角形全等1.如图(4),∠C=∠E,∠1=∠2,AC=AE,则△ABD按边分是__________ 三角形.2.(5分)已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.题型:边边边证明三角形全等1.如图(6),△ABC中,AB=AC,现利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线AD应是____________________________.题型:角平分线的应用1、如图,在△AB C中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。
2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)
2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)一.三角形的面积1.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.二.全等图形2.下列各组图形中,属于全等图形的是()A.B.C.D.3.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.100°B.90°C.60°D.45°三.全等三角形的性质4.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°5.如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34°B.56°C.62°D.68°6.如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=11.5,则EC的长为()A.5B.4.5C.4D.3.57.如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,若△ABC≌△A′B′C,且点A′恰好落在AB上,则∠ACA′的度数为()A.30°B.45°C.50°D.60°9.如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84°B.60°C.48°D.43°10.如图,Rt△AOB≌Rt△CDA,且点A、B的坐标分别为(﹣1,0),(0,2),则OD长是()A.2B.5C.4D.311.如图,△ABC≌△DEF,点A,B分别对应点D,E.若∠A=70°,∠B=50°,则∠1等于()A.50°B.60°C.70°D.80°12.如图,△ACB≌△A′CB',∠BCB'=30°,则∠ACA'的度数为()A.20°B.30°C.35°D.40°四.全等三角形的判定13.如图,AB∥DE,AB=DE,添加下列条件,仍不能判断△ABC≌△DEF的是()A.AC=DF B.BF=CE C.∠A=∠D D.AC∥DF14.下列四个三角形中,与图中的△ABC全等的是()A.B.C.D.15.如图,∠1=∠2,添加下列条件,不能使△ABC≌△BAD的是()A.∠CAB=∠DBA B.AC=BD C.∠C=∠D D.AD=BC16.如图,已知线段AB=40米,MA⊥AB于点A,MA=20米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.8B.8或10C.10D.6或1017.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线,这里构造全等三角形的依据是()A.SSS B.ASA C.AAS D.SAS18.如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB 19.如图,已知AB=DE,AC=DF,BE=CF.则△ABC≌△DEF的理由是()A.SAS B.ASA C.SSS D.AAS20.在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架P ABQ,其中AB=42cm,AP,BQ足够长,P A⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC的长为()A.18cm B.24cm C.18cm或28cm D.18cm或24cm 21.下列三角形与如图全等的三角形是()A.B.C.D.22.如图,DE⊥BA,DF⊥BC,垂足分别为E,F,DE=DF.则△BDE≌△BDF的依据是()A.SAS B.AAS C.SSS D.HL五.全等三角形的判定与性质23.如图,点E是△ABC的边AC的中点,过点C作CF∥AB,连接FE并延长,交AB于点D,若AB=9,CF=6,则BD的长为()A.2B.2.5C.3D.4.524.如图,AD是△ABC的中线,CE∥AB交AD的延长线于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.1225.如图,在△ABC中,AB=AC,点D是△ABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°26.如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3,则AF的长为()A.3B.3.5C.2.5D.227.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=4,OP=5,则PE的长为()A.3B.C.4D.28.如图,在正方形OABC中,O是坐标原点,点A的坐标为(1,),则点C的坐标是()A.(﹣,1)B.(﹣1,)C.(﹣,1)D.(﹣,﹣1)29.如图,在△ABD中,AD=AB,∠DAB=90°,在△ACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②F A平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④30.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①③B.①②③C.②③④D.①②④31.一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<732.如图,E是∠AOB平分线上的一点,EC⊥OA于点C,ED⊥OB于点D,连结CD,若∠ECD=25°,则∠AOB=()A.50°B.45°C.40°D.25°33.如图,点B,E,C,F在一条直线上,AC与DE相交于点O,AB=DE,AB∥DE,BE=CF.(1)求证:AC∥DF;(2)若∠B=65°,∠F=35°,求∠EOC的度数.34.如图1,∠DAB=90°,CD⊥AD于点D,点E是线段AD上的一点,若DE=AB,DC =AE.(1)判断CE与BE的关系是.(2)如图2,若点E在线段DA的延长线上,过点D在AD的另一侧作CD⊥AD,并保持CD=AE,DE=AB,连接CB,CE,BE,试说明(1)中结论是否成立,并说明理由.35.如图,已知AE⊥AB,AF⊥AC.AE=AB,AF=AC,BF与CE相交于点M.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:MA平分∠EMF.36.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=31°,求∠CAO的度数.37.如图,在四边形ABCD中,AB=AC,BE平分∠CBA,连接AE,若AD=AE,∠DAE =∠CAB.(1)求证:△ADC≌△AEB;(2)若∠CAB=36°,求证:CD∥AB.38.如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.39.如图,已知∠C=∠F=90°,BC=EF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=50°,求∠COE的度数.40.如图,已知AB=AC,点D,E分别是AC,AB的中点,求证:∠B=∠C.41.已知:点A,D,C,B在同一条直线上,DF∥CE,DF=CE,AD=BC.求证:(1)CF=DE;(2)AF∥EB.42.已知:OA=OB,OC=OD.(1)求证:△OAD≌△OBC;(2)若∠O=85°,∠C=25°,求∠BED的度数.43.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.44.如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:①∠BAD=∠CDE;②BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.45.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.46.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.47.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.六.全等三角形的应用48.如图,一块三角形的玻璃打碎成四块,现要到玻璃店去配一块完全一样的玻璃,最简单的办法是()A.只带①去B.带②③去C.带①③去D.只带④去49.如图所示,某工程队欲测量山脚两端A、B间的距离,在山旁的开阔地取一点C,连接AC、BC并分别延长至点D,点E,使得CD=AC,CE=BC,测得DE的长,就是AB的长,那么判定△ABC≌△DEC的理由是()A.SSS B.SAS C.ASA D.AAS七.角平分线的性质50.如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.1:2:3C.2:3:4D.3:4:551.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm52.某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处53.如图,已知△ABC的周长是36cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()A.48cm2B.54cm2C.60cm2D.66cm254.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是20cm2,AB=15cm,AC=5cm,则DF的长为()A.10cm B.5cm C.4cm D.2cm55.如图,BD为∠ABC的角平分线,DE⊥BC于点E,DE=6,∠A=30°,则AD的长为()A.6B.8C.12D.1656.下列各点中,到∠AOB两边距离相等的是()A.点P B.点Q C.点M D.点N57.如图,BO、CO分别平分∠ABC、∠ACB,OD⊥BC于点D,OD=2,△ABC的周长为28,则△ABC的面积为()A.28B.14C.21D.758.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=7cm,DE=3cm,那么AE等于()A.2cm B.3cm C.4cm D.5cm八.等腰三角形的性质59.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图2,求证AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.九.全等三角形综合题60.如图1,分别以△ABC的两边AB,AC为边作△ABD和△ACE,使得AB=AD,AE=AC,∠DAB=∠EAC.(1)求证:BE=CD;(2)过点A分别作AF⊥CD于点F,AG⊥BE于点G,①如图2,连接FG,请判断△AFG的形状,并说明理由;②如图3,若CD与BE相交于点H,且∠DAB=∠EAC=60°,试猜想AH,CH,HE之间的数量关系,并证明.参考答案一.三角形的面积1.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.二.全等图形2.解:根据全等图形的定义可得C是全等图形,故选:C.3.解:在△ABC和△FDE中,,∴△ABC≌△FDE(SAS),∴∠1=∠EDF,∵∠EDF+∠2=90°,∴∠1+∠2=90°,故选:B.三.全等三角形的性质4.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.5.解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.6.解:∵BC=8,BF=11.5,∴CF=BF﹣BC=3.5,∵△ABC≌△DEF,BC=8,∴EF=BC=8,∴EC=EF﹣CF=8﹣3.5=4.5,故选:B.7.解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.8.解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC≌△A′B′C,∴CA′=CA,∴△ACA′为等边三角形,∴∠ACA′=60°,故选:D.9.解:∵△ABC≌△ADE,∴∠BAC=∠EAD,AB=AD,∵∠BAD=94°,∴∠ADB=∠ABD=(180°﹣∠BAD)=43°,∵AE∥BD,∴∠EAD=∠ADB=43°,∴∠BAC=∠EAD=43°,故选:D.10.解:∵点A、B的坐标分别为(﹣1,0),(0,2),∴OB=2,OA=1,∵Rt△AOB≌Rt△CDA,∴AD=OB=2,∴OD=OA+AD=1+2=3,故选:D.11.解:在△ABC中,∠A=70°,∠B=50°,则∠C=180°﹣∠A﹣∠B=180°﹣70°﹣50°=60°,∵△ABC≌△DEF,∴∠1=∠C=60°故选:B.12.解:∵△ACB≌△A′CB',∴∠ACB=∠A′CB',∴∠ACB﹣∠A′CB=∠A′CB'﹣∠A′CB,∴∠ACA'=∠BCB'=30°,故选:B.四.全等三角形的判定13.解:∵AB=DE,∵AB∥DE∴∠B=∠E,当AC=DF时,不能判定△ABC≌△DEF,当AB=DE时,且BC=EF,∠B=∠E,由“SAS”可证△ABC≌△DEF,当∠A=∠D时,且BC=EF,∠B=∠E,由“AAS”可证△ABC≌△DEF,当AC∥DF时,∠ACB=∠DFE,∠B=∠E,由“AAS”可证△ABC≌△DEF,故选:A.14.解:△ABC中,∵∠B=72°,∠C=58°,∴∠A=180°﹣∠B﹣∠C=50°,∴根据“SAS”可判断△ABC下面的三角形全等.故选:C.15.解:∵∠1=∠2,AB=BA,∴当添加∠CAB=∠DBA时,根据“ASA”可证明△ABC≌△BAD,所以A选项不符合题意;当添加AC=BD时,不能判断△ABC≌△BAD,所以B选项符合题意;当添加∠C=∠D时,根据“AAS”可证明△ABC≌△BAD,所以C选项不符合题意;当添加AD=BC时,根据“SAS”可证明△ABC≌△BAD,所以D选项不符合题意;故选:B.16.解:当△APC≌△BQP时,AP=BQ,即40﹣x=3x,解得:x=10;当△APC≌△BPQ时,AP=BP=AB=20米,此时所用时间x为20,AC=BQ=60米,不合题意,舍去;综上,出发20后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.17.解:由题意可得,OC=OD,MC=MD,又∵OM=OM,∴△OMC≌△OMD(SSS),故选:A.18.解:∵∠B=∠C,∠CAE=∠BAD,∴∠AEC=∠ADB,所以D选项符合题意;∵不能确定BE=CD,AE=AD,∴不能判断△BOE≌△COD、△ABD≌△ACE,所以A、B、C选项不符合题意.故选:D.19.解:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:C.20.解:设:BM=3xcm,则BN=4xcm,∵∠A=∠B=90°,(1),当△ACM≌△BNM时,有BM=AM,BN=AC,又AM+BM=42cm,∴3x+3x=42,∴x=7.∴AC=BN=4x=28cm;当△ACM≌△BMN时,有AM=BN,BM=AC,又AM+BM=42cm,∴4x+3x=42,∴x=6,∴AC=BM=18cm;故选:C.21.解:180°﹣51°﹣49°=80°,A.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;C.符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项符合题意;D.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;故选:C.22.解:∵DE⊥BA,DF⊥BC,∴∠BED=∠BFD=90°,在Rt△BDE和△Rt△BDF中,,∴Rt△BDE≌△Rt△BDF(HL),故选:D.五.全等三角形的判定与性质23.证明:∵CF∥AB,∴∠ADE=∠F,∠FCE=∠A,∵点E为AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=6,∵AB=9,∴BD=AB﹣AD=9﹣6=3,故选:C.24.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.25.解:∵∠EAD=∠BAC,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD;在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABD=∠ACD,∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∴∠BAC=∠BDC,∵∠ABC=∠ACB=62°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣62°﹣62°=56°,∴∠BDC=∠BAC=56°,故选:A.26.解:∵BE⊥AC,AD⊥BC,∴∠AEB=∠ADC=∠BDF=90°,∵∠AFE=∠BFD,∠FBD+∠BDF+∠BFD=180°,∠AEB+∠AFE+∠DAC=180°,∴∠DAC=∠DBF,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=3,∵AF+DF=AD=5,∴AF=2,故选:D.27.解:∵OD=4,OP=5,PD⊥OA,PD=3,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=3.故选:A.28.解:如图,过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,在正方形OABC中,∠AOC=90°,AO=CO,∵∠AOC=∠CDO=90°,∴∠COD+∠AOE=∠COD+∠OCD=90°,∴∠OCD=∠AOE,在△OCD和△AOE中,,∴△OCD≌△AOE(AAS),∴CD=OE=1,OD=AE=,∴C(﹣,1).故选:C.29.解:∵△ABD和△ACE都是等腰直角三角形,∴∠ADB=∠AEC=45°,∵∠BDC=∠ADB﹣∠ADC=45°﹣∠ADC,∠BEC=∠AEC﹣∠AEB=45°﹣∠AEB,∵∠ADC和∠AEB不一定相等,∴∠BDC与∠BEC不确定相等;故①错误,∵∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴DC=BE,故④正确;过A点作AM⊥DC于M,AN⊥BE于N,如图,∵△ADC≌△ABE,∴AM=AN,∴AF平分∠DFE,所以②正确.∵∠ADC+∠1+∠DAB=∠ABE+∠2+∠BFD,而∠ADC=∠ABE,∠1=∠2,∴∠BFD=∠DAB=90°,∴DC⊥BE,所以③正确;故正确的结论为②③④.故选:D.30.解:过E点作EF⊥AD于F,如图,∵AE平分∠BAD,EF⊥AD,EB⊥AB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AB=AE,∠AEB=∠AEF,∵点E是BC的中点,∴EC=EB,∴EC=EF,在Rt△DEC和Rt△DEF中,,∴Rt△DEC≌Rt△DEF(HL),∴DC=DF,∠DEC=∠DEF,∠FDE=∠CDE,所以②正确;∵∠AED=∠AEF+∠DEF=∠BEF+∠CEF∴∠AED=90°,所以①正确;∵DE>EC,而EC=BE,∴DE>BE,所以③错误;∵AF=AB,DF=DC,∴AD=AF+DF=AB+CD,所以④正确.故选:D.31.解:如图,AB=5,AC=9,AD为BC边的中线,延长AD到E,使AD=DE,连接BE,CE,∵AD=x,∴AE=2x,在△BDE与△CDA中,,∴△ADC≌△EDB(SAS),∴BE=AC=9,在△ABE中,AB+BE>AE,BE﹣AB<AE,即5+9>2x,9﹣5<2x,∴2<x<7,故选:D.32.解:∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,∴∠EDC=∠ECD,∵∠ODE=∠OCE=90°,∴∠ODC=∠OCD,∴OC=OD,∵ED=EC,∴点O与点E都在CD的垂直平分线上,∴OE是CD的垂直平分线,∴∠AOE+∠OCD=90°,∠OCD+∠DCE=90°,∴∠AOE=∠ECD=25°,∴∠AOB=2∠AOE=50°,故选:A.33.证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF;(2)解:由(1)得∠B=∠DEF,∠ACB=∠F,∴∠DEF=∠B=65°,∠ACB=∠F=35°,在△EOC中,∠DEF+∠ACB+∠EOC=180°,∴∠EOC=180°﹣∠DEF﹣∠ACB=180°﹣65°﹣35°=80°.34.解:(1)CE=BE且CE⊥BE,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.(2)(1)中结论成立,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.35.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)设AB与EC的交点为D,∵△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM,∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,∴EC⊥BF;(3)如图,作AP⊥CE于P,AQ⊥BF于Q,∵△ABF≌△AEC,∴S△AEC=S△ABF,∴EC•AP=BF•AQ,∵EC=BF,∴AP=AQ,∵AP⊥CE于P,AQ⊥BF于Q,∴MA平分∠EMF.36.(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)解:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=31°,∵∠C=90°,∴∠BAC=59°,∴∠CAO=∠CAB﹣∠BAD=28°.37.(1)证明:∵∠DAE=∠CAB,∴∠DAE﹣∠CAE=∠CAB﹣∠CAE.∴∠DAC=∠EAB.在△DAC和△EAB中∵∴△DAC≌△EAB(SAS)(2)证明:∵AB=AC,∠CAB=36°,∴∠ABC=∠ACB=(180°−36°)=72°,∵BE平分∠CAB,∴∠ABE=∠ABC=36°.∴∠ABE=∠BAC=36°.∵△DAC≌△EAB,∴∠DCA=∠EBA=36°.∴∠DCA=∠BAC=36°.∴CD∥AB.38.(1)证明:如图,∵AB∥DE,∴∠E=∠CAB.在△ABC与△EAD中.∴△ABC≌△EAD(SAS).∴AD=BC.(2)解:∵∠DAB=70°,AE平分∠DAB,∴∠DAE=∠BAC=35°.由(1)知,△ABC≌△EAD,∴∠B=∠DAE=35°.39.(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,∵∠C=∠F=90°,∴△ABC和△DEF是直径三角形,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=50°,∴∠ABC=∠C﹣∠A=90°﹣50°=40°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF,∴∠DEF=40°,∴∠COE=∠ABC+∠BEF=40°+40°=80°.40.证明:∵AB=AC,点D,E分别是AC,AB的中点,∴AE=AD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C.41.证明:(1)∵DF∥CE,∴∠FDC=∠ECD,在△FDC和△ECD中,,∴△FDC≌△ECD(SAS),∴CF=DE;(2)∵△FDC≌△ECD,∴∠FCD=∠EDC,∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,在△F AC和△EBD中,,∴△F AC≌△EBD(SAS),∴∠A=∠B,∴AF∥EB.42.(1)证明:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS);(2)解:∵∠O=85°,∠D=∠C=25°,∴∠OBC=180°﹣85°﹣25°=70°,∴∠BED=∠OBC﹣∠D=70°﹣25°=45°.43.(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE﹣AF=13﹣7=6,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.44.(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA),∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°.45.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴F A=FC,∠FCA=∠F AB=∠AFC=60°,同(2)可得,△BDA≌△AEC,∴∠BAD=∠ACE,AD=CE,∴∠F AD=∠FCE,∴△F AD≌△FCE(SAS),∴DF=EF,∠DF A=∠EFC,∴∠DFE=∠DF A+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.46.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.47.证明:(1)延长BD交CE于F,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.六.全等三角形的应用48.解:第①块和第②③块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带④去.故选:D.49.证明:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),故选:B.七.角平分线的性质50.解:∵O是△ABC三条角平分线交点,∴点O到AB、AC、BC的距离相等,设O到AB、AC、BC的距离为h,∴S△OAB:S△OBC:S△OAC=(•h•AB):(•h•BC):(•h•AC)=AB:BC:AC=16:12:8=4:3:2.故选:A.51.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=×AB×DE+×AC×DF=30(cm2),即×13×DE+×7×DF=30,解得DE=DF=3cm,故选:A.52.解:∵这个砂石场到三条公路的距离相等,砂石场在三条公路围成的三角形平地内,∴这个砂石场为三条公路所围成的三角形的内角平分线的交点,∴可供选择的地址仅有一处.故选:A.53.解:如图,过点O作OE⊥AC于点E,OF⊥AB于点F,连接OA,∵OB、OC分别平分∠ABC、∠ACB,OD⊥BC,∴OD=OE=OF=3(cm),∴S△ABC=S△AOB+S△BOC+S△AOC=×AB×OF+×BC×OD+×AC×OE=×OD×C△ABC=×3×36=54(cm2).故选:B.54.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是20cm2,∴•AB•DE+AC•DF=20,即×15×DF+×5×DF=20,解得DF=2.故选:D.55.解:如图所示,过D作DF⊥AB于F,∵BD为∠ABC的角平分线,DE⊥BC,DF⊥AB,∴DE=DF=6,∵∠A=30°,∴AD=2DF=12,故选:C.56.解:由图形可知,点Q在∠AOB的角平分线上,∴点Q到∠AOB两边距离相等,故选:B.57.解:连接OA,作OE⊥AB于点E,作OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,∴OD=OE=OF=2,∴S△ABC=S△OAB+S△OAC+S△OBCAB•OE+AC•OF+BBC•OD=(AB+AC+BC)•OD=×28×2=28,故选:A.58.解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE=AC﹣EC=AC﹣ED=7﹣3=4(cm),故选:C.八.等腰三角形的性质59.解:(1)∵BD平分∠ABC,∠BAD=90°,∠BCD=90°,∴DA=DC(角平分线上的点到角的两边距离相等),故答案为:角平分线上的点到角的两边距离相等;(2)如图2,作DE⊥BA交BA延长线于E,DF⊥BC于F,∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,在△DEA和△DFC中,∴△DEA≌△DFC(AAS),∴DA=DC;(3)如图,在BC时截取BK=BD,连接DK,∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,即∠A+∠BKD=180°,由(2)的结论得AD=DK,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∴AD=DK=CK,∴BD+AD=BK+CK=BC.九.三角形综合题60.(1)证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD;(2)①解:△AFG是等腰三角形,理由如下:∵△ADC≌△ABE,∴∠ADF=∠ABG,∵AF⊥CD,AG⊥BE,∴∠AFD=∠AGB=90°,在△ADF和△ABG中,,∴△ADF≌△ABG(AAS),∴AF=AG,∴△AFG是等腰三角形;②解:HE=AH+CH,理由如下:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD,∠ACF=∠AEG,∵AF⊥CD,AG⊥BE,∴∠AFC=∠AGE=90°,在△ACF和△AEG中,,∴△ACF≌△AEG(AAS),∴CF=EG,AF=AG,∵∠CAE+∠AEC+∠ACE=180°,∠ACE+∠HEC+∠HCA+∠CHE=180°,∠AEB=∠ACH,∴∠EHC=60°,∴∠DHE=120°,∵AF=AG,AF⊥CD,AG⊥BE,∴∠AHF=∠AHG=60°,∴∠F AH=∠GAH=30°,∴AH=2FH=2HG,∴FH=HG,∴HE=GE+HG=CF+HG=CH+FH+HG=CH+2HG=CH+AH.。
四年级下册数学三角形分类练习题(附答案)
三⻆角形分类练习题班级:____姓名:_____⼀一、填空题。
1.三⻆角形具有()性。
2.任何三⻆角形都有()条⾼高。
3.如果⼀一个三⻆角形中的两条边的⻓长分别是6厘⽶米和10厘⽶米,那么这个三⻆角形中的第三条边的⻓长⼀一定⼤大于()厘⽶米并且⼩小于()厘⽶米。
4.⼀一个三⻆角形的两条边⻓长分别是4分⽶米和5分⽶米,那么第三条边的⻓长可能是()分⽶米。
5.如果三⻆角形的两边分别是3厘⽶米和6厘⽶米,那么第三条边可能是()厘⽶米,第三条边⻓长是整数的共有()种情况。
6.⼀一个等腰三⻆角形,它的⼀一条边为3厘⽶米,另⼀一条边为6厘⽶米,这个三⻆角形的周⻓长是()厘⽶米。
7.有()个⻆角是锐⻆角的三⻆角形是锐⻆角三⻆角形。
有()个⻆角是直⻆角的三⻆角形是直⻆角三⻆角形。
有()个⻆角是钝⻆角的三⻆角形是钝⻆角三⻆角形。
8.三⻆角形按照⻆角分类可分为()、()和()。
9.在⼀一个三⻆角形中,最⼤大的⼀一个⻆角是72度,这个三⻆角形是()三⻆角形。
10.⼀一个钝⻆角三⻆角形有()个锐⻆角,()个钝⻆角。
11.两条边相等的三⻆角形叫做()三⻆角形,它的两个底⻆角()。
12.三条边都相等的三⻆角形叫做()三⻆角形,它的每⼀一个⻆角都是()度。
13.⼀一个等边三⻆角形的边⻓长是6厘⽶米,那么它的周⻓长是()厘⽶米。
14.把⼀一个正⽅方形沿着⼀一条对⻆角线剪开可以得到()个三⻆角形。
这些三⻆角形都是()三⻆角形。
15.如果三⻆角形的三个⻆角都是60°,这个三⻆角形是()三⻆角形。
16.任何⼀一个三⻆角形的内⻆角和都是()度。
17.把⼀一个⼤大三⻆角形剪成两个⼩小三⻆角形,每个⼩小三⻆角形的内⻆角和是()度。
18.⼀一个三⻆角形最多有()个钝⻆角,最多有()个直⻆角,最多有()个锐⻆角。
19.⼀一个三⻆角形最少有()个钝⻆角,最少有()个直⻆角,⾄至少有()个锐⻆角。
20.在⼀一个直⻆角三⻆角形中,⼀一个锐⻆角是35°,则另⼀一个锐⻆角是()°。
人教版八年级数学上册《三角形基础分类》专项练习题-附含答案
人教版八年级数学上册《三角形基础分类》专项练习题-附含答案1.在三角形中一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线【答案】A【解答】解:根据同底等高的两个三角形面积相等可知在三角形中三角形的中线一定能将其面积分成相等两部分故选:A.2.如图为估计池塘岸边A、B的距离小方在池塘的一侧选取一点O测得OA=17米OB=9米A、B间的距离不可能是()A.23米B.8米C.10米D.18米【答案】B【解答】解:∵OA=17米OB=9米∴17﹣9<AB<17+9即:8<AB<26故选:B3.如果一个三角形的三条高的交点恰是三角形的一个顶点那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】C【解答】解:A、锐角三角形三条高线交点在三角形内故错误;B、钝角三角形三条高线不会交于一个顶点故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点可以得出这个三角形是直角三角形故正确;D、能确定C正确故错误.故选:C.4.如图AD是△ABC的中线已知△ABD的周长为25cm AB比AC长6cm则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm 【答案】A【解答】解:∵AD是BC边上的中线∴BD=CD∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC ∵△ABD的周长为25cm AB比AC长6cm∴△ACD周长为:25﹣6=19cm.故选:A.5.在△ABC中AB=3 AC=2 BC=a a的值可能是()A.1B.3C.5D.7【答案】B【解答】解:∵△ABC中AB=3 AC=2 BC=a∴1<a<5∴B符合故选:B.6.下列长度的三条线段能组成三角形的是()A.3cm5cm7cm B.3cm3cm7cmC.4cm4cm8cm D.4cm5cm9cm【答案】A【解答】解:A.∵A3+5=8>7∴能组成三角形符合题意;B.∵3+3<7∴不能组成三角形不符合题意;C.∵4+4=8∴不能组成三角形不符合题意;D.∵4+5=9∴不能组成三角形不符合题意.故选:A.7.如图所示四个图形中线段BE能表示三角形ABC的高的是()A.B.C.D.【答案】B【解答】解:由题意线段BE能表示三角形ABC的高时BE⊥AC于E.A选项中BE与AC不垂直;C选项中BE与AC不垂直;D选项中BE与AC不垂直;∴线段BE是△ABC的高的图是B选项.故选:B.8.如图已知△ABC中点D、E分别是边BC、AB的中点.若△ABC的面积等于8 则△BDE的面积等于()A.2B.3C.4D.5【答案】A【解答】解:∵点D是边BC的中点△ABC的面积等于8∴S△ABD=S△ABC=4∵E是AB的中点∴S△BDE=S△ABD=4=2故选:A.9.若△ABC的三边长分别为m﹣2 2m+1 8.(1)求m的取值范围;(2)若△ABC的三边均为整数求△ABC的周长.【解答】解:(1)根据三角形的三边关系解得:3<m<5;(2)因为△ABC的三边均为整数且3<m<5 所以m=4.所以△ABC的周长为:(m﹣2)+(2m+1)+8=3m+7=3×4+7=19.10.若三角形三个内角度数比为2:3:4 则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】A【解答】解:设三个内角度数为2x、3x、4x由三角形内角和定理得2x+3x+4x=180°解得x=20°则三个内角度数为40°、60°、80°则这个三角形一定是锐角三角形故选:A.11.如图直线a∥b在Rt△ABC中点C在直线a上若∠1=58°∠2=24°则∠A的度数为()A.56°B.34°C.36°D.24°【答案】B【解答】解:如图∵∠1=54°a∥b∴∠3=∠1=58°.∵∠2=24°∠A=∠3﹣∠2∴∠A=58°﹣24°=34°.故选:B.12.如图将一副直角三角板按如图所示叠放其中∠C=90°∠B=45°∠E=30°则∠BFD的大小是()A.10°B.15°C.25°D.30°【答案】B【解答】解:∵∠B=45°∴∠BAC=45°∴∠EAF=135°∴∠AFD=135°+30°=165°∴∠BFD=180°﹣∠AFD=15°故选:B.13.如图在△ABC中∠A=70°∠B=60°∠ACD是△ABC的一个外角∠ACD的度数为()A.50°B.60°C.70°D.130°【答案】D【解答】解:∵△ABC中∠A=70°∠B=60°∴∠ACB=180°﹣70°﹣60°=50°∴∠ACD=180°﹣50°=130°故选:D.14.如图已知△ABC为直角三角形∠C=90°若沿图中虚线剪去∠C则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解答】解:∵四边形的内角和为360°直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.15.如图直线AB∥CD如果∠EFB=31°∠END=70°那么∠E的度数是()A.31°B.40°C.39°D.70°【答案】C【解答】解:∵直线AB∥CD∴∠EMB=∠END=70°∵∠EFB=31°∠EMB=∠E+∠EFB∴∠E=70°﹣31°=39°故选:C.16.如图在△ABC中∠BCA=40°∠ABC=60°.若BF是△ABC的高与角平分线AE相交于点O 则∠EOF的度数为()A.130°B.70°C.110D.100°【答案】A【解答】解:∵∠BCA=40°∠ABC=60°∴∠BAC=180°﹣∠BCA﹣∠ABC=180°﹣40°﹣60°=80°.∵AE是∠BAC的平分线∴∠EAC=∠BAC=40°.∵BF是△ABC的高∴∠BF A=90°.∴∠AOF=90°﹣∠EAC=90°﹣40°=50°.∴∠EOF=180°﹣∠AOF=180°﹣50°=130°.故选:A.17.如图已知△ABC的外角∠CAD=120°∠C=80°则∠B的度数是()A.30°B.40°C.50°D.60°【答案】B【解答】解:∵∠CAD=∠B+∠C∠CAD=120°∠C=80°∴∠B=∠CAD﹣∠C=120°﹣80°=40°故选:B18.如图在△ABC中AD是BC边上的高AE BF分别是∠BAC∠ABC的平分线.∠BAC=50°∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【答案】A【解答】解:∵AD是BC边上的高∠ABC=60°∴∠BAD=30°∵∠BAC=50°AE平分∠BAC∴∠BAE=25°∴∠DAE=30°﹣25°=5°∵△ABC中∠C=180°﹣∠ABC﹣∠BAC=70°∴∠EAD+∠ACD=5°+70°=75°.故选:A.19.已知直线a∥b Rt△DCB按如图所示的方式放置点C在直线b上∠DCB=90°若∠B=20°则∠1+∠2的度数为()A.90°B.70°C.60°D.45°【答案】B【解答】解:如图延长BD交直线b于点M.∵∠DCB=90°∠B=20°∴∠BDC=90°﹣20°=70°∵a∥b∴∠1=∠BMC∵∠BDC=∠DMC+∠2=∠1+∠2∴∠1+∠2=70°故选:B20.如图在△ABC中∠A=50°∠1=30°∠2=40°∠D的度数是()A.110°B.120°C.130°D.140°【答案】B【解答】解:∴∠A=50°∴∠ABC+∠ACB=180°﹣50°=130°∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°∴∠BDC=180°﹣(∠DBC+∠DCB)=120°故选:B.21.如图将△ABC沿MN折叠使MN∥BC点A的对应点为点A' 若∠A'=32°∠B=112°则∠A'NC的度数是()A.114°B.112°C.110°D.108°【答案】D【解答】解:∵MN∥BC∴∠MNC+∠C=180°又∵∠A+∠B+∠C=180°∠A=∠A′=32°∠B=112°∴∠C=36°∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°∴∠A′NM=36°∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.22.已知:如图点D、E、F、G都在△ABC的边上DE∥AC且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB∠C=40°求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.在△ABC中CD平分∠ACB交AB于点D AH是△ABC边BC上的高且∠ACB=70°∠ADC=80°求:(1)∠BAC的度数.(2)∠BAH的度数.【解答】解:(1)∵CD平分∠ACB∠ACB=70°∴∠ACD=∠ACB=35°∵∠ADC=80°∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知∠BAC=65°∵AH⊥BC∴∠AHC=90°∴∠HAC=90°﹣∠ACB=90°﹣70°=20°∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.24.如图在△ABC中点E在AC上点F在AB上点G在BC上且EF∥CD∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB DG平分∠CDB且∠A=40°求∠ACB的度数.【解答】证明:(1)∵EF∥CD∴∠1+∠3=180°.∵∠1+∠2=180°∴∠2=∠3.∴AC∥GD.(2)∵CD平分∠ACB DG平分∠CDB∴∠3=∠ACB∠2=∠GDB=∠CDB.∵∠CDB=∠A+∠3 ∠2=∠3∴2∠3=∠A+∠3.∴∠3=∠A=40°.∴∠ACB=80°.25.如图在△ABC中∠B=31°∠C=55°AD⊥BC于D AE平分∠BAC交BC于E DF⊥AE于F求∠ADF的度数.【解答】解:∵∠B=31°∠C=55°∴∠BAC=94°∵AE平分∠BAC∴∠BAE=∠BAC=47°∴∠AED=∠B+∠BAE=31°+47°=78°∵AD⊥BC DF⊥AE∴∠EFD=∠ADE=90°∴∠AED+∠EDF=∠EDF+∠ADF∴∠ADF=∠AED=78°.26.如图在△ABC中AD平分∠BAC AE⊥BC若∠BAD=40°∠C=70°求∠DAE的度数.【解答】解:∵AD平分∠BAC∴∠BAC=2∠BAD=80°∵∠C=70°∴∠B=180°﹣∠BAC﹣∠C=180°﹣70°﹣80°=30°∴∠ADE=∠B+∠BAD=30°+40°=70°∵AE⊥BC∴∠AEB=90°∴∠DAE=90°﹣∠ADE=90°﹣70°=20°.27.一个正多边形它的一个内角恰好是一个外角的3倍则这个正多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形【答案】C【解答】解:设这个正多边的一个外角为x°由题意得:x+3x=180解得:x=45360°÷45°=8.故选:C.28.若一个多边形的内角和等于1800°这个多边形的边数是()A.6B.8C.10D.12【答案】D【解答】解:设这个多边形是n边形根据题意得(n﹣2)×180=1800解得n=12∴这个多边形是12边形.故选:D.29.如图足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【答案】B【解答】解:∵黑色皮块是正五边形∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.30.如图已知∠1+∠2+∠3=240°那么∠4的度数为()A.60°B.120°C.130°D.150°【答案】B【解答】解:∵∠1+∠2+∠3+∠4=360°∠1+∠2+∠3=240°∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣240°=120°故选:B.31.若一个正多边形的每个内角都是120°则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】A【解答】解:解法一:设所求正多边形边数为n则120°n=(n﹣2)•180°解得n=6 ∴这个正多边形是正六边形.解法二:∵正多边形的每个内角都等于120°∴正多边形的每个外角都等于180°﹣120°=60°又∵多边形的外角和为360°∴这个正多边形边数=360°÷60°=6.故选:A.32.小丽利用最近学习的数学知识给同伴出了这样一道题:假如从点A出发沿直线走6米后向左转θ接着沿直线前进6米后再向左转θ……如此下法当他第一次回到A点时发现自己走了72米θ的度数为()A.28°B.30°C.33°D.36°【答案】B【解答】解:∵第一次回到出发点A时所经过的路线正好构成一个正多边形∴多边形的边数为:72÷6=12.根据多边形的外角和为360°∴他每次转过的角度θ=360°÷12=30°.故选:B.33.将正六边形与正五边形按如图所示方式摆放公共顶点为O且正六边形的边AB与正五边形的边DE 在同一条直线上则∠COF的度数是()A.74°B.76°C.84°D.86°【答案】C【解答】解:由题意得:∠EOF=108°∠BOC=120°∠OEB=72°∠OBE=60°∴∠BOE=180°﹣72°﹣60°=48°∴∠COF=360°﹣108°﹣48°﹣120°=84°故选:C.34.小明把一副含45°30°的直角三角板如图摆放其中∠C=∠F=90°∠A=45°∠D=30°则∠α+∠β等于()A.280°B.285°C.290°D.295°【答案】B【解答】解:∵∠C=∠F=90°∠A=45°∠D=30°∴∠2+∠3=180°﹣∠D=150°∵∠α=∠1+∠A∠β=∠4+∠C∵∠1=∠2 ∠3=∠4∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°故选:B.35.如图若干全等正五边形排成环状.图中所示的是前3个五边形要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°所以正五边形的每一个内角为540°÷5=108°如图延长正五边形的两边相交于点O则∠1=360°﹣108°×3=360°﹣324°=36°360°÷36°=10∵已经有3个五边形∴10﹣3=7即完成这一圆环还需7个五边形.故选:B.36.一个多边形它的内角和比外角和的4倍多180°求这个多边形的边数.【解答】解:根据题意得(n﹣2)•180=1620解得:n=11.则这个多边形的边数是11 内角和度数是1620度.。
新人教版数学四年级下册5.2三角形的分类课时练习
新人教版数学四年级下册5.2三角形的分类课时练习选择题如果一个三角形中最小的一个角大于45°,这个三角形是()三角形.A.直角B.钝角C.锐角【答案】C【解析】由解析可知,如果一个三角形最小的一个内角大于45°,则三角形的最大角小于90°,所以另外两个角一定是锐角。
选择题一个三角形最大的内角是120°,这个三角形是()A.钝角三角形B.锐角三角形C.直角三角形【答案】A【解析】因为120°的角是钝角,且有一个角是钝角的三角形是钝角三角形;选择题等边三角形一定是()三角形.A.锐角B.直角C.钝角【答案】A【解析】等边三角形的三个角都是60°,都是锐角,所以等边三角形是锐角三角形。
选择题一个三角形的下部被一张纸遮住了(如图),只露出了一个角,这个三角形是()三角形.A.钝角B.锐角C.直角D.无法确定【答案】D【解析】从题中可知,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.所以这个三角形可能是锐角三角形,也可能是直角三角形,也可能是钝角三角形,可见为都有可能。
选择题如果一个三角形最小的一个内角大于45°,这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【答案】B【解析】由解析可知,如果一个三角形最小的一个内角大于45°,这个三角形锐角三角形。
根据三角形内角和是180°,如果一个三角形最小的一个内角大于45°那么另两个内角其中一个较小的内角也大于45°,所以第三个内角一定小于90°,由此可知这个三角形一定是锐角三角形。
故选:B选择题一个三角形三个内角度数的比是2:1:1,这个三角形叫是()A.钝角三角形B.锐角三角形C.等腰直角三角形D.等边三角形【答案】C【解析】解答:解:2+1+1=4,180°×=90°,180°×=45°,180°×=45°;答:这个三角形是等腰直角三角形.故选:C.选择题一个三角形任意一条边上的高所在的直线,都是这个三角形的对称轴.这个三角形是()A.等腰三角B.等腰直角三角形C.等边三角形【答案】C【解析】因为等边三角形的三条边上的高所在的直线,都是它的对称轴,所以“一个三角形任意一条边上的高所在的直线,都是这个三角形的对称轴.”这个三角形是等边三角形.故此题答案为:C.选择题一个三角形中最小的角是46°,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断【答案】A【解析】因为在一个三角形中,至少有2个锐角,再据“一个三角形中最小的一个内角是46°”可知,另一个锐角的度数不小于46°,则这两个锐角的和一定大于90°,又因三角形的内角和是180°,从而可以得出第三个内角必定小于90°,所以这个三角形是锐角三角形;选择题如图所示,张海将自己剪的一个三角形给损坏了,你能判断它是一个()三角形.A.锐角三角B.直角三角形D.无法准确判断【答案】D【解析】由解析知:只看三角形的一个锐角,则这个三角形可能是锐角三角形或直角三角形或钝角三角形;所以无法判断。
初中数学三角形全等—倍长中线法模型专题分类练习大全(含答案)
初中数学三角形全等—倍长中线法模型专题分类练习大全基础模型 : △ABC 中, AD 是 BC 边中线思路 1:延长 AD 到 E,使 DE=AD,连接 BEE思路 2:间接倍长 ,延长 MD到 N,使 DN=MD,连接 CN思路 3, 作 CF⊥ AD于 F,作 BE⊥AD的延长线于 EE1.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB< 192.如图,△ABC 中,AB=AC,点D 在AB 上,点 E 在AC 的延长线上,DE 交BC 于F,且DF=EF,3.如图,在△ABC 中,AD 为中线,求证:AB+AC>2AD.4.小明遇到这样一个问题,如图 1,△ABC 中, AB=7,AC=5,点 D 为 BC 的中点,求 AD 的取 值范围.延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的 做法是:如图 2,延长 AD 到 E ,使 DE=AD ,连接 BE ,构造△BED ≌△ CAD ,经过推理和计算使 问题得到解决.请回答:(1)小明证明 △BED ≌△CAD 用到的判定定理是: (用字母表示) (2)AD 的取值范围是 小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造. 参考小明思考问题的方法,解决问题:如图 3,在正方形 ABCD 中 ,E 为 AB 边的中点, G 、F 分别为 AD ,BC 边 上的点,若 AG=2,BF=4, ∠GEF=90 °,求 GF 的长.5.已知:在 △ABC 中,AD 是 BC 边上的中线, E 是AD 上一点,且 BE=AC ,延长 BE 交 AC 于 F ,6.已知:如图,△ABC (AB ≠AC )中,D 、E 在 BC 上,且 DE=EC ,过 D 作 DF ∥BA 交 AE 于点 F , DF=AC .求证: AE 平分∠BAC .7-10,换汤不换药 (多题一解 )7.如图, D 是△ABC 的 BC 边上一点且 CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线.小明发现老师讲过的 “倍长就是将三角形的8.如图,已知 D 是△ABC 的边 BC 上的一点, CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线. (1)若∠B=60,°求∠C 的值; (2)求证: AD 是∠EAC 的平分线.11.已知:如图, △ABC 中,∠C=90°,CM ⊥AB 于 M ,AT 平分∠BAC 交 CM 于 D ,交 BC 于 T ,12.如图①,点 O 为线段 MN 的中点, PQ 与 MN 相交于点 O ,且 PM ∥NQ ,可证△PMO ≌△ QNO .根据上述结论完成下列探究活动:如图②,在四边形 ABCD 中,AB ∥DC ,E 为 BC 边的中 点,∠BAE=∠EAF ,AF 与 DC 的延长线相交于点 F.试探AE 是△ABD 的中线,求证: AC=2AE .CE=2CD .求证:究线段AB 与AF、CF 之间的数量关系,13.如图,在△ABC 中,AD 交BC 于点D ,点 E 是 BC 的中点, EF ∥AD 交 CA 的延长线于点 F ,14.如图,已知在 △ABC 中,∠CAE=∠B ,点 E 是 CD 的中点,若 AD 平分∠BAE .(1)求证: AC=BD ;(2)若 BD=3,AD=5,AE=x ,求 x 的取值范围.15.已知在 △ABC 中, AD 是 BC 边上的中线,分别以 AB 边、AC 边为直角边各向外作等腰直角(图 3 是原题的第 问并证明你的结角形,如图,求证:EF=2AD.1.解:如图,延长AD 至E,使DE=AD,∵AD 是△ABC 的中线,∴BD=CD,在△ABD 和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,2.证明:如图,过点 D 作DG∥AE,交BC 于点G;4.解:(1)如图 2 中,延长AD 到E,使DE=AD,连接BE.(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.解决问题:如图 3 中,在△BED 和△CAD中,∴△BED≌△CAD(SAS).解:延长GE交CB 的延长线于M .∵四边形ABCD是正方形,∴AD∥ CM,∴∠AGE=∠M,在△AEG和△BEM 中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.5.证明:如图,延长AD 到点G,使得AD=DG,连接BG.∵AD 是BC 边上的中线已知),∴DC=DB,在△ADC 和△GDB 中,∴∠ CAD=∠G,BG=AC 又∵BE=AC,∴BE=BG,∵∠BED=∠AEF,∴∠AEF=∠CAD,∴AF=EF.∴△ ADC≌△ GDB (SAS),∴∠BED=∠G,6.证明:如图,延长FE 到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠ BAE=∠CAE.即AE 平分∠BAC.7.证明:延长AE 到F,使EF=AE,连接DF,∵AE是△ABD 的中线∴BE=ED,在△ABE 与△FDE中∵,∴△ ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB 是△ADC 的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF 与△ADC 中∵,∴△ ADF≌△ ADC(SAS)∴∠ C=∠AFD=∠ BAE.8.(1)解:∵∠ B=60°,∠ BDA=∠BAD,∴∠ BAD=∠BDA=60 ,°∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠ BAD=60,°∴∠ C=30 ;°(2)证明:延长AE 到M ,使EM=AE,连接DM,在△ABE 和△MDE 中,,∴△ ABE≌△ MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD 与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD 是∠EAC 的平分线.9.证明:延长AE 至F,使AE=EF,连接BF,在△ADE 与△BFE 中,,∴△ AED≌△ FEB,∴BF=DA,∠FBE=∠ADE,∵∠ABF=∠ABD+∠FBE,∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC,在△ABF 与△ADC 中,,∴△ ABF≌△ CDA,∴AC=AF,∵AF=2AE,∴AC=2AE.10.证明:取AC 的中点F,连接BF;∵B为AE 的中点,∴BF 为△AEC 的中位线,∴EC=2BF;在△ABF 与△ACD 中,,∴△ABF≌△ ACD(SAS),∴CD=BF,11.证明:过T 作TF⊥AB 于F,∵AT 平分∠BAC,∠ACB=90 ,° ∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90,°CM⊥AB,∴∠ADM+∠DAM=90°,∠ATC+∠CAT=90 °,∵AT 平分∠BAC,∴∠ DAM=∠CAT,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90 °,∠B=∠DEC,在△CDE和△TFB 中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.12.解:(1)AB=AF+CF.如图2,分别延长DC、AE,交于G 点,根据图①得△ABE≌△ GCE,∴AB=CG,又AB∥DC,∴∠ BAE=∠G 而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴CE=2CD.13.解:延长FE,截取EH=EG,连接CH,∵E 是BC 中点,∴BE=CE,∴∠BEG=∠CEH,在△BEG和△CEH中,,∴△BEG≌△ CEH(SAS),∴∠BGE=∠H,∴∠BGE=∠FGA=∠H,∴BG=CH,∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD 平分∠BAC.14.(1)证明:延长AE 到F,使EF=EA,连接DF,∵点 E 是CD 的中点,∴EC=ED,在△DEF与△CEA 中,,∴△DEF≌△CEA,∴AC=FD,∴∠AFD=∠CAE,∵∠CAE=∠B,∴∠AFD=∠B,∵AD 平分∠BAE,∴∠BAD=∠FAD,在△ABD 与△AFD 中,,∴△ ABD≌△ AFD,∴ BD=FD,∴AC=BD;(2)解:由(1)证得△ABD≌△AFD,△DEF≌△CEA,∴AB=AF,∵AE=x,∴AF=2AE=2x,∴AB=2x,∵BD=3,AD=5,∴在△ABD 中,,解得:1<x<4,15 证明:延长AD 至点G,使得AD=DG,连接BG,CG,∵AD=DG,BD=CD,∴四边形ABGC是平行四边形,∴AC=AF=BG,AB=AE=CG,∠BAC+∠ABG=180,° ∵∠ EAF+∠ BAC=180 ,°∴∠ EAF=∠ ABG,在△EAF和△BAG中,,∴△EAF≌△BAG(SAS),∴EF=AG,∵AG=2AD,∴EF=2AD.。
三角形的分类 练习题
三角形的分类练习题1.一个三角形中有一个内角是102度,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形2.三角形的中有一个内角是120度,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形3.如果一个三角形一有一个钝角为92度,这个三角形是()A.直角三角形 B.钝角三角形 C.锐角三角形4.三根5厘米长的小棒可以拼成一个()A.钝角三角形 B.锐角三角形 C.直角三角形5.三角形中有一个角是100度,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形6.锐角三角形有()A.三个锐角 B.两个锐角 C.一个锐角7.三个正三角形可以拼成一个()A.梯形 B.菱形 C.正六边形8.一个三角形三个角分别是50度,80度,50度,这个三角形是()A.等腰三角形 B.等边三角形 C.钝角三角形9.没有直角和钝角的三角形是()A.等腰三角形 B.等边三角形 C.锐角三角形10.在一个三角形中,如果三个内角的角度为90度,45度,45度,那么这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形11.一个三角形的三个内角的度数分别是40°,40°,100°,这个三角形是()A.锐角三角形 B.等腰三角形 C.直角三角形12.有两个角是锐角的三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不好判断13.一个三角形的三个角分别是92°,28°,60°,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定14.一个三角形的内角分别是49°,40°,91°,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形15.一个三角形中的钝角最多有()A.1个 B.2个 C.3个16.一个三角形的内角分别是60°,30°,90°,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形17.三角形中有一个角是90°,这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形18.在一个三角形中,最多能有几个锐角?()A.1 B.2 C.319.被信封遮住的是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形20.等腰三角形有几条边相等?()1A.1 B.2 C.321.红领巾的形状是()A.等腰三角形 B.等边三角形 C.直角三角形22.一个三角形的三个内角为20度,110度,50度,这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形23.锐角三角形的任意一个角都()A.大于90° B.等于90° C.小于90°24.三角形按角可分为()A.1类 B.2类 C.3类25.等边三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形26.三个角都是直角的三角形叫做直角三角形。
苏教版四年级下册数学同步练习题三角形的分类二解析
苏教版小学数学四年级下册《三角形的分类(二)》同步练习及参考答案填空1、我们可以按三角形的()和()来给三角形分类.【考点】三角形的分类。
【解析】三角形的分类方法有两种,即按角分可以分为锐角三角形、直角三角形、钝角三角形;按边分可以分为等腰三角形和不等腰三角形,据此解答即可.【答案I解:我们可以按三角形的边和角来给三角形分类。
故答案为:边、角.【总结】此题主要考查三角形的分类方法.2、一个三角形的三个内角度数都相等,如果将这个三角形按边分是()三角形.【考点】三角形的分类;三角形的内角和.【解析】依据三角形的特点,即等角对等边,则可以得出:这个三角形的三条边相等,这个三角形就是等边三角形.【答案】解:一个三角形的三个内角度数都相等,如果将这个三角形按边分类是等边三角形;故答案为:等边.【点评】此题考查了三角形的分类.3、三角形按边分类可分为:不等边三角形和 _______三角形两类.【考点】三角形.【解析】三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.【答案】解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.【总结】此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).4、你能把①~⑧号三角形分类放在下面的盘中吗?【考点】三角形的分类.【解析】三角形按角分类的方法是:按边可分为:不等边三角形,等腰三角形和等边三角形;三个角都是锐角的三角形是锐角三角形;有一个角是直角的三角形是直角三角形;有一个角是钝角的三角是钝角三角形;由此解答即可.【答案】解:【总结】此题考查了按三角形的边和角进行分类.【考点】等腰三角形与等边三角形.【解析】能组成等腰三角形,必须满足:(1)两边之和大于第三边;(2)并且有两条边相等;根据能组成等腰三角形的必须满足的条件进行分析,进而得出结论.【答案】解:第一组:有两条边相等,但2+2=4,不满足两边之和大于第三边,所以不能组成等腰三角形;第二组:6+1>6,有2条边相等,所以能组成等腰三角形;第三组:5+5>8,有2条边相等,所以能组成等腰三角形;第四组:7+8>9,但不满足有两条边相等,所以不能组成等腰三角形;综上所述,不能组成等腰三角形的有2组;故选:B.【总结】解答此题应根据能满足组成等腰三角形的条件,进行解答即可.三、判断1、所有等边三角形都是等腰三角形.()(判断对错)【考点】:等腰三角形与等边三角形.【解析】:等边三角形是三条边都相等的三角形;等腰三角形是两条边相等的三角形;根据定义即可作出判断.【答案】:解:因为等边三角形是三条边都相等,等腰三角形是只要有两条边相等即可,所以所有等边三角形都是等腰三角形.故答案为:正确.【总结】:考查了等腰三角形与等边三角形的含义,等边三角形是特殊的等腰三角形.2、所有的等腰三角形都是锐角三角形.()(判断对错)【考点】:三角形的分类;等腰三角形与等边三角形.【解析】:当等腰三角形的顶角是钝角时,该三角形是钝角三角形,当等腰三角形的顶角是直角时,该三角形是直角三角形,当等腰三角形的顶角是锐角时,该三角形是锐角三角形;据此判断即可.【答案】:解:因为等腰三角形的两个底角相等,所以底角一定是锐角;但等腰三角形的顶角可能是钝角,也可能是直角,还有可能是锐角,所以该三角形可能是锐角三角形、直角三角形或钝角三角形;故答案为:错误.【总结】:本题考查了等腰三角形的性质及三角形内角和是180度,掌握三角形的分类方法.3、等腰三角形一定有两个角相等.()【考点】等腰三角形与等边三角形.【解析】根据等腰三角形的性质填空即可.【答案】解:因为由等腰三角形的性质可得:等腰三角形的两个底角相等,所以等腰三角形一定有两个角相等,故答案为:正确.【总结】此题主要考查等腰三角形的性质.六年级数学期中测试A卷学校________班级________姓名________成绩_______一、认真填写,我最棒!( 每空1分,共18分 )1、 月球表面夜间的平均温度是零下150℃,记作( )℃。
5.3三角形的分类 一课一练(含答案)
5 三角形第3课时三角形的分类基础巩固篇1.填空(1)三角形按角分有()、()、()。
(2)()叫做锐角三角形,它有()个锐角;()叫做直角三角形,它有()个直角,()个锐角;()叫做钝角三角形,它有()个钝角,()个锐角。
(3)()叫做等腰三角形,它的两条腰(),两个底角();()叫做等边三角形,它的三条边(),三个角(),且三个角都是()度。
(4)()是特殊的等腰三角形。
(5)等腰三角形可能是()三角形、()三角形、()三角形;等边三角形只能是()三角形。
(6)一个三角形中最多有()个锐角,最少有()个锐角。
(7)在直角三角形中,最长的是()边。
(8)一根长45厘米的铁丝围成一个等边三角形,这个三角形的边长是()。
(9)三角形的一个角是108o,这个三角形是()三角形。
2. 连一连。
3.选择题。
(1)所有的等边三角形都是( )。
A.锐角三角形 B.直角三角形 C.钝角三角形(2)有一个角是直角,有两条边相等的三角形是( )。
A. 等边三角形 B.等腰三角形 C.等腰直角三角形 (3)钝角三角形中只有( )个钝角。
A. 1 B.2 C.3(4)一个等腰三角形,两条边长分别是5厘米和6厘米,那么第三条边长是( )厘米。
A.5B.6C.5或6能力提升篇4.下面哪些算式是正确的?(正确的画“√”,错误的画“×”) (1)等腰三角形是特殊的等边三角形。
( ) (2)有两个锐角的三角形是锐角三角形。
( )(3)等腰三角形一定是钝角三角形。
()(4)等边三角形可能是钝角三角形。
()5.分一分,把三角形的序号填在相应的圈里。
6.画一画。
(1)画出一个锐角三角形、钝角三角形、直角三角形。
(2)画出一个等腰三角形、等边三角形。
7.王奶奶用长篱笆围住了一块等腰三角形菜地。
其中两条边的长度是6米和8米,那么篱笆的长度是多少米?思维训练篇8.用纸盖住三角形的一部分,猜一猜它们可能是哪种三角形。
(1)(2)9.下面的图形中各有多少个三角形?有什么规律?5 三角形第3课时三角形的分类基础巩固篇1.填空(1)三角形按角分有(锐角三角形)、(直角三角形)、(钝角三角形)。
【北师大版】四年级下册数学一课一练-2.2三角形分类(含答案)
四年级下册数学一课一练-2.2三角形分类一、单选题1.一个三角形中有两个角相等,那么这个三角形一定是()。
A. 锐角三角形B. 直角三角形C. 等腰三角形2.有一个直角三角形,两个锐角分别是()A. 48°和52。
B. 38°和42°C. 48°和42°D. 60°和35°3.一个三角形的两个内角分别是65°和35°,这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形4.一个三角形的最小内角是48°,按角分,这是一个()三角形。
A. 钝角B. 锐角C. 直角D. 无法确定5.下面这个三角形被遮住了一部分,请判断,这个三角形是什么三角形?()。
A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上都有可能二、判断题6.等边三角形的每一个内角都是锐角。
7.一个三角形中,至少有两个角是锐角.8.三条线段组成的图形一定是三角形.9.一个顶角是80度的等腰三角形,一定是一个钝角三角形。
10.一个三角形的两个内角都是锐角,这个三角形一定是锐角三角形。
三、填空题11.纸飞机的翅膀可以看做________。
12.一个等腰三角形的底角是36°,它的顶角是________°,它按角分类是________三角形。
13.有一个三角形,它的三个内角的度数的比是7∶3∶10,最小的角是________,这是一个________三角形。
14.一个三角形,三个内角的度数比是2:3:4,最大的内角是________度,这个三角形按角分类是________三角形。
15.在一个三角形的3个角中,一个是35°,一个是110°,这个三角形既是________三角形,又是________三角形。
四、解答题16.观察下面的三角形,你能按边给它们分类吗?17.下面是三块三角形玻璃打碎后留下的碎片,你能判断出它们原来各是什么三角形吗?五、应用题18.一个等腰三角形的底边是3厘米,周长为37厘米.它的一条腰是多少?参考答案一、单选题1.【答案】C【解析】【解答】解:一个三角形中有两个角相等,那么这个三角形一定是等腰三角形。
苏教版四年级下册一课一练《三角形的分类》小学数学-有答案-同步练习卷
苏教版四年级下册一课一练《三角形的分类》小学数学-有答案-同步练习卷一、填空1. 三角形按角分可以分为________三角形、________三角形、________三角形。
按边的特点又可以分为________三角形、________三角形、________三角形。
2. 有一个三角形,它最大的角是钝角,它是________三角形。
3. 等腰三角形的顶角是60∘,它的一个底角是________,它还是一个________三角形。
4. 一个等腰三角形的一个底角是45∘,它的顶角是________,它又是________三角形。
5. 等边三角形的周长是18厘米,它的边长是________厘米。
6. 在一个三角形中,最多有________个钝角,最多有________个直角,最多有________个锐角。
7. 在一个直角三角形中,有一个角是30度,另一个角是________.8. 等腰三角形中,一个顶角是80∘,每个底角是________∘.9. 在一个三角形中,最少有________个角是锐角。
10. 有一个角是130∘的三角形,它一定是________三角形。
二、判断有一个角是锐角的三角形叫锐角三角形________.(判断对错)直角三角形中可能有两个直角。
________(判断对错)在一个三角形中,至少有两个锐角。
________.(判断对错)一个三角形中最大的角是钝角,这个三角形一定是钝角三角形。
________(判断对错)等边三角形一定是等腰三角形。
________.(判断对错)一个三角形不是钝角三角形,就是锐角三角形。
________(判断对错)等腰三角形的两个底角相等。
________.(判断对错)等边三角形的三条边相等,角也相等。
________(判断对错)一个三角形中,如果有两个锐角,那必定是一个锐角三角形。
________.(判断对错)一个三角形中,最大的角是90∘,它不可能是等腰三角形。
四年下+++三角形分类专项
四年下三角形分类专项一.选择题(共16小题)1.一个三角形最小的锐角是50度,这个三角形一定是()三角形.A.钝角B.直角C.锐角2.如果一个三角形最小的一个内角大于45°,这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定3.一个三角形中,其中两个角的平均度数是45度,这个三角形是()三角形.A.锐角B.直角C.钝角4.一个三角形的三个角中,只有两个角是锐角,这个三角形一定不是()三角形.A.钝角B.直角C.锐角D.等腰5.一个三角形的两个内角分别是25度、64度,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形6.一个三角形被遮住了两个角,露出的角是锐角,这个三角形是()三角形.A.锐角B.直角C.钝角D.不能确定7.两个锐角均为60度的三角形是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形8.在一个三角形中,有两个锐角的和是90°,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形9.在一个三角形中,C>A+B,这是一个()三角形.A.直角B.钝角C.锐角D.等边10.一个三角形的三个内角都相等,那么这个三角形一定不是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形11.有一个内角是91度的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形12.在一个三角形中,一个角的度数等于另外两个角的度数的和,这个三角形是()三角形.A.锐角B.直角C.钝角D.不确定13.已知一条直线和直线外的A、B两点,以A、B两点和直线上某一点为三角形的三个顶点,能画出一个等腰三角形,如图中的等腰三角形ABC.除此以个最多还能画出符合条件的()个等腰三角形.A.1 B.2 C.3 D.414.一个等腰三角形,其中有一个角是45°,那么这个三角形不可能是()A.锐角三角形B.直角三角形C.钝角三角形15.在一个三角形中,两个内角度数的和小于第三个内角,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形16.有两个角都是锐角的三角形,是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能二.填空题(共5小题)17.有一个角是锐角的三角形,可能是钝角三角形..(判断对错)18.在一个三角形里,有一个角是86度,另一个角是54度,它是三角形.19.如果一个三角形最大角是87°,它是一个三角形,如果最大角是92°,它是一个三角形;如果最大角是90°,它是一个三角形.20.三角形中有一个角的度数是110度,这个三角形是三角形;如果这个三角形的三条边的长度分别是7厘米、8厘米、7厘米,这是一个三角形.21.一个三角形,如果任意两个内角的和大于90度,这个三角形是三角形.三.解答题(共6小题)22.钝角三角形和直角三角形也都有3条高..(判断对错)23.等腰三角形的一个底角是60°,它的顶角是多少度?它还可以叫做什么三角形?24.在一个直角三角形中,一个锐角是45°,求另一个锐角的度数.这个三角形还是一个什么三角形?25.钝角三角形和直角三角形只有一条高,锐角三角形有三条高..(判断对错)26.三角形ABC中,∠A=70°,∠B=30°,∠C=?它是什么三角形?27.(探究题)两个椭圆圈重合的部分应是什么三角形?四年下三角形分类专项参考答案与试题解析一.选择题(共16小题)1.(2016•温州模拟)一个三角形最小的锐角是50度,这个三角形一定是()三角形.A.钝角B.直角C.锐角【解答】解:180°﹣50°=130°;另外两个角的和是130°,最小的内角是50°,假设另外两个角中还有一个是50°,另一个就是:130°﹣50°=80°;最大的内角最大只能是80°,所以这个三角形的三个角都是锐角,这个三角形一定是锐角三角形.故选:C.2.(2016春•红河县校级期末)如果一个三角形最小的一个内角大于45°,这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【解答】解:由分析可知,如果一个三角形最小的一个内角大于45°,这个三角形锐角三角形.故选:B3.(2016秋•宜良县期末)一个三角形中,其中两个角的平均度数是45度,这个三角形是()三角形.A.锐角B.直角C.钝角【解答】解:180°﹣45°×2=90°,90°的角是直角,有一个角是直角的三角形是直角三角形.故选:B.4.(2016春•河西区校级期末)一个三角形的三个角中,只有两个角是锐角,这个三角形一定不是()三角形.A.钝角B.直角C.锐角D.等腰【解答】解:三个角是锐角的三角形是锐角三角形,一个三角形中只有2个锐角,即第三个角一定不是锐角,所以这个三角形一定不是锐角三角形.故选:C.5.(2016春•灵璧县校级月考)一个三角形的两个内角分别是25度、64度,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形【解答】解:第三个角是:180°﹣25°﹣64°=155°﹣64°=91°则这个三角形是钝角三角形.故选:C.6.(2016春•江苏校级期末)一个三角形被遮住了两个角,露出的角是锐角,这个三角形是()三角形.A.锐角B.直角C.钝角D.不能确定【解答】解:锐角三角形、直角三角形和钝角三角形中都可以有两个锐角,所以不能判断这个三角形是什么三角形.故选:D.7.(2016春•历城区期末)两个锐角均为60度的三角形是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形【解答】解:180°﹣60°×2=180°﹣120°=60°,60°=60°=60°,所以这个三角形是等边三角形.故选:C.8.(2016春•唐山期末)在一个三角形中,有两个锐角的和是90°,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形【解答】解:由分析可知,在一个三角形中,如果两个锐角的和等于90°,那么第三个角一定是90度,所以这个三角形一定是直角三角形,故选:A.9.(2016春•扬州校级期末)在一个三角形中,C>A+B,这是一个()三角形.A.直角B.钝角C.锐角D.等边【解答】解:在一个三角形中,C>A+B,这是一个钝角三角形.故选:B.10.(2016秋•丹凤县校级期末)一个三角形的三个内角都相等,那么这个三角形一定不是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:一个三角形的三个内角都相等,那么这个三角形一定不是钝角三角形,故选:B.11.(2016春•榆林期中)有一个内角是91度的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形【解答】解:该三角形有一个内角是钝角(91度),即该三角形是钝角三角形;故选:B.12.(2016春•武城县期中)在一个三角形中,一个角的度数等于另外两个角的度数的和,这个三角形是()三角形.A.锐角B.直角C.钝角D.不确定【解答】解:这个三角形中的最大角是:180°÷2=90°,90°的角是直角,有一个角是直角的三角形是直角三角形.所以个三角形是直角三角形.故选:B.13.(2015•绵阳)已知一条直线和直线外的A、B两点,以A、B两点和直线上某一点为三角形的三个顶点,能画出一个等腰三角形,如图中的等腰三角形ABC.除此以个最多还能画出符合条件的()个等腰三角形.A.1 B.2 C.3 D.4【解答】解:(1)分别是做AB的垂直平分线,与直线的交点是C点,可做等腰三角形;(2)以AB为半径,以A点为圆心画圆,与直线有两个交点,分别是C1、C2.这两点均可作为符合条件的C点;(3)同样,以AB为半径,以B点为圆心画圆,与直线交的两个点也符合条件,其中一个就是图上的C点;答:除此之外还能画出符合条件的4个等腰三角形.故选:D.14.(2015•大化县)一个等腰三角形,其中有一个角是45°,那么这个三角形不可能是()A.锐角三角形B.直角三角形C.钝角三角形【解答】解:由分析可知:如果这个(45度)是底角,则这个三角形是等腰直角三角形;如果这个角是顶角,则底角为:(180﹣45)÷2=67.5度,是锐角三角形;所以不可能是钝角三角形.故选:C.15.(2015•肇庆模拟)在一个三角形中,两个内角度数的和小于第三个内角,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形【解答】解:三角形的三角内角和等于180度,如果其中两个内角之和小于第三个内角,说明第三个内角大于90度,因此这个三角形是钝角三角形;故选:C.16.(2015春•新沂市校级期中)有两个角都是锐角的三角形,是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能【解答】解:由三角形的内角和是180°可知,如果一个三角形有两个内角是锐角,则另外一个角可以是直角,也可以是钝角,则这个三角形可以是锐角三角形,也可以是直角或钝角三角形;故选:D.二.填空题(共5小题)17.(2016春•唐山期末)有一个角是锐角的三角形,可能是钝角三角形.正确.(判断对错)【解答】解:由分析可知:有一个角是锐角的三角形,可能是钝角三角形;故答案为:正确.18.(2016春•黟县校级期末)在一个三角形里,有一个角是86度,另一个角是54度,它是锐角三角形.【解答】解:180°﹣86°﹣54°=40°因为三个角都是锐角的三角形是锐角三角形,所有它是锐角三角形;故答案为:锐角.19.(2016秋•灵山县期末)如果一个三角形最大角是87°,它是一个锐角三角形,如果最大角是92°,它是一个钝角三角形;如果最大角是90°,它是一个直角三角形.【解答】解:一个三角形中,如果最大角是87°,那么它是一个锐角三角形;如果最大角是110°,那么它是一个钝角三角形;如果最大角是90°,那么它是一个直角三角形;故答案为:锐角,钝角,直角.20.(2016春•江苏校级期末)三角形中有一个角的度数是110度,这个三角形是钝角三角形;如果这个三角形的三条边的长度分别是7厘米、8厘米、7厘米,这是一个等腰三角形.【解答】解:因为110°是钝角,所以三角形中有一个角的度数是110度,这个三角形是钝角三角形;三角形的三条边的长度分别是7厘米、8厘米、7厘米,这是一个等腰三角形.故答案为:钝角;等腰21.(2016春•红河县校级期末)一个三角形,如果任意两个内角的和大于90度,这个三角形是锐角三角形.【解答】解:三角形内角和是180°,任意两个内角的和大于90度,如果有一个角是直角或钝角,那么另外两个角的和就小于90度,就不能保证任意两个内角的和大于90度,所以这个三角形只能是锐角三角形.故答案为:锐角.三.解答题(共6小题)22.(2016春•东阿县期中)钝角三角形和直角三角形也都有3条高.√.(判断对错)【解答】解:任意三角形有三条高,所以钝角三角形和直角三角形都有3条高,故答案为:√.23.(2015春•丹巴县月考)等腰三角形的一个底角是60°,它的顶角是多少度?它还可以叫做什么三角形?【解答】解:180°﹣60°﹣60°,=120°﹣60°,=60°;因为三个角都是60°,所以叫等边三角形;答:它的顶角是60度,它还可以叫做等边三角形.24.(2015春•海安县期中)在一个直角三角形中,一个锐角是45°,求另一个锐角的度数.这个三角形还是一个什么三角形?【解答】解:180°﹣90°﹣45°=90°﹣45°=45°所以是一个等腰直角三角形.答:另一个角是45°,这一个三角形是一个等腰直角三角形.25.(2015春•扬州期中)钝角三角形和直角三角形只有一条高,锐角三角形有三条高.×.(判断对错)【解答】解:任意三角形有三条高,所以直角三角形、钝角三角形、锐角三角形都有三条高.故“钝角三角形和直角三角形只有一条高,锐角三角形有三条高”的说法是错误的.故答案为:×.26.(2015春•陕西校级月考)三角形ABC中,∠A=70°,∠B=30°,∠C=?它是什么三角形?【解答】解:因为△ABC中,∠A=70°,∠B=30°,所以∠C=180°﹣30°﹣70°=80°<90°,三个角都是锐角的三角形是锐角三角形,故此三角形是锐角三角形.27.(2014春•杭州期末)(探究题)两个椭圆圈重合的部分应是什么三角形?【解答】解:有两个角相等的直角三角形是等腰直角三角形;所以两个椭圆圈重合的部分应是等腰直角三角形.答:两个椭圆圈重合的部分应是等腰直角三角形.第11页(共11页)。
三角形的分类练习题
(1)一个三角形里有两个锐角,必定是锐角三角形。
( )(2)一个 三角形里至少有两个锐角。
( )(3)所有的等腰三角形都是锐角三角形。
( )(4)等腰三角形都是等边三角形。
( )(5)所有等边三角形都是等腰三角形而且都是锐角三角形。
( )(6)由三条直线围成的图形叫做三角形。
( )(7)在一个三角形中,不可能有两个或两个以上的直角。
( )(8)在同一个三角形中,只能有一个角是钝角。
( )( 9)一个三角形中,至少有两个角是钝角。
( )★★2.画一个锐角三角形,一个直接三角形和一个钝角三角形,并分别画出它们的一条高。
. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .★★★3.填空(2)图(1)中分别有( )锐角三角形,( )个钝角三角形,( )个直角三角形,有( )个等腰三角形。
图(2)中分别有( )锐角三角形,( )个钝角三角形,( )个直角三角形,,有( )个等腰三角形。
(1)。