最新北师大版八年级数学上册《位置与坐标》单元测试题及解析

合集下载

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试题(答案解析)

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试题(答案解析)

一、选择题1.已知点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( ) A .(﹣1,2)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1)2.已知点(,2)A m 和(3,)B n 关于y 轴对称,则2021()m n +的值为( ) A .0B .1C .1-D .2020(5)-3.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m <4.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( ) A .(2,3)- B .(2,3) C .(3,2) D .(3,2)- 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)7.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°8.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7B .1-C .1-或7D .7-或19.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D ,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )A .点AB .点BC .点CD .点D10.下列数据中不能确定物体的位置的是( )A .1单元201号B .北偏东60°C .清风路32号D .东经120°,北纬40° 11.在平面直角坐标系中,点(2,1)P 向左平移3个单位长度得到的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.已知点()2 6,2P m m -+.(1)若点P 在y 轴上,P 点的坐标为______.(2)若点P 的纵坐标比横坐标大6,则点P 在第______象限.(3)若点P 在过点()2,3A 且与x 轴平行的直线上,则点P 的坐标为______. (4)点P 到x 轴、y 轴的距离相等,则点P 的坐标为______. 14.平面直角坐标系中,点()()4,2,2,4A B -,点(),0P x 在x 轴上运动,则AP BP +的最小值是_________.15.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.16.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 17.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.18.若点M (a -3,a +4)在y 轴上,则a =___________.19.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________.20.规定:在平面直角坐标系xOy 中,任意不重合的两点 M(x 1,y 1),N(x 2,y 2)之间的折线距离为1212(,)d M N x x y y =-+-.如图①点M(-2,3)与点 N(1,-1)之间的折线距离为(,)d M N = ______;如图②点 P(3,-4),若点 Q 的坐标为(t ,3),且(,)8d P Q =,则t 的值为__________.三、解答题21.作图题,如图,△ABC 为格点三角形(不要求写作法)(1)请在坐标系内用直尺画出△111A B C ,使△111A B C 与△ABC 关于y 轴对称; (2)请在坐标系内用直尺画出△222A B C ,使△222A B C 与△ABC 关于x 轴对称;22.已知在平面直角坐标系中(1)画出△ABC 关于x 轴成轴对称图形的三角形A ′B ′C ′; (2)写出A ′,B ′,C ′的坐标.23.如图,在平面直角坐标系中,已知△ABC 的三个顶点A (﹣3,1),B (﹣2,3),C (2,1),直线l 上各点的横坐标都为1.(1)画出△ABC 关于直线l 对称的△A ′B ′C ′; (2)请直接写出点A ′、B ′、C ′的坐标;(3)若点M 在△ABC 内部,直接写出点M (a ,b )关于直线l 对称点M ′的坐标. 24.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题: (1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.25.如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC ∆经过一次轴对称变换后得到'''A B C ∆,图中标出了点C 的对应点'C()1在给定方格纸中画出变换后的'''A B C ∆;()2画出AC 边上的中线BD 和BC 边上的高线AE ; ()3求'''A B C ∆的面积.26.已知在平面直角坐标系(如图)中有三个点0,23,1),()4,,3(()A B C --.请解答以下问题:(1)在坐标系内描出点A B C ,,;(2)画出以A B C ,,三点为顶点的三角形,并列式求出该三角形的面积;(3)若要在y 轴找一个点P ,使以A C P 、、三点为顶点的三角形的面积为6,请直接写出满足要求的点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答即可. 【详解】解:∵点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1, ∴点P 的横坐标为﹣1,纵坐标为﹣2, ∴点P 的坐标为(﹣1,﹣2). 故选:C . 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键,也是最容易出错的地方.2.C解析:C 【分析】根据平面直角坐标系中点的对称的知识点可得到m 、n 的值,代入求值即可. 【详解】∵点(,2)A m 与点(3,)B n 关于y 轴对称,∴32m n =-⎧⎨=⎩,∴()()202120213+21m n +=-=-,故选择:C .【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.3.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32, 解不等式②,得:m >0,∴不等式组的解集为m >32, 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.B解析:B 【分析】根据关于x 轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案. 【详解】解:∵点P (3,a )关于x 轴的对称点为Q (b ,-2), ∴a=2,b=3,∴点(a ,b)的坐标为(2,3), 故选:B . 【点睛】此题主要考查了关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.5.D解析:D 【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限, 故选D .6.A解析:A 【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2, 即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2). 故选A . 【点睛】本题考查点的坐标. 7.B解析:B 【分析】 根据12PBC ABC S S ∆∆=得出点P 到BC 的距离等于AD 的一半,即点P 在过AD 的中点且平行于BC 的直线l 上,则此问题转化成在直线l 上求作一点P ,使得点P 到B 、C 两点距离之和最小,作出点C 关于直线l 的对称点C ’,连接BC ’,然后根据条件证明△BCC ’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.8.C解析:C【分析】根据点M(2,3)与点N(2,y)之间的距离是4,可得|y−3|=4,从而可以求得y的值.【详解】∵点M(2,3)与点N(2,y)之间的距离是4,∴|y−3|=4,∴y−3=4或y−3=−4,解得y=7或y=−1.故选:C.【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.9.D解析:D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【详解】如图所示:原点可能是D点.故选D.【点睛】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.10.B解析:B【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A、1单元201号,是有序数对,能确定物体的位置,故本选项错误;B、北偏东60°,不是有序数对,不能确定物体的位置,故本选项正确;C、清风路32号,“清风路”相当于一个数据,是有序数对,能确定物体的位置,故本选项错误;D、东经120°北纬40°,是有序数对,能确定物体的位置,故本选项错误;故选:B.【点睛】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.11.B解析:B【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(2,1)向左平移3个单位后的坐标为(-1,1),点(-1,1)在第二象限.故选:B.【点睛】本题考查了点的平移,解答本题的关键是求出平移后点的坐标:向左平移a个单位,坐标P (x ,y )⇒P (x-a ,y ).12.B解析:B 【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答. 【详解】 ∵m 2≥0, ∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限. 故选:B . 【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.二、填空题13.(1);(2)二;(3);(4)或【分析】(1)y 轴上点的坐标特点是横坐标为0据此求解可得;(2)由题意可列出等式2m-6+6=m+2求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等根据这个解析:(1)()0,5;(2)二;(3)()4,3-;(4)()10,10或1010,33⎛⎫- ⎪⎝⎭【分析】(1)y 轴上点的坐标特点是横坐标为0,据此求解可得; (2)由题意可列出等式2m-6+6=m+2,求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等,根据这个性质即可求解.(4)点P 到x 轴、y 轴的距离相等,所以点P 的横坐标与纵坐标相等或互为相反数,据此可解. 【详解】解:(1)∵点P 在y 轴上, ∴2m-6=0, 解得m=3,∴P 点的坐标为(0,5); 故答案为(0,5);(2)根据题意得2m-6+6=m+2, 解得m=2,∴P 点的坐标为(-2,4), ∴点P 在第二象限; 故答案为:二;(3)∵点P 在过A (2,3)点且与x 轴平行的直线上,∴点P 的纵坐标为3,∴m+2=3,∴m=1,∴点P 的坐标为(-4,3).故答案为:(-4,3);(4)∵点P 到x 轴、y 轴的距离相等,∴2m-6=m+2或2m-6+ m+2=0,∴m=8或m=43, ∴点P 的坐标为()10,10或1010,33⎛⎫- ⎪⎝⎭. 故答案为:()10,10或1010,33⎛⎫-⎪⎝⎭. 【点睛】本题考查平面直角坐标系中点的特点;熟练掌握平面直角坐标系中坐标轴上点的特点,与坐标轴平行的直线上点的特点是解题的关键. 14.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理AP BP +的最小值为:故答案为:【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.15.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.16.﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围【详解】解:∵点P (aa+1)在平面直角坐标系的第二象限内∴解得:﹣1<a <0则a 的取值范围是:﹣1<a <0故答案为:﹣1<a <0【解析:﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围.【详解】解:∵点P (a ,a +1)在平面直角坐标系的第二象限内,∴010a a <⎧⎨+>⎩, 解得:﹣1<a <0.则a 的取值范围是:﹣1<a <0.故答案为:﹣1<a <0.【点睛】本题考查了点的坐标,正确掌握各象限内点的坐标特点是解题的关键.17.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 18.3【分析】在y 轴上的点横坐标为零即a-3=0即可解答【详解】解:∵点M (a -3a +4)在y 轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征第一象限内点的坐标特征为(解析:3【分析】在y 轴上的点横坐标为零,即a-3=0,即可解答【详解】解:∵点M(a-3,a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.19.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P在第四象限且点P到x轴和y轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P的坐标为故答案为【点睛】此题考查点-解析:(8,6)【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P在第四象限,且点P到x轴和y轴的距离分别为6、8,-.∴点P的横坐标是8,纵坐标是-6,即点P的坐标为(8,6)-.故答案为(8,6)【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.20.=2或t=4;【分析】①直接根据折线距离的定义计算即可②根据折线距离的定义由得到方程求解即可【详解】解:①根据折线距离的定义点M(-23)与点N(1-1)之间的折线距离为:d(MN)=|-2-1|+解析:=2或t=4;【分析】①直接根据“折线距离”的定义计算即可d P Q=,得到方程求解即可②根据“折线距离”的定义,由(,)8【详解】解:①根据“折线距离”的定义,点M(-2,3)与点N(1,-1)之间的折线距离为:d(M,N)=|-2-1|+|3-(-1)|=3+4=7;d P Q=,②∵(,)8∴|3-t|+|-4-3|=8,∴|3-t|=1,∴3-t=1或3-t=-1解得:t=2或t=4;故答案为:①7;②t=2或t=4;【点睛】本题考查了坐标与图形性质及一元一次方程的应用,解题的关键是读懂材料,弄清楚“折线距离”的定义.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用关于y轴对称的点的坐标特征写出点A1和点B1、点C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点A2和点B2、点C2的坐标,然后描点即可.【详解】解:如图所示,△A1B1C1和△A2B2C2即为所求:【点睛】本题考查轴对称变换,解题的关键是熟练掌握轴对称的性质,属于中考常考题型.22.(1)作图见解析,(2)A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A′,B′,C′的坐标.【详解】解:(1)所画图形如下所示,其中△A′B′C′即为所求;(2)A′、B′、C′的坐标分别为:A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点.23.(1)详见解析;(2)A′(5,1)、B′(4,3)、C′(0,1);(3)(﹣a+2,b)【分析】(1)利用网格图的特点及轴对称的性质,分别确定A、B、C关于直线l的对称点A′、B′、C′,然后依次连接即可;(2)直接利用网格图即可在坐标系中确定点A′、B′、C′的坐标;(3)比较点A、B、C和点A′、B′、C′的坐标规律即可得出M′的坐标.【详解】解:(1)如图:△A′B′C′即为所求,(2)A′(5,1)、B′(4,3)、C′(0,1);(3)M′的坐标(﹣a+2,b).【点睛】此题主要考查轴对称的性质,正确理解关于轴对称的点的坐标特点是解题关键.24.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【详解】解:(1)建立平面直角坐标系如图所示;(2)体育馆(1,3)C -,食堂(2,0)D 如图所示;(3)四边形ABCD 的面积111145332313122222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯, 20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.25.(1)见解析;(2)见解析;(3)152【分析】(1)连接CC′,作CC′的垂直平分线l ,然后分别找A 、B 关于直线l 的对称点A′、B′,连接A′、B′、C′,即可得到A B C ''';(2)作AC 的垂直平分线找到中点D ,连接BD ,BD 就是所求的中线;从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(3)根据三角形面积公式即可求出A B C '''的面积.【详解】解:(1)如图,A B C '''即为所求;(2)如图,线段BD 和线段AE 即为所求;(3)111553222A B C ABC S S BC AE '''∆∆==⋅⋅=⨯⨯=. 【点睛】 本题主要考查几何变换作图,作已知图形关于某直线的对称图形的一般步骤:(1)找:在原图形上找特殊点(如线段的端点、线与线的交点等);(2)作:作各个特殊点关于已知直线的对称点;(3)连:按原图对应连接各对称点.熟练掌握作图步骤是解题的关键. 26.(1)见解析;(2)画图见解析,192;(3)(0,5)或(0,1)- 【分析】(1)利用点的坐标的意义描点;(2)用一个矩形的面积分别减去三个三角形的面积去计算ABC ∆的面积;(3)设(0,)P t ,利用三角形面积公式得到1|2|462t ⨯-⨯=,然后求出t 即可. 【详解】解:(1)如图,(2)如图,ABC ∆为所作,11119753174452222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=;(3)设(0,)P t ,以A 、C 、P 三点为顶点的三角形的面积为6, ∴1|2|462t ⨯-⨯=,解得5t =或1t =-,P ∴点坐标为(0,5)或(0,1)-.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等边三角形的判定与性质.。

【单元测试】北师大版八年级数学上册 第3章 位置与坐标 单元测试含答案

【单元测试】北师大版八年级数学上册 第3章 位置与坐标 单元测试含答案

第三章位置与坐标单元测试一、单选题(共10题;共30分)1、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A、原点上B、x轴上C、y轴上D、坐标轴上2、已知点A(a,3)和点B(4,b)关于y轴对称,则a+b的值是()A、1B、-1C、7D、-73、已知点P关于x轴的对称点为(a,-2),关于y轴对称点为(1,b),那么点P的坐标为()A、(a, -b)B、(b, -a)C、(-2,1)D、(-1,2)4、已知点P(-2,1),那么点P关于x轴对称的点P′的坐标是()A、(-2,1)B、(-1,2)C、(2,1)D、(-2,-1)5、在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A、33B、-33C、-7D、76、已知点P(4,3),则点P到y轴的距离为()A、4B、4C、3D、37、在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),则点B′的横坐标是()A、6B、-6C、3D、-38、如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A、5aB、4aC、3aD、2a9、下列各点中位于第四象限的点是()A、(3,4)B、(﹣3,4)C、(3,﹣4)D、(﹣3,﹣4)10、已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A、﹣1B、1C、﹣3D、3二、填空题(共8题;共35分)11、点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为________ .12、已知点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,那么a+b=________ .13、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 ________ .14、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是________15、点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y轴的对称点的坐标是________.16、点P(﹣2,)在第________象限.17、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积是8,则点C的坐标为________.18、如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度;③点C在y轴上,位于原点下方,距离原点2个单位长度;④点D在x 轴上,位于原点右侧,距离原点4个单位长度.填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.三、解答题(共6题;共36分)19、已知点P(a , b)在第二象限,且|a|=3,|b|=8,求点P的坐标20、如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.21、如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.23、在图中建立适当的直角坐标系表示图中各景点位置.A 狮虎山B 猴山C 珍禽馆D 熊猫馆E 大山F 游乐场G 长廊.24、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?答案解析一、单选题1、【答案】 D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清2、【答案】 B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】首先根据平面直角坐标系中两个关于y轴成轴对称的点的坐标特点,分别求出a、b的值,然后代入计算即可.【解答】∵点A(a,3)和点B(4,b)关于y轴对称,∴a=-4,b=3,∴a+b=-4+3=-1.故选B.【点评】本题主要考查了平面直角坐标系中关于y轴成轴对称的两个点的坐标特点:纵坐标相等,横坐标互为相反数.3、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.【解答】∵点P关于x轴的对称点为(a,-2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(-1,b),则a=-1,b=2.∴点P的坐标为(-1,2).故选D.【点评】解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).4、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】关于x轴对称的点的横坐标相同,纵坐标互为相反数。

最新北师大版八年级数学上册《位置与坐标》同步测试题及答案解析

最新北师大版八年级数学上册《位置与坐标》同步测试题及答案解析

《第3章位置与坐标》一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3) B.(﹣5,3)或(5,3) C.(3,5) D.(﹣3,5)或(3,5)2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限 B.第二象限;C.第三象限 D.第四象限3.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7) D.(﹣7,7)10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2) D.(1,﹣2)二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示______.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为______.13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b=______.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的______的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=______,y=______.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是______.18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是______.三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼______、湖心岛______、金凤广场______、动物园______.21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.《第3章位置与坐标》参考答案一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3) B.(﹣5,3)或(5,3) C.(3,5) D.(﹣3,5)或(3,5)【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上侧,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选D.2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限 B.第二象限;C.第三象限 D.第四象限【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴﹣m>0,|n|>0,∴点B在第一象限.3.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等 B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)【解答】解:由题意可得:A(﹣3,2)关于y轴的对称点是B(3,2),B关于x轴的对称点是C(3,﹣2).故选:C.8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7) D.(﹣7,7)【解答】解:如图,设AD与y轴的交点为E,在直角梯形ABCD中,∵点A的坐标为(﹣2,7),∴OB=2,OE=7,∵AD=5,∴DE=5﹣2=3,∴点D的坐标为(3,7).故选C.10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2) D.(1,﹣2)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示10排15号.【解答】解:∵“8排4号”记作(8,4),∴(10,15)表示10排15号.故答案为:10排15号.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为(6,3).【解答】解:如图,点N的位置可表示为(6,3).故答案为(6,3).13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b= ﹣1 .【解答】解:∵点P(a,b)与点Q(1,2)关于x轴对称,∴a=1,b=﹣2,即a+b=﹣1.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的南偏西30°的方向上.【解答】解:由图可得,灯塔B在小岛A的南偏西30°的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x= ﹣3 ,y= 不等于2的任意实数.【解答】解:∵点A(x,2),B(﹣3,y),AB∥y轴,∴x=﹣3,y不等于2的是任意实数.故答案为:﹣3,不等于2的任意实数.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是±4 .【解答】解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是(4,4)或(12,﹣12).【解答】解:由点P到两坐标轴的距离相等,得3+x=﹣2x+6或3+x+(﹣2x+6)=0,解得x=1或x=9,点P的坐标(4,4)或(12,﹣12),故答案为:(4,4)或(12,﹣12).18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?【解答】解:(1)点B(0,﹣2)和点E(0,2)关于x轴对称;(2)点B(0,﹣2)与点E(0,2),点C(2,﹣1)与点D(2,1),它们的横坐标相同纵坐标互为相反数.20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼(0,0)、湖心岛(﹣1.5,1)、金凤广场(﹣2,﹣1.5)、动物园(7,3).【解答】解:以光月楼为坐标原点建立直角坐标系,如图,所以光岳楼的坐标为(0,0)、湖心岛的坐标为(﹣1.5,1)、金凤广场的坐标为(﹣2,﹣1.5)、动物园的坐标为(7,3).故答案为(0,0),(﹣1.5,1),(﹣2,﹣1.5),(7,3).21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?【解答】解:如右图所示,∠BAC=75°﹣30°=45°,∠ABC=30°+60°=90°,∴∠C=90°﹣45°=45°,∴∠BAC=∠C,∴△ABC是等腰直角三角形,∴BC=AB=1km,答:走私地点C离B处是1km.22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.【解答】解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,所以面积=×6×6=18平方单位;(2)A′(﹣6,4),B′(﹣3,1),C(0,4),D′(﹣3,7);(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.【解答】解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,∵A(2,﹣1),B(4,3),C(1,2),∴EF=BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC =S矩形BDEF﹣S△BDC﹣S△CEA﹣S△BFA=BD•DE﹣•DC•DB﹣•CE•AE﹣AF•BF,=12﹣1.5﹣1.5﹣4=5.(本题也可先由勾股定理的逆定理,判别出△ABC为直角三角形,再求面积).。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。

北师大版八年级数学上《第3章位置与坐标》单元测试含答案解析

北师大版八年级数学上《第3章位置与坐标》单元测试含答案解析

《第3章位置与坐标》一、选择题(共8小题,每小题3分,满分24分)1.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6) B.(6,7) C.(7,3) D.(3,7)2.如果P(a,b)在第二象限,那么点Q(ab,a﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)5.设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=06.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)7.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对8.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等二、填空题9.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是.10.将P(3,﹣5)沿x轴负方向平移一个单位,得到点P′的坐标为;再沿y轴正方向平移5个单位,得到点P″的坐标为.11.若A(﹣9,12),另一点P在x轴上,P到y轴的距离等于A到原点的距离,则P点坐标为.12.点A(3,﹣4)到y轴的距离为,到x轴的距离为,到原点距离为.13.在平面直角坐标系中,点(﹣1,m2+1)一定在第象限.14.P(x,y)点在第三象限,且P点到x轴的距离为3,到y轴的距离为2,则P点的坐标为.15.已知点A(x,4)到原点的距离为5,则点A的坐标为.16.点A(3,b)与点B(a,﹣2)关于原点对称,则a= ,b= .三、解答题17.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°,求A、B的坐标.18.已知平面上A(4,6),B(0,2),C(6,0),求△ABC的面积.19.如图,我们给中国象棋棋盘建立一个平面直角坐标系如图是我市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以光岳楼为原点,画出直角坐标系,并用坐标表示下列景点的位置.(1)光岳楼;(2)金凤广场;(3)动物园.21.如图所示,点A表示2街5大道的十字路口,点B表示5街与6大道的十字路口,点C表示3街与2大道的十字路口.如果用(5,6)→(4,6)→(3,6)→(3,5)→(3,4)→(3,3)→(3,2)表示由B到C的一条路径,请你用同样方式写出由A经C到B的路径(至少两条路径).《第3章位置与坐标》参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6) B.(6,7) C.(7,3) D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选A.【点评】本题考查了坐标确定位置,理解有序数对的两个数的意义是解题的关键,易错点在于要求出倒数第3个为从前面数第6个.2.如果P(a,b)在第二象限,那么点Q(ab,a﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,再确定出点Q的横坐标与纵坐标的正负情况,然后选择答案即可.【解答】解:∵P(a,b)在第二象限,∴a<0,b>0,∴ab<0,a﹣b<0,∴点Q(ab,a﹣b)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称的两点,横坐标相同,纵坐标互为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.【点评】熟记关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,横坐标互为相反数,纵坐标相同,关于原点对称的两点,横坐标和纵坐标均互为相反数.4.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【考点】平行四边形的性质;坐标与图形性质.【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.5.设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=0【考点】点的坐标.【分析】根据点在x轴上点的坐标特点解答.【解答】解:∵点A(m,n)在x轴上,∴纵坐标是0,即n=0,又∵点位于原点的左侧可知,∴横坐标小于0,即m<0,∴m<0,n=0.故选D.【点评】本题主要考查了点在x轴上时点的纵坐标是0的特点.6.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)【考点】点的坐标.【分析】根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P的坐标即可.【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选B.【点评】解决本题的关键是记住y轴上点的特点:横坐标为0.7.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对【考点】点的坐标.【专题】分类讨论.【分析】x轴上的点纵坐标是0,这点有可能在点A的左边,也有可能在点A的右边.【解答】解:∵3+4=7,3﹣4=﹣1,∴点的横坐标是7或﹣1,∴在x轴上到点A(3,0)的距离为4的点为(7,0)和(﹣1,0).故选C.【点评】本题考查了点到坐标轴距离的含义,到x轴上到一定点等于定长的点的有2个.8.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【考点】坐标与图形性质.【分析】平行于y轴的直线上的点的坐标特点解答.【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.【点评】本题考查的知识点是:平行于y轴的直线上的任意两点到y轴的距离相等,即横坐标相等.二、填空题9.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是(﹣9,2).【考点】点的坐标.【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【解答】解:∵点P(x,y)在第二象限,∴x<0 y>0,又∵|x|=9,y2=4,∴x=﹣9 y=2,∴点P的坐标是(﹣9,2).故答案填(﹣9,2).【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(﹣,+).10.将P(3,﹣5)沿x轴负方向平移一个单位,得到点P′的坐标为(2,﹣5);再沿y轴正方向平移5个单位,得到点P″的坐标为(2,0).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可直接得到答案.【解答】解:将P(3,﹣5)沿x轴负方向平移一个单位,得到点P′的坐标为(3﹣1,﹣5).即(2,﹣5);再沿y轴正方向平移5个单位,得到点P″的坐标为(2,﹣5+5),即(2,0).故答案为:(2,﹣5);(2,0).【点评】此题主要考查了坐标与图形变化﹣平移,关键是掌握点的坐标的变化规律.11.若A(﹣9,12),另一点P在x轴上,P到y轴的距离等于A到原点的距离,则P点坐标为(15,0)或(﹣15,0).【考点】两点间的距离公式.【分析】先根据勾股定理求出A到原点的距离,再根据x轴上点的特点是纵坐标为0解答.【解答】解:∵A(﹣9,12)到原点的距离为=15,∵点A到原点的距离是15,∴点P的坐标是(15,0)或(﹣15,0).【点评】本题考查x轴上点的特点及勾股定理的运用.12.点A(3,﹣4)到y轴的距离为 3 ,到x轴的距离为 4 ,到原点距离为 5 .【考点】点的坐标.【分析】根据点的坐标的几何意义解答即可.【解答】解:根据点的坐标的几何意义可知:点A(3,﹣4)到y轴的距离为3,到x轴的距离为4,到原点距离为=5.故填3、4、5.值就是到x轴的距离.13.在平面直角坐标系中,点(﹣1,m2+1)一定在第二象限.【考点】点的坐标.【分析】根据点在第二象限的坐标特点解答即可.【解答】解:∵点(﹣1,m2+1)它的横坐标﹣1<0,纵坐标m2+1>0,∴符合点在第二象限的条件,故点(﹣1,m2+1)一定在第二象限.故填:二.【点评】本题主要考查平面直角坐标系中各象限内点的坐标的符号.14.P(x,y)点在第三象限,且P点到x轴的距离为3,到y轴的距离为2,则P点的坐标为(﹣2,﹣3).【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度以及第三象限的点的横坐标与纵坐标都是负数解答.【解答】解:∵P(x,y)点在第三象限,且P点到x轴的距离为3,到y轴的距离为2,∴点P的横坐标是﹣2,纵坐标是﹣3,∴点P的坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度是解题的关键.15.已知点A(x,4)到原点的距离为5,则点A的坐标为(3,4)或(﹣3,4).【考点】两点间的距离公式.【分析】根据两点间的距离公式便可直接解答.【解答】解:∵点A(x,4)到原点的距离是5,点到x轴的距离是4,∴5=,解得x=3或x=﹣3.A的坐标为(3,4)或(﹣3,4).故答案填:(3,4)或(﹣3,4).坐标的绝对值就是到x轴的距离.16.点A(3,b)与点B(a,﹣2)关于原点对称,则a= ﹣3 ,b= 2 .【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,记忆方法是结合平面直角坐标系的图形记忆.【解答】解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以得到a=﹣3,b=2.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.三、解答题17.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°,求A、B的坐标.【考点】坐标与图形性质;解直角三角形.【专题】计算题.【分析】过A、B两点分别作x轴的垂线,把问题转化到直角三角形中,根据已知条件,确定直角三角形的已知条件,解直角三角形,求两个直角边,再表示A、B两点的坐标.【解答】解:过A点作x轴的垂线,垂足为C.在Rt△AOC中,∵OA=8,∠AOC=45°,∴AC=OC=4.∴A(4,4);过B点作x轴的垂线,垂足为D.在Rt△BOD中,OB=6,∠BOD=60°,∴OD=OB•cos60°=6×=3,BD=OB•sin60°=6×=3.∴B(﹣3,3).【点评】本题也可以过A,B两点分别作y轴的垂线,方法同上,在表示点的坐标时,注意象限的坐标符号.18.已知平面上A(4,6),B(0,2),C(6,0),求△ABC的面积.【考点】三角形的面积;坐标与图形性质.【分析】已知三点的坐标,可以把求三角形的面积的问题,转化为梯形与三角形面积的差的问题.【解答】解:ADOC是梯形,则梯形的面积是(4+6)×6=30,三角形ABD的面积是×4×4=8,三角形OBC的面积是×2×6=6,因而△ABC的面积是30﹣8﹣6=16.【点评】求图形的面积可以转化为一些规则图形的面积的和或差的问题.19.(2006•旅顺口区)如图,我们给中国象棋棋盘建立一个平面直角坐标系(2)轴对称;(8分)(3)(0,0)和(4,2);(0,2)和(4,0).【点评】此题借助于日常生活中常见的情境考查平面直角坐标系、轴对称、中心对称等知识.20.如图是我市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以光岳楼为原点,画出直角坐标系,并用坐标表示下列景点的位置.(1)光岳楼(0,0);(2)金凤广场(﹣3,﹣2.5);(3)动物园(5,3).【考点】坐标确定位置.【分析】以光岳楼为坐标原点建立平面直角坐标系,然后依次写出各景点的坐标即可.【解答】解:如图,(1)光岳楼(0,0);(2)金凤广场(﹣3,﹣2.5);(3)动物园(5,3).故答案为:(0,0);(﹣3,﹣2.5);(5,3).【点评】本题考查了坐标确定位置,是基础题,建立平面直角坐标系是解题的关键.21.如图所示,点A表示2街5大道的十字路口,点B表示5街与6大道的十字路口,点C表示3街与2大道的十字路口.如果用(5,6)→(4,6)→(3,6)→(3,5)→(3,4)→(3,3)→(3,2)表示由B到C的一条路径,请你用同样方式写出由A经C到B的路径(至少两条路径).【考点】坐标确定位置.【分析】根据从点A经过点C到点B的途径依次写出即可.【解答】解:路径1:(2,5)→(3,5)→(3,4)→(3,3)→(3,2)→(3,1)→(4,1)→(5,1)→(5,2)→(5,3)→(5,4)→(5,5)→(5,6);路径2:(2,5)→(2,4)→(2,3)→(2,2)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4)→(3,5)→(3,6)→(4,6)→(5,6).【点评】本题考查了坐标确定位置,是基础题,主要考查了利用平面直角坐标系写出点的坐标的方法.。

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

北师大版八年级数学上册《第三章位置与坐标》单元测试卷(附答案)

北师大版八年级数学上册《第三章位置与坐标》单元测试卷(附答案)

北师大版八年级数学上册《第三章位置与坐标》单元测试卷(附答案)一、选择题1.下列各点中,在第四象限的是()A.(2,1)B.(−2,1)C.(2,−1)D.(−2,−1)2.如果a是任意实数,则点P(a﹣2,a﹣1)一定不在第()A.一B.二C.三D.四3.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是()A.(4,2)或(-4,2)B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2)D.(4,-2)或(-1,-2)4.在平面直角坐标系中,点A的坐标为(−2,10),点B与点A关于x轴对称,则点B的坐标为()A.(2,10)B.(10,2)C.(−2,−10)D.(10,−2)5.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋②的位置用有序数对(−3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(−1,2)C.(−2,1)D.(1,−2)6.已知点P(−4,5),Q(−2,5),则直线PQ()A.平行于x轴B.平行于y轴C.垂直于x轴D.以上都不符合题意7.在平面直角坐标系中,点A(a,1)与点B(−2,b)关于x轴对称,则(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,已知小华的坐标为(−2,−1),小亮坐标为(−1,0),则小东坐标是()A.(−3,−2)B.(1,1)C.(1,2)D.(3,2)9.根据下列表述,能确定准确位置的是()A.万达影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°10.已知点A的坐标为(2,3),直线AB∥y轴,且AB=5,则点B的坐标为()A.(2,8)B.(2,8)或(2,−2)C.(7,3)D.(7,3)或(−3,3)11.如图,在平面直角坐标系中,点A(1,1),B(−1,1),C(−1,−2),D(1,−2),按A→B→C→D→A→…排列,则第2022个点所在的坐标是()A.(1,1)B.(−1,1)C.(−1,−2)D.(1,−2) 12.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.( -1,-2)B.( 1,-2)C.( -1,2)D.( -2,-1)二、填空题13.点(0,2)到x轴的距离为.14.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为.15.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是8,则点P的坐标为.16.若点A(2,a)与点B(−2,5)关于y轴对称,则a的值为.17.若点A(a﹣1,4)和B(2,2a)到x轴的距离相等,则实数a的值为.18.若点P(2﹣m,3m+1)在x轴上,则m=.19.到x轴距离为6,到y轴距离为4的坐标为.20.如图是一足球场的半场平面示意图,已知球员A的位置为(−1,−1),球员C的位置为(0,1),则球员B的位置为.21.已知点A(−1,a+1),B(b,−3)是关于x轴对称的点,a-b=.22.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(−3,1),所在位置的坐标为(2,−1),那么所在位置的坐标为.23.如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…,则点P2023的坐标是.三、作图题24.如图,在平面直角坐标系中A(−3,3),B(−4,−4),C(0,−1).(1)在图中作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1顶点的坐标;(2)求△ABC的周长;(3)在x轴上求出点P坐标,使PB+PC最小.25.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,B的坐标分别为(−2,3),(−2,−2).△请在网格平面内画出平面直角坐标系;△若点C的坐标为(3,5),请标出点C,并画出△ABC;△请画出△ABC关于y轴对称的△A1B1C1;△直接写出△ABC的面积为▲ .四、综合题26.已知点P(2m+4,m−1),试分别根据下列条件,求点P的坐标.(1)点P在y轴上;(2)点P到两坐标轴的距离相等.27.已知点A(2a,3a−1)是平面直角坐标系中的点.(1)若点A在第四象限的角平分线上,求a的值;(2)若点A在第三象限,且到两坐标轴的距离和为11,请确定点A的坐标.28.(1)若点(2a+3,a−3)在第一、三象限的角平分线上,求a的值;(2)已知点P的坐标为(4−a,3a+6),且点P到两坐标轴的距离相等,求点P的坐标.29.在平面直角坐标系中,P(a,b),Q(c,d),对于任意的实数,我们称点K(kc−ka,kd−kb)为点P和点Q的k系点(k≠0).例如:已知P(1,−2),Q(3,1),点P和点Q的2系点为K(4,6).已知A(0,2),B(1,−3).(1)点A和点B的3系点的坐标为(直接写出答案);(2)已知点C(2,m),若点B和点C的k系点为点D,点D在第二、四象限的角平分线上.①求m的值;②连接CD,若CD∥x轴,求△BCD的面积.答案解析部分1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】C6.【答案】A7.【答案】C8.【答案】B9.【答案】D10.【答案】B11.【答案】B12.【答案】A13.【答案】214.【答案】(2,3)15.【答案】(8,-3)16.【答案】517.【答案】2或−218.【答案】−1 319.【答案】(4,6),(-4,6),(-4,-6)或(4,-6)20.【答案】(2,0)21.【答案】322.【答案】(0,-1)23.【答案】(674,1)24.【答案】(1)解:如图所示:A 1(3,3),B 1(4,−4),C 1(0,−1);(2)解:由勾股定理可得:AC =√32+42=5,BC =√32+42=5,AB =√12+72=5√2 ∴△ABC 的周长=10+5√2;(3)解:如图所示,作点C 关于x 轴的对称点D则:PB +PC =PB +PD ≥BD ,当B ,P ,D 在同一直线时,取得等号即:连接BD ,交x 轴于点P 即为所求,由题意知B(−4,−4),D(0,1)设直线BD 的解析式为y =kx +b ,则{−4k +b =−4b =1,解得:{k =54b =1∴y =54x +1 当y =0时0=54x +1,解得x =−45 ∴P(−45,0) 即:点P 坐标为(−45,0)时,PB +PC 的值最小. 25.【答案】解:△如图,利用点A 、B 的坐标建立平面直角坐标系;△如图,点C和△ABC为所作;△如图,作出点A、B、C关于y轴对称的点A1、B1、C1,顺次连接,则△A1B1C1为所求作的三角形;△25226.【答案】(1)解:根据题意,得2m+4=0解之,得m=−2∴点P的坐标为(0,−3).(2)解:根据题意,得2m+4=m−1或2m+4+m−1=0解之,得m=−5或m=−1∴2m+4=−6m−1=−6或2m+4=2m−1=−2∴点P的坐标为(−6,−6)或(2,−2).27.【答案】(1)解:∵点A在第四象限的角平分线上∴2a+3a−1=0解得:a=1 5;(2)解:∵点A在第三象限,且到两坐标轴的距离和为11∴点A到x轴距离为−(3a−1),到y轴的距离为:2a∴−2a+[−(3a−1)]=11解得:a=−2∴A(−4,−7).28.【答案】(1)解:∵点(2a +3,a −3)在第一、三象限的角平分线上 ∴2a +3=a −3解得a =−6;(2)解:依题意得4−a =3a +6或4−a =−(3a +6)解得a =−12或a =−5 ∴P(92,92)或P(9,9) 29.【答案】(1)(3,-15) (2)解:①∵点C(2,m),点B(1,−3) ∴点B 和点C 的k 系点D 的坐标为(2k −k ,mk +3k) 即D(k ,mk +3k) 又∵点D 在第二、四象限的角平分线上 ∴−k =mk +3k整理,可得(m +4)k =0 ∵k ≠0∴m +4=0解得m =−4;②由①可得,点C(2,−4),设点D(n ,−n) ∵CD ∥x 轴∴−n =−4,解得n =4 ∴点D(4,−4)∴CD =4−2=2,点B 到CD 的距离为−3−(−4)=1 ∴S △BCD =12×2×1=1.。

北师大版八年级数学上册《位置与坐标》单元测试卷及答案解析

北师大版八年级数学上册《位置与坐标》单元测试卷及答案解析

北师大版八年级数学上册《位置与坐标》单元测试卷一、选择题1、点A(﹣3,4)关于y轴对称的点坐标()A.(﹣3,﹣4)B.(3,﹣4 )C.(﹣3,4)D.(3,4)2、在平面直角坐标系xOy中,点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点P的坐标为()A.(3,﹣1) B.(﹣3,1) C.(1, ﹣3) D.(﹣1,3)3、在平面直角坐标系中,点P(-3,2)所在象限为 ( )A.第一象限B.第二象限C.第三象限D.第四象限4、如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(,1)C.(,)D.(1,)5、点P在x轴上,且到y轴的距离为5,则点P的坐标是()A.(5,0)B.(0,5)C.(5,0)或(-5,0)D.(0,5)或(0,-5)6、若点A(-2,n)在x轴上,则点B(n-1,n+1)的坐标为()A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)7、已知△ABC的边BC在x轴上,顶点A在y轴上,且B点坐标为(-6,0),C点坐标为(2,0),△ABC的面积为12,则A点坐标为( )A.(0,3) B.(0,-3) C.(0,3)或(0,-3) D.(0,)8、在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣2,1)B.(﹣2,2)C.(﹣1,1)D.(﹣1,2)9、在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1) B.(3,-3) C.(2,2) D.(-2,-1)10、如果平面直角坐标系中点A的坐标为(﹣2,3),那么点A关于y轴对称的坐标是()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(﹣2,3)二、填空题11、点P(-3, 4)关于y轴的对称点P′的坐标是_________________12、点在轴的下方,轴的右侧,距离轴3个单位长度,距离轴5个单位长度,则点的坐标为___________________.13、在平面直角坐标系中,点P(,+1)在轴上,那么点的值是_________.14、若点P(+6,3)在轴上,则点P的坐标为___________.15、点关于x轴对称的点的坐标是___________.16、若点M(3,a-2),N(b,a)关于原点对称,则a+b=______.17、在平面直角坐标系中,点A、B不重合,已知点A(x,2),B(-3,-5),若AB∥y 轴,则x=__________,线段AB长为_________.18、已知点P到x轴的距离是2,到y轴的距离是3,则点P的坐标为.19、已知:点P的坐标是(m,-1),且点P关于轴对称的点的坐标是(-3,2n),则m=________,n=___________。

新北师大版八年级数学上册单元测试卷附答案第三章 位置与坐标

新北师大版八年级数学上册单元测试卷附答案第三章 位置与坐标

第三章位置与坐标一、选择题(共16小题;共48分)1. 根据下列表述,能确定位置的是A. 红星电影院排B. 北京市四环路C. 北偏东D. 东经,北纬2. 若点与点关于轴对称,则A. ,B. ,C. ,D. ,3. 根据下列表述,能确定位置的是A. 国际影城排B. A 市南京路口C. 北偏东D. 东经,北纬4. 如图,在平面直角坐标系中,点的坐标为A. C. D.5. 在平面直角坐标系中,点关于轴的对称点的坐标是A. B. D.6. 由所有到已知点的距离大于或等于,并且小于或等于的点组成的图形的面积为A. B. C. D.7. 在平面直角坐标系中,若点坐标为,点坐标为,则三角形的面积为A. B. C. D.8. 将的三个顶点的横坐标乘以,纵坐标不变,则所得图形A. 与原图形关于轴对称B. 与原图形关于轴对称C. 与原图形关于原点对称D. 向轴的负方向平移了一个单位9. 如图,两个三角形的面积分别是和,对应阴影部分的面积分别是,则等于A. B. C. D. 无法确定10. 如果点在直线上,点的坐标是,点的坐标是,那么三角形的面积A. 等于B. 大于C. 小于D. 无法确定11. 正方形的边长为,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形内投一粒米,则米粒落在阴影部分的概率为D.12. 在直角坐标系中,将点向左平移个单位长度,再向下平移个单位长度后,得到的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限13. 在平面直角坐标系中,若点的坐标为,点的坐标为,则的面积为A. B. C. D.14. 如图,阴影部分的面积是A. B. C. D.15. 在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为万米.最近一次台风的中心位置是,其影响范围的半径是万米,则下列四个位置中受到了台风影响的是A. B. C. D.16. 将的各顶点的横坐标都乘以,则所得三角形与的关系A. 关于轴对称B. 关于轴对称C. 关于原点对称D. 将三角形向左平移了一个单位二、填空题(共7小题;共35分)17. 如果点在直线上,点的坐标是,点的坐标是,那么三角形的面积为.18. 如果用表示电影院的座位号是排号,那么表示;排号可表示为.19. 已知点在第二象限,且到轴的距离是,到轴的距离是,则点的坐标为.20. 如图是由边长为和的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.21. 在平面直角坐标系中,已知点在第二象限,则点关于直线(直线上各点的横坐标都是)对称的点的坐标是.22. 如图,在平面直角坐标系中,的顶点在轴的正半轴上,顶点的坐标为,点的坐标为,点为斜边上的一动点,则的最小值为.23. 的各顶点坐标为,,,则的面积为.三、解答题(共5小题;共67分)24. 如图,在中,,为上一点,且,过点作,垂足为,且,,交于点.(1)判断线段与的数量关系和位置关系,并说明理由.(2)连接,,若设,,,请利用四边形的面积证明勾股定理.25. 如图,是中国象棋棋盘的一部分,棋盘中“马”所在的位置用表示.(1)图中“象”的位置可表示为.(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角,“象”只能从“田”字的一角走到与它相对的另一角,请按此规则分别写出“马”和“象”下一步可能到达的位置.26. 已知在平面直角坐标系中有三点,,.请回答如下问题:(1)在坐标系内描出点,,的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.27. 如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为,点在第一象限内,点从原点出发,以每秒个单位的速度沿着的路线移动(即沿着长方形移动一周).(1)写出点的坐标.(2)当点移动了秒时,指出此时点的位置,并写出点的坐标.(3)在移动过程中,当点到轴距离为个单位长度时,求点移动的时间.28. 如图,,,点在轴上,且.(1)求点的坐标;(2)求的面积;(3)在轴上是否存在点,使以,,三点为顶点的三角形的面积为?若存在,请直接写出点的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. A5. A6. C7. D8. A9. B10. A11. A12. C13. D14. B 【解析】阴影部分面积为:.15. B16. B第二部分17.18. 排号,19.【解析】图形的总面积为,阴影部分面积为,小孔出现在阴影部分的概率是.21.23.第三部分24. (1),,理由如下,因为,所以,在和中,所以,所以,,又因为,所以,所以,即.(2),即.25. (1)(2)“马”下一步可能到达的位置:,,,,,;“象”下一步可能到达的位置:,,,.26. (1)描点如图,顺次连接点,,,由题意得,,且,.(2)如图,,.(3).27. (1).(2)点在中点处,坐标为.(3)当点在上时,则,(秒);当点在上时,则,(秒),综上所述,点移动的时间为秒或秒.28. (1)如图,点在点,点在点,所以,的坐标为或.(2)的面积.(3)设点到轴的距离为,则,解得,点在轴正半轴时,,点在轴负半轴时,,综上所述,点的坐标为或.。

北师大版八年级上《第三章位置与坐标》单元测试卷含答案解析

北师大版八年级上《第三章位置与坐标》单元测试卷含答案解析

八年级上学期(xuéqī) 第三章位置与坐标单元测试卷数学试卷考试(kǎoshì)时间:120分钟;满分:150分学校:___________姓名(xìngmíng):___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题(xiǎo tí),满分40分,每小题4分)1.(4分)在平面(píngmiàn)直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(4分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(4分)已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.2 B.﹣4 C.﹣1 D.34.(4分)如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13 D.55.(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4) C.(﹣4,﹣1) D.(﹣1,﹣4)6.(4分)已知点A(a,2022)与点A′(﹣2021,b)是关于(guānyú)原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.47.(4分)如图,△ABC的顶点都在正方形网格格(gēgē)点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一(dìyī)象限,则点C的对应点C′的坐标是()A.(3,1) B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)8.(4分)如图,在平面(píngmiàn)直角坐标系中,△ABC位于(wèiyú)第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)9.(4分)在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4) C.(﹣4,﹣4)D.(﹣4,4)10.(4分)雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)评卷人得分二.填空题(共4小题(xiǎo tí),满分20分,每小题5分)11.(5分)如图,在中国象棋的残局上建立(jiànlì)平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为.12.(5分)在平面直角坐标(zhí jiǎo zuò biāo)系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a﹣4,a+3),C为该直角坐标系内的一点(yī diǎn),连结AB,OC,若AB∥OC且AB=OC,则点C的坐标(zuòbiāo)为.13.(5分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.14.(5分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.评卷人得分三.解答题(共9小题(xiǎo tí),满分90分)15.(8分)在一次夏令营活动(huó dòng)中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标(zhí jiǎo zuò biāo)系并确定点C的位置;(2)若同学们打算从点B处直接(zhíjiē)赶往C处,请用方向角和距离描述点C相对于点B的位置.16.(8分)如图,在平面直角坐标系中,线段AB的两个(liǎnɡ ɡè)端点坐标分别为A(2,3),B(2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?17.(8分)在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标(zhí jiǎo zuò biāo)系,描出A、B、C三点,求出三角形ABC 的面积;(2)求出三角形ABO(若O是你所建立(jiànlì)的坐标系的原点)的面积.18.(8分)如图,在平面直角坐标(zhí jiǎo zuò biāo)系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积(miàn jī).19.(10分)在平面(píngmiàn)直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P (1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.20.(10分)对于平面(píngmiàn)直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中(qízhōng)k为常数,且k≠0),则称点P′为点P的“k属派生(pàishēng)点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生(pàishēng)点”P′的坐标为;(Ⅱ)若点P的“5属派生(pàishēng)点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.21.(12分)在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为(﹣m,a+1),F(﹣m,1),(2a>m >a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD 与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)22.(12分)在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B 的对应点为N,则点N的坐标为.(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.23.(14分)如图,在平面直用坐标系中,A(a,0),D(6,4),将线段AD平移(pínɡ yí)得到BC,使B(0.b),且a,b满足|a﹣2|+=0,延长(yáncháng)BC交x轴于点E.(1)填空(tiánkòng):点A(,),点B(,),∠DAE=;(2)求点C和点E的坐标(zuòbiāo);(3)设点P是x轴上的一动(yīdòng)点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.八年级上学期第三章位置(wèi zhi)与坐标单元测试卷参考答案与试题(shìtí)解析一.选择题(共10小题(xiǎo tí),满分40分,每小题4分)1.【分析(fēnxī)】根据各象限内点的坐标(zuòbiāo)特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.【解答】解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故选:C.【点评(diǎn pínɡ)】本题考查了坐标(zuòbiāo)与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.4.【分析(fēnxī)】先根据(gēnjù)A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【解答(jiědá)】解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB=.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【解答(jiědá)】解:∵点A(a,2022)与点A′(﹣2021,b)是关于(guānyú)原点O 的对称点,∴a=2021,b=﹣2022,∴a+b=1,故选:A.【点评(diǎn pínɡ)】此题主要(zhǔyào)考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.7.【分析(fēnxī)】根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:由A点坐标,得C(﹣3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.【点评】本题考查了坐标与图形变化﹣对称,关于y轴对称的点的坐标:横坐标互为相反数,纵坐标相等.8.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转(xuánzhuǎn)90°得到点P2,则点P2的坐标(zuòbiāo)是(4,﹣4),故选:A.【点评(diǎn pínɡ)】本题考查坐标与图形(túxíng)变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.10.【分析(fēnxī)】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.12.【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标(zuòbiāo)为(x,y),∵AB∥OC且AB=OC,∴点C的坐标(zuòbiāo)为(﹣4,3)或(4,﹣3).故答案(dá àn)为:(﹣4,3)或(4,﹣3).【点评(diǎn pínɡ)】本题考查了平行线的性质(xìngzhì)以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.13.【分析】直接利用平移的性质得出平移后点的坐标即可.【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).【点评】此题主要考查了平移变换,正确掌握平移规律是解题关键.14.【分析】过B 1作B 1C ⊥y 轴于C ,由把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,根据旋转的性质得到∠BOB 1=120°,OB 1=OB=3,解直角三角形即可得到结果.【解答】解:过B 1作B 1C ⊥y 轴于C ,∵把△ABO 绕点O 逆时针旋转(xuánzhuǎn)120°后得到△A 1B 1O ,∴∠BOB 1=120°,OB 1=OB=3,∵∠BOC=90°,∴∠COB 1=30°,∴B 1C=21OB 1=,OC=,∴B 1(﹣23,23). 故答案(dá àn)为:(﹣23,23).【点评(diǎn pínɡ)】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后(zhīhòu)要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标是解题的关键.三.解答(jiědá)题(共9小题,满分90分)15.【分析】(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;(2)利用所画图形,进而结合勾股定理得出答案.【解答】解:(1)根据A(﹣3,1),B(﹣2,﹣3)画出直角坐标系,描出点C(3,2),如图所示;(2)BC=5,所以点C在点B北偏东45°方向上,距离点B的52 km处.【点评(diǎn pínɡ)】此题主要考查了坐标确定位置以及勾股定理(ɡōu ɡǔ dìnɡ lǐ)等知识,得出原点的位置是解题关键.16.【分析(fēnxī)】(1)据关于(guānyú)y 轴对称的点的横坐标互为相反数确定出点C 、D 的位置,然后连接CD 即可;(2)线段(xiànduàn)CD 上所有点的横坐标都是﹣2;【解答】解:(1)如图线段CD ;(2)P (﹣2,y )(﹣1≤y ≤3).【点评】考查了关于x 轴、y 轴对称的点的坐标.关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P (x ,y )关于y 轴的对称点P′的坐标是(﹣x ,y ).17.【分析】(1)先描点,如图,然后根据点的坐标特征和三角形面积公式求解;(2)利用面积的和差计算三角形ABO 的面积.【解答】解:(1)如图,S △ABC =21×(3+1)(8﹣4)=8;(2)S △ABO =4×4﹣21×3×4﹣21×4×3﹣21×1×1 =.【点评(diǎn pínɡ)】本题(běntí)考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.18.【分析(fēnxī)】(1)补充成网格平面直角坐标系,然后确定出点B 、C 、D 的位置(wèi zhi),再与点A 顺次连接即可;(2)利用(lìyòng)四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)四边形ABCD 如图所示;(2)四边形的面积=9×7﹣21×2×7﹣21×2×5﹣21×2×7, =63﹣7﹣5﹣7,=63﹣19,=44.【点评(diǎn pínɡ)】本题考查了坐标与图形(túxíng)性质,三角形的面积,补充成网格平面直角坐标系更容易确定点的位置.19.【分析(fēnxī)】(1)根据(gēnjù)关联点的定义,结合点的坐标即可得出结论.(2)根据(gēnjù)关联点的定义和点M (m ﹣1,2m )的“﹣3级关联点”M′位于y 轴上,即可求出M′的坐标.(3)因为点C (﹣1,3),D (4,3),得到y=3,由点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,可得到方程组,解答即可.【解答】解:(1)∵点A (﹣2,6)的“21级关联点”是点A 1, ∴A 1(﹣2×21+6,﹣2+21×6), 即A 1(5,1).设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴解得∴B (1,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N(x,y)和它的“n级关联(guānlián)点”N′都位于线段CD上,∴N′(nx+y,x+ny),【点评(diǎn pínɡ)】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键(guānjiàn)是理解题意,灵活运用所学知识解决问题.20.【分析(fēnxī)】(Ⅰ)根据(gēnjù)“k属派生点”计算可得;(Ⅱ)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(Ⅲ)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【解答】解:(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P(x,y),依题意,得方程组:,解得,∴点P(﹣2,1).(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标(zuòbiāo)为(a,0),点P′的坐标为(a,ka),∴线段(xiànduàn)PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线段(xiànduàn)OP的长为a,根据(gēnjù)题意,有|PP'|=2|OP|,∴|ka|=2a,∵a>0,∴|k|=2.从而(cóng ér)k=±2.【点评】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.21.【分析】(1)先根据EF与CD关于y轴对称,得到EF两端点坐标,再设CD与直线l之间的距离为x,根据CD与MN关于直线l对称,l与y轴之间的距离为a,求得M的横坐标即可;(2)先判定△ABO≌△MFE,得出△ABO与△MFE通过平移能重合,再根据对应点的位置,写出平移方案即可.【解答】解:(1)∵EF与CD关于y轴对称,EF两端点坐标为(﹣m,a+1),F (﹣m,1),∴C(m,a+1),D(m,1),设CD与直线l之间的距离为x,∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a﹣x,∵x=m﹣a,∴M的横坐标为a﹣(m﹣a)=2a﹣m,∴M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合(chónghé).∵EM=2a﹣m﹣(﹣m)=2a=OA,EF=a+1﹣1=a=OB又∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移(pínɡ yí)能重合.平移(pínɡ yí)方案:将△ABO向上(xiàngshàng)平移(a+1)个单位后,再向左平移(pínɡ yí)m个单位,即可重合.【点评】本题主要考查了坐标与图形变化,解题时注意:关于y轴对称的两点,纵坐标相等,横坐标互为相反数;向上平移时,纵坐标增加,向左平移时,横坐标减小.22.【分析】(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得.【解答】解:(1)由点M(3,﹣2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).(2)如图,描出点N并画出四边形BCMN,S=21×4×5+21×6×1+21×1×2+2×1+21×3×4 =10+3+1+2+6=22.【点评(diǎn pínɡ)】本题(běntí)主要考查坐标与图形的变化﹣平移,用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.23.【分析(fēnxī)】(1)根据非负数(fùshù)的性质求出A 、B 两点的坐标,根据tan ∠DAE=1,得出(dé chū)∠DAE=45°;(2)利用平移的性质求出C 点坐标,根据待定系数法求出直线BC 的解析式,进而得到点E 的坐标;(3)分两种情况讨论求解即可解决问题.【解答】解:(1)∵a ,b 满足|a ﹣2|+5 b =0,∴a ﹣2=0,b +5=0,∴a=2,b=﹣5,∴A (2,0),B (0,﹣5);∵tan∠DAE==1,∴∠DAE=45°,故答案为2,0,0,﹣5,45°;(2)∵AD∥BC,AD=BC,∴点B向右平移(pínɡ yí)4个单位向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).∴直线(zhíxiàn)BC的解析式为y=x﹣5,∴E(5,0).(3)①当点P在点A的左侧(zuǒ cè)时,如图1,连接PC.∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;②当P在直线BC与x轴交点(jiāodiǎn)的右侧时,如图2,连接PC.∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.【点评(diǎn pínɡ)】本题考查了坐标与图形变化﹣平移,平移的性质,非负数的性质,三角形的外角的性质等知识,正确的画出图形是解题的关键.内容总结(1)八年级上学期第三章位置与坐标单元测试卷数学试卷考试时间:120分钟(2)(2)△ABO与△MFE通过平移能重合吗。

北师大版八年级上册数学第三章位置与坐标单元测试(含答案)

北师大版八年级上册数学第三章位置与坐标单元测试(含答案)

八年级上册数学第三章单元测试一、选择题(每题3分,共30分)1.下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°2.下列各点中,在第二象限的点是()A.(2,4) B.(2,-4)C.(-2,4) D.(-2,-4)3.在平面直角坐标系中,点P(x2+2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系xOy中,点A(-3,4)关于y轴对称的点的坐标是() A.(3,-4) B.(-3,-4)C.(-3,4) D.(3,4)5.如图所示的象棋盘上,若“帅”位于点(-1,-2),“马”位于点(3,-2),则位于原点位置的是()A.兵B.炮C.相D.车6.在平面直角坐标系中,点(-9,2)关于x轴对称的点的坐标是() A.(9,2) B.(-9,-2)C.(-2,-9) D.(2,-9)7.在平面直角坐标系中,过A点向x轴作垂线段,垂足为M,向y轴作垂线段,垂足为N,垂足M在x轴上的坐标为-3,垂足N在y轴上的坐标是4,则下列说法不正确的是()A.A点横坐标为-3 B.A点纵坐标为4C.A点坐标为(-3,4) D.A点在第四象限8.已知点A(m,n)在第一象限,那么点B(-n,-m)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点A(1,3),B(-2,3),则A,B两点间的距离是()A.4个单位长度B.3个单位长度C.2个单位长度D.1个单位长度10.五子棋深受广大小朋友的喜爱,它的规则如下:在正方形棋盘中,由黑方先行,轮流摆子,在任意方向(横向、竖向或斜向)上先连成五枚棋子者获胜,下图是小明和小亮的部分对弈图,若黑色棋子A的坐标为(3,1),白色棋子B 的坐标为(2,2),则黑色棋子C的坐标为()A.(4,-1) B.(-1,-4)C.(-1,4) D.(-4,1)二、填空题(每题3分,共15分)11.如果用(9,2)表示九年级2班,那么八年级4班可表示成________.12.点(-5,3)到y轴的距离是________.13.在平面直角坐标系中,点A(-2,1),B(2,4),C(x,y),BC∥y轴,当线段AC最短时,则此时点C的坐标为________.14.在平面直角坐标系中,点P(a-1,2a+1)在x轴上,则a的值是________.15.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A 的坐标是(-2,0),B的坐标是(1.5,-2),则点D的坐标是________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.已知点P的坐标为(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过点A(2,-3),且与x轴平行的直线上.17.如图,已知等腰三角形ABC的腰长AB为5,底边BC的长为6,试建立适当的平面直角坐标系来表示等腰三角形ABC各顶点的坐标.18.下图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一会儿后回到家里,用线段顺次连接李明家和他在路上经过的地点,你能得到什么图形?19.如图,在平面直角坐标系中,△ABC的位置如图所示(每个方格的边长均为1个单位长度).(1)写出图中A,B,C三点的坐标;(2)若△ABC各顶点的纵坐标不变,横坐标都乘-1,请在同一平面直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC与△A′B′C′有怎样的位置关系?20.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)21.在平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+”是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.(1)求点A(-2,4),B(2+3,2-3)的勾股值[A],[B];(2)若点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.22.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2=0和(c-4)2≤0;(1)求a,b,c的值;(2)如果在第二象限内有一点P(m,13),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等,若存在,求出点P的坐标;若不存在,请说明理由.23.问题情境:在平面直角坐标系xOy中有不重合的两点,A(x1,y1)和B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1-y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1-x2|.应用:(1)如果点A(-1,1)、B(2,1),那么AB∥x轴,AB的长度为________.(2)如果点C(1,0),且CD∥y轴,且CD=2,那么点D的坐标为________.拓展:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1-x2|+|y1-y2|.例如:图1中,点M(-1,1)与点N(1,-2)之间的折线距离为d(M,N)=|-1-1|+|1-(-2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(-1,-2),则d(E,F)=________;(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=________.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=________.答案一、1. C 2. C 3. D 4. D 5. B 6. B7. D8. C9. B10. C二、11. (8,4)12. 513. (2,1)14. -1 215. (0,3.5)三、16. 解:(1)因为点P的纵坐标比横坐标大3,所以a-1-(2a+3)=3,解得a=-7,所以2a+3=-11,a-1=-8,所以点P的坐标为(-11,-8).(2)因为点P在过点A(2,-3),且与x轴平行的直线上,所以a-1=-3,解得a=-2,所以2a+3=-1,所以点P的坐标为(-1,-3).17. 解:如图,以B点为原点,BC边所在直线为x轴,过点B且垂直于BC边的直线为y轴建立平面直角坐标系,过点A作AD⊥BC于点D,因为等腰三角形ABC的底边BC的长为6,AD⊥BC,所以BD=DC=3,∠ADB=90°,又因为AB=5,所以AD=25-9=4,所以A点坐标为(3,4),C点坐标为(6,0),B点坐标为(0,0).(答案不唯一)18. 解:(1)建立平面直角坐标系如图1:学校的坐标为(1,3);邮局的坐标为(0,-1).(2)如图2,用线段顺次连接李明家和他在路上经过的地点,得到的图形是帆船.19. 解:(1)A 点坐标为(3,3),B 点坐标为(1,1),C 点坐标为(4,2).(2)如图.△ABC 和△A ′B ′C ′的位置关系是关于y 轴对称.20. 解:(1)A (-2,1),B (-3,-2),C (3,-2),D (1,2).(2)S 四边形ABCD =3×3+2×12×1×3+12×2×4=16. 21. 解:(1)因为点A (-2,4),B (2+3,2-3),所以[A ]=|-2|+|4|=2+4=6,[B ]=|2+3|+|2-3|=2+3+3-2=2 3.(2)点M 的坐标为(-1,2)或(1,2)或(-2,1)或(2,1)或(0,3).22. 解:(1)由已知|a -2|+(b -3)2=0,(c -4)2≤0可得a -2=0,b -3=0,c -4=0,解得a =2,b =3,c =4.(2)因为a =2,b =3,c =4,所以A (0,2),B (3,0),C (3,4),所以OA=2,OB=3,因为S△ABO=12×2×3=3,S△APO=12×2×(-m)=-m,所以S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m.(3)存在,若S四边形ABOP =S△ABC,则3-m=12×4×3=6,解得m=-3,所以存在点P(-3,13),使得S四边形ABOP=S△ABC.23. 解:应用:(1)3(2)(1,2)或(1,-2)拓展:(1)5(2)2或-2(3)4或8。

第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

第三章位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图所示,点A的坐标是 ( )A.(3,2)B.(3,3)C.(3,-3)D.(-3,-3)2、若点A(2,n)在x轴上,则点B(n+2,n-5)在().A.第一象限B.第二象限C.第三象限D.第四象限3、在平面直角坐标系中,以点O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,则这个平行四边形的第四个顶点坐标不可能是()A.(2,﹣1)B.(﹣2,1)C.(﹣3,1)D.(4,1)4、如图,若在象棋盘上建立直角坐标系,使“将”位于点(0,﹣1),“象”位于(2,﹣1),则“炮”位于点()A.(﹣3,2)B.(﹣4,3)C.(﹣3,0)D.(1,﹣1)5、如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)6、如图,在平面直角坐标系中,点A在第一象限,⊙A与轴相切于B,与轴交于C(0,1),D(0,4)两点,则点A的坐标是()A. B. C. D.7、如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(4,3)C.(3,4)D.(5,3)8、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A. B. C. D.29、在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是()A.(﹣2,3)B.(﹣1,2)C.(0,4)D.(4,4)10、如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2019与点A2020之间的距离是()A.2021B.2020C.2019D.201811、如图,已知A(1,3),将线段OA绕原点O顺时针旋转90°后得到OA′,则OA′的长度是()A. B.3 C.2 D.112、如图,在3×3的正方形网格中有4个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.则原点是()A.点AB.点BC.点CD.点D13、若x轴上的点p到y轴的距离为5,则点的坐标为()A.(5,0)B.(5,0)(-5,0)C.(0,5)D.(0,5)或(0,-5)14、已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5)C.(2,1)D.(2,﹣1)15、如图所示,矩形的两边、分别在x轴、y轴上,点C与原点重合,点A的坐标为(-1,2),将矩形沿x轴向右翻滚,经过第1次翻滚点A对应点记为,经过第2次翻滚点对应点记为……依此类推,经过第5次翻滚后点A对应点记为的坐标为( )A.(5,2)B.(6,0)C.(8,1)D.(8,0)二、填空题(共10题,共计30分)16、已知点P(﹣2,3),Q(n,3)且PQ=6,则n=________.17、若点与关于原点对称,则________.18、若点P(m+3,m+1)在x轴上,则点P的坐标为________.19、在平面直角坐标系中,菱形的对角线交于原点,点的坐标为,点的坐标为,则点的坐标为________.20、如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P 是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:①线段MN的长始终为1;②△PAB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是________.21、如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为________.22、若点在轴上;则________.23、如图,在直角坐标系中,点、点、,则外接圆的半径为________.24、在平面直角坐标系中,已知点M(m-1,2m+3)在y轴上,则m=________.25、如图,在坐标平面内A(1,1),正方形CDEF的DE边在x轴上,C,F分别在OA和AB边上,连接OF,若△OEF和以E,F,B为顶点的三角形相似,则B点坐标为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测题(含答案解析)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测题(含答案解析)

一、选择题1.点()1,2-关于y 轴对称的点的坐标是( ) A .()1,2-B .()2,1-C .()1,2--D .()1,22.已知点Q 的坐标为()2,27a a -+-,且点Q 到两坐标轴的距离相等,则点Q 的坐标是( ) A .()3,3 B .()3,3- C .()1,1-D .()3,3或()1,1-3.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .()2021,3B .()2021,3-C .20213,2⎛⎫⎪⎪⎝⎭D .20213,2⎛⎫-⎪⎪⎝⎭4.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2)C .(3,1)D .(0,4)5.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上 6.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 7.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)8.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7 B .1- C .1-或7 D .7-或1 9.平面直角坐标系中,P (-2a -6,a -5)在第三象限,则a 的取值范围是( ) A .a >5B .a <-3C .-3≤a ≤5D .-3<a <510.如图,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,,则点2020A 的坐标为( )A .(505,505)B .(506,505)-C .(505,505)--D .(505,505)-11.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2020秒时,点所在位的坐标是( )A .(64,44)B .(45,5)C .(44,5)D .(44,4)12.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3) B .(-2,-2) C .(3,-1)D .(2,4)二、填空题13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (a ,0)是x 轴正半轴上的点,若△AOB 内部(不包括边界)的整点个数为6,则 a 的取值范围是_____.14.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)15.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.16.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.17.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.18.已知点P 在第四象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是______.19.在平面直角坐标系中,已知点(,0)A a 和点(0,4)B ,且直线AB 与坐标轴围成的三角形的面积等于12,则a 的值是________. 20.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.三、解答题21.△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上. (1)作出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)在y 轴上作点D ,使得AD +BD 最小,并求出最小值.22.如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 顶点都在网格线的交点上,点B 坐标为(﹣3,0),点C 坐标为(﹣2,﹣2); (1)根据上述条件,在网格中建立平面直角坐标系xOy ; (2)画出△ABC 分别关于x 轴的对称图形△A 1B 1C 1; (3)写出点A 关于y 轴对称点的坐标.23.已知在平面直角坐标系中(1)画出△ABC 关于x 轴成轴对称图形的三角形A ′B ′C ′; (2)写出A ′,B ′,C ′的坐标.24.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______) (2)在图中作出ABC 关于y 轴对称的图形222A B C △. (3)求ABC 的面积.25.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.26.如图,在平面直角坐标系中,A (-2,4),B (-3,1),C (1,-2). (1)在图中作出△ABC 关于y 轴的对称图形△A′B′C′; (2)写出点A′、B′、C′的坐标; (3)连接OB 、OB′,请直接回答: ①△OAB 的面积是多少?②△OBC 与△OB′C′这两个图形是否成轴对称.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据关于y 轴对称的点的坐标的变化特征求解即可. 【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2), 故选:C . 【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.2.D解析:D 【分析】根据点Q 到两坐标轴的距离相等列出方程,然后求解得到a 的值,再求解即可. 【详解】解:∵点Q 到两坐标轴的距离相等, ∴|-2+a|=|2a-7|, ∴-2+a =2a-7或-2+a =-2a+7, 解得a=5或a=3,当a=5时,-2+a =-2+5=3, 2a-7=2×5-7=3; 当a=3时,-2+a =-2+3=1, 2a-7=2×3-7=-1; 所以,点Q 的坐标为()3,3或()1,1-. 故选D . 【点睛】本题考查了点坐标,掌握坐标到坐标轴的距离的表示方法,以及掌握各象限内点的坐标特征是解题的关键.3.C解析:C 【分析】设第n 秒运动到Pn (n 为自然数)点,根据点P 的运动规律找出部分Pn 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论. 【详解】解:设第n 秒运动到Pn (n 为自然数)点,观察,发现规律:112P ⎛ ⎝⎭,()210P , ,332P ⎛ ⎝⎭ ,()42,0P ,552P ⎛ ⎝⎭ ,…,∴412n n P +⎛ ⎝⎭ ,42,02n n P +⎛⎫⎪⎝⎭ ,432n n P +⎛ ⎝⎭,44,02n n P +⎛⎫⎪⎝⎭,∵2021=4×505+1,∴2021P 为20212⎛ ⎝⎭. 故选:C . 【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律.4.B解析:B 【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果. 【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505, 所以是一个循环的最后一个坐标, 故A 2020(0,-2), 故选:B 【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.5.B解析:B 【分析】根据点的坐标特点判断即可. 【详解】在平面直角坐标系中,点P (-5,0)在x 轴上, 故选B . 【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.6.D解析:D 【分析】由点M 、N 的坐标得出点M 、N 的纵坐标相等,据此知直线MN ∥x 轴,继而得出直线MN ⊥y 轴,从而得出答案. 【详解】解:∵点M (12,-5)、N (-7,-5), ∴点M 、N 的纵坐标相等, ∴直线MN ∥x 轴, 则直线MN ⊥y 轴, 故选:D . 【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y 轴的直线上是解题的关键.7.C解析:C 【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可. 【详解】 解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A .故选C . 【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.8.C解析:C 【分析】根据点M (2,3)与点N (2,y )之间的距离是4,可得|y−3|=4,从而可以求得y 的值. 【详解】∵点M (2,3)与点N (2,y )之间的距离是4, ∴|y−3|=4,∴y−3=4或y−3=−4, 解得y =7或y =−1. 故选:C . 【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.9.D解析:D 【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a 的取值范围即可. 【详解】∵点P 在第三象限, ∴26050a a --<⎧⎨-<⎩,解得:-3<a<5, 故选D. 【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a 的取值范围.10.C解析:C 【分析】由2020A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2020A 在第三象限,根据推导可得出结论; 【详解】 由题可知,第一象限的点:2A ,6A …角标除以4余数为2; 第二象限的点:3A ,7A ,…角标除以4余数为3; 第三象限的点:4A ,8A ,…角标除以4余数为0; 第四象限的点:5A ,9A ,…角标除以4余数为1; 由上规律可知:20204=505÷, ∴点2020A 在第三象限, 又∵4(1,1)A --,8(2,2)--A , ∴()2020-505,-505A .即点2020A 的坐标为()-505,-505.故答案选C.【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.11.D解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2020=452﹣5=2025﹣5,∴第2025秒时,动点在(45,0),故第2020秒时,动点在(45,0)向左一个单位,再向上4个单位,即(44,4)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.12.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.【详解】∵A1的坐标为(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题13.4<a<【分析】通过实验法当a=4时得到直线y=-x+4此时三角形内部有3个格点当直线经过(41)时三角形内部有6个格点此时是a的临界值求出这个值即可【详解】画图如下当直线y=-x+4时三角形内部有解析:4<a<16 3.【分析】通过实验法,当a=4时,得到直线y= -x+4,此时三角形内部有3个格点,当直线经过(4,1)时,三角形内部有6个格点,此时是a的临界值,求出这个值即可.【详解】画图如下,当直线y=-x+4时,三角形内部有3个格点,直线有3个格点,令y=0,得x=4,因此当a>4时,满足了形内有6个格点;当直线经过(4,1)时,三角形内部有6个格点,此时直线为y=34-x +4,令y=0,得x=163,因此当a<163时,满足了形内有6个格点;所以a满足的条件是4< a<16 3.故应填4< a<16 3.【点睛】本题考查了坐标系中的格点问题,学会利用数形结合思想,通过画图的方式,判断满足条件的直线的界点位置是解题的关键.14.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.15.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.16.(65)【分析】通过新数组确定正整数n 的位置An=(ab)表示正整数n 为第a 组第b 个数(从左往右数)所有正整数从小到大排列第n 个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n 的位置,A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),所有正整数从小到大排列第n 个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n ,而1+2+3+4+…+(a -1)<n ,能确第a 组a 个数从哪一个是开起,直到第b 个数(从左往右数)表示正整数nA 7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P 7=(4,1),理解规律A 20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A 20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A 20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a ,b )的含义,会用新数组来确定正整数n 的位置.17.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.18.【分析】根据各象限内点的坐标特征解答即可【详解】解:因为点P 在第四象限且点P 到x 轴的距离是2到y 轴的距离是3所以点P 的坐标为(3-2)故答案为:(3-2)【点睛】本题考查了各象限内点的坐标的符号特征解析:()3,2-【分析】根据各象限内点的坐标特征解答即可.【详解】解:因为点P在第四象限,且点P到x轴的距离是2,到y轴的距离是3,所以点P的坐标为(3,-2),故答案为:(3,-2).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).19.【分析】由点AB的坐标可得出OAOB的长结合△OAB的面积为12即可得出关于a的含绝对值符号的一元一次方程解之即可得出结论【详解】解:∵点A的坐标为(a0)点B的坐标为(04)∴OA=|a|OB=4±解析:6【分析】由点A,B的坐标可得出OA,OB的长,结合△OAB的面积为12,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:∵点A的坐标为(a,0),点B的坐标为(0,4),∴OA=|a|,OB=4.又∵S△OAB=12,∴1×4×|a|=12,2±.解得:a=6±.故答案为:6【点睛】本题考查了坐标与图形性质、三角形的面积以及解含绝对值符号的一元一次方程,利用三角形的面积公式,找出关于a的含绝对值符号的一元一次方程是解题的关键.20.【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x轴对称点的坐标准确计算是解题的关键5,3解析:()【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】5,3-,∵点A的坐标为()∴关于x轴的对称点为点B()5,3;5,3.故答案是()【点睛】本题主要考查了关于x轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)见解析;(2,﹣4);(2)见解析,AD+BD最小值是32【分析】(1)根据题意和图形,可以画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)根据轴对称和两点之间线段,可以得到使得AD+BD最小时点D所在的位置,然后利用勾股定理求出AD+BD的最小值即可.【详解】解:(1)如右图所示,点1A的坐标是(2,﹣4);(2)作点B关于y轴的对称点B′,连接AB′与y轴交于点D,则此时AD+BD最小,∵AB′=22+=,3332∴AD+BD最小值是32.【点睛】本题主要考查了平面直角坐标系中的图形变换,准确分析计算是解题的关键.22.(1)见解析;(2)见解析;(3)(5,4)【分析】(1)根据B,C两点坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系;(2)分别作出A,B,C的对应点A1,B1,C1,再依次连接即可得出图形;(3)根据轴对称与坐标变换的性质,由点A的坐标即可得出结果.【详解】解:(1)如图,平面直角坐标系即为所求作.(2)如图,△A1B1C1;即为所求作.(3)∵点A的坐标为(-5,4),∴点A关于y轴对称点的坐标(5,4).【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴对称与坐标变换之间的规律.23.(1)作图见解析,(2)A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A′,B′,C′的坐标.【详解】解:(1)所画图形如下所示,其中△A′B′C′即为所求;(2)A′、B′、C′的坐标分别为:A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点.24.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A (3,3),B (1,1),C (4,−1).∴点A 关于x 轴的对称点A 1(3,−3),B 关于x 轴的对称点B 1(1,−1),C 关于x 轴的对称点C 1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC 的面积为:3×4−12×2×2−12×2×3−12×1×4=5. 【点睛】 本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.25.(1)(0,2);(2)(-1,-1);(3)BG=2AE ,理由见详解【分析】(1)先证明Rt∆ADC ≅Rt∆COB ,结合条件,即可得到答案; (2)先证明∆ADC ≅∆COB ,结合点B ,C 的坐标,求出AD ,OD 的长,即可得到答案; (3)先证明∆BGC ≅∆AFC ,再证明∆ABE ≅∆FBE ,进而即可得到答案. 【详解】(1)∵点C 的坐标是()1,0-,点A 的坐标是()3,1-,∴AD=OC ,又∵AC=BC ,∴Rt∆ADC ≅ Rt∆COB (HL ),∴OB=CD=2,∴点B 的坐标是(0,2);(2)∵AD ⊥x 轴,∴∠DAC+∠ACD=90°,又∵∠OCB+∠ACD=90°,∴∠DAC=∠OCB ,又∵∠ADC=∠COB=90°,AC=BC ,∴∆ADC ≅ ∆COB (AAS ),∵点C 的坐标是()1,0∴AD=OC=1,∵点B 的坐标是(0,2),∴CD=OB=2,∴OD=2-1=1,∴点A 的坐标是(-1,-1);(3)BG=2AE ,理由如下:∵ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =,AE y ⊥轴,∴∠BCA=∠ACF=90°,∠AEG=90°,∴∠GBC+∠BGC=90°,∠GAE+∠AGE=90°,又∵∠BGC=∠AGE ,∴∠GBC=∠FAC ,在∆BGC 和 ∆AFC 中,∵∠GBC=∠FAC ,BC AC =, ∠GBC=∠FAC ,∴∆BGC ≅∆AFC (ASA ),∴BG=AF ,∵BE ⊥AF ,y 轴恰好平分ABC ∠,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,BE=BE ,∴∆ABE ≅∆FBE ,∴AE=FE ,∴AF=2AE∴BG=2AE .【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握“一线三垂直”模型,是解题的关键.26.(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC 与△OB′C′这两个图形关于y 轴成轴对称.【分析】(1)先确定A 、B 、C 关于y 轴的对称点A′、B′、C′,然后再顺次连接即可;(2)直接根据图形读出A′、B′、C′的坐标即可;(3)①运用△OAB 所在的矩形面积减去三个三角形的面积即可;②根据图形看△OBC 与△OB′C′是否有对称轴即可解答.【详解】解:(1)如图;△A′B′C′即为所求;(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面积为:4×3-12×3×1-12×4×2-12×3×1=5;②∵△OBC与△OB′C′这两个图形关于y轴成轴对称∴△OBC与△OB′C′这两个图形关于y轴成轴对称.【点睛】本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.。

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试(答案解析)

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试(答案解析)

一、选择题1.若点Р位于平面直角坐标系第四象限,且点Р到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为( )A .()1,2-B .()1,2-C .()2,1-D .()2,1-2.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m < 3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0 D .2021- 4.若点(0,2)A -与点B 关于x 轴对称,则点B 的坐标为( )A .(0,2)-B .(2,0)C .(0,2)D .(2,0)- 5.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 6.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( )A .()2,1-B .()2,1-C .()2,1--D .()2,17.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 8.平面直角坐标系中,P (-2a -6,a -5)在第三象限,则a 的取值范围是( ) A .a >5B .a <-3C .-3≤a ≤5D .-3<a <59.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1)10.如图,在48 的长方形网格OABC 中,动点(0,3)P 从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3)11.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( ) A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.点P 的坐标是(1,4),它关于y 轴的对称点坐标是_____________.14.若点(3+m ,a -2)关于y 轴对称点的坐标是(3,2),则m +a 的值为______.15.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 16.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.已知点(,)P m n 在y 轴的左侧,(,)P m n 到x 轴的距离是5,到y 轴的距离是3,则Р点坐标是________________.19.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________. 20.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.三、解答题21.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为A (1,3),B (2,1),C (5,1).(1)直接写出点B 关于x 轴对称的对称点1B 的坐标为______,直接写出点B 关于y 轴对称的对称点2B 的坐标为_____,直接写出12AB B 的面积为_______; (2)在y 轴上找一点P 使1PA PB +最小,则点P 坐标为_______;说明理由. 22.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于y 轴对称的△A 1B 1C 1; (3)写出点B 1的坐标; (4)求△ABC 的面积.23.在如图所示的平面直角坐标系中,描出点A(3,2)和点B (-1,4).(1)求点A (3,2)关于x 轴的对称点C 的坐标; (2)计算线段BC 的长度.24.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标. 25.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标26.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,ABC 的三个顶点都在格点上.(1)AB =______;AC =______;BC =______. (2)画出ABC 关于EF 成轴对称的111A B C △;(3)在直线MN 上找一点P ,使PAB △的周长最小,请用画图的方法确定点P 的位置,并直接写出PAB △周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】可先判断出点的坐标的符号,再跟据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到具体坐标即可.【详解】】解:∵P 到x 轴的距离为1,到y 轴的距离为2, ∴P 纵坐标可能为±1,横坐标可能为±2, ∵点M 在第四象限, ∴P 坐标为(2,-1). 故选:D . 【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.2.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32, 解不等式②,得:m >0,∴不等式组的解集为m >32, 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.C解析:C 【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得答案. 【详解】解:点A 与点B 关于x 轴对称,点A 的坐标为(0,-2),则点B 的坐标是(0,2). 故选:C . 【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.5.B解析:B 【分析】直接利用关于y 轴对称点的性质得出答案. 【详解】解:∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m=-3,n=2. 故选:B . 【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.D解析:D 【分析】直接利用关于y 轴对称点的特点得出答案. 【详解】点P (﹣2,1)关于y 轴对称点P 的坐标是:(2,1). 故选D . 【点睛】此题主要考查了关于y 轴对称点的特点,正确记忆横纵坐标的符号是解题关键.7.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.8.D解析:D 【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a 的取值范围即可. 【详解】∵点P 在第三象限, ∴26050a a --<⎧⎨-<⎩,解得:-3<a<5, 故选D. 【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a 的取值范围.9.B解析:B 【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0) 【详解】由题意知:AB=2,BC=4,CD=2,DA=4, ∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位), 2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD 和x 轴的正半轴的交点上, ∴其坐标为(1,0). 故选:B . 【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.10.B解析:B 【分析】根据入射角与反射角的定义作出图形,可知每6次反弹为一个循环组,依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),÷=,∵202063364∴当点P第2020次碰到矩形的边时的坐标与点P第4次反弹碰到矩形的边时的坐标相同,∴点P的坐标为(5,0),故选:B.【点睛】此题考查了直角坐标系中点的坐标的表示方法,动点的运动规律,正确理解题中点的运动变化规律得到点的坐标的规律是解题的关键.11.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P(-2,0)不在任何象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点的坐标是∴点P 关于y 轴的点是;故答案是【点睛】本题主要考查了关于对称轴对称点的应用准确计算是解题的关键 解析:()1,4-【分析】根据关于y 轴对称的点的特征即可得解; 【详解】∵点P 的坐标是(1,4), ∴点P 关于y 轴的点是()1,4-; 故答案是()1,4-. 【点睛】本题主要考查了关于对称轴对称点的应用,准确计算是解题的关键.14.【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数纵坐标不变可得再解即可【详解】∵点()关于y 轴对称点的坐标是(32)∴解得:∴故答案为:【点睛】本题主要考查了关于y 轴的对称点的坐标特点关键是 解析:2-【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得33m +=-,22a -=,再解即可. 【详解】∵点(3m +,2a -)关于y 轴对称点的坐标是(3,2), ∴33m +=-,22a -=,解得:6m =-,4a =,∴2m a +=-,故答案为:2-.【点睛】本题主要考查了关于y 轴的对称点的坐标特点,关键是掌握点的坐标的变化规律. 15.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9,∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.16.-8【分析】根据关于x 轴对称的点的横坐标相等纵坐标互为相反数关于y 轴对称的点的纵坐标相等横坐标互为相反数得出ab 的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数,得出a 、b 的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x 轴对称的点的坐标,熟记对称特征:关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数是解题关键. 17.7或﹣4【分析】根据题意可以求得a 的值然后再对t 进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t >2时h=t ﹣1则3(t ﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a=1﹣(﹣2)=3,当t>2时,h=t﹣1,则3(t﹣1)=18,解得,t=7;当1≤t≤2时,h=2﹣1=1≠6,故此种情况不符合题意;当t<1时,h=2﹣t,则3(2﹣t)=18,解得t=﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.18.(-35)或(-3-5)【分析】根据点到x轴的距离等于纵坐标的长度到y轴的距离等于横坐标的长度解答【详解】∵点P(mn)在y轴的左侧∴m<0∵到x轴的距离是5∴点P的纵坐标为±5∵到y轴的距离是3∴解析:(-3,5)或(-3,-5)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵点P(m,n)在y轴的左侧,∴m<0,∵到x轴的距离是5,∴点P的纵坐标为±5,∵到y轴的距离是3,∴点P的横坐标是-3,∴点P的坐标为:(-3,5)或(-3,-5),故答案为:(-3,5)或(-3,-5).【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度也很重要.19.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P 在第四象限且点P 到x 轴和y 轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P 的坐标为故答案为【点睛】此题考查点 解析:(8,6)-【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P 在第四象限,且点P 到x 轴和y 轴的距离分别为6、8,∴点P 的横坐标是8,纵坐标是-6,即点P 的坐标为(8,6)-.故答案为(8,6)-.【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.20.【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x 轴对称点的坐标准确计算是解题的关键解析:()5,3【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点A 的坐标为()5,3-,∴关于x 轴的对称点为点B ()5,3;故答案是()5,3.【点睛】本题主要考查了关于x 轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)(2,1)-,(2,1)-,7;(2)50,3⎛⎫ ⎪⎝⎭;理由见解析.【分析】(1)根据关于x 轴、y 轴对称的点的坐标特征即可得到B 1、B 2坐标,利用分割法即可求得△AB 1B 2面积;(2)根据轴对称的性质得到B 3(﹣2,﹣1),求得直线B 3A 解析式继而令0x =时即可求解.【详解】(1)(2,1)B 关于x 轴对称点B ,1B ∴坐标为(2,1)-(2,1)B 关于y 轴对称点2B2B ∴坐标为(2,1)-∴S △AB 1B 2面积=11144231424222⨯-⨯⨯-⨯⨯-⨯⨯ 16324=---7=故12AB B 的面积为7,(2)点P 坐标为50,3⎛⎫ ⎪⎝⎭,理由如下:∵B 1(2,﹣1)关于y 轴对称点B 3(﹣2,﹣1),连接B 3A 交于y 轴于P 则P 为所求,设直线B 3A 表达式为(0)y kx b k =+≠,把B 3(﹣2,﹣1),A (1,3)代入得123k b k b -=-+⎧⎨=+⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩4533y x ∴=+ 当0x =时53y =50,3P ⎛⎫∴ ⎪⎝⎭【点睛】本题考查轴对称有关知识,解题的关键是熟练掌握关于x 轴、y 轴对称的点的坐标特征及轴对称的性质.22.(1)答案见解析;(2)答案见解析;(3)B 1(2,1);(4)4(1)根据点C的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A1、B1、C1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B1的坐标为B1(2,1);(4)△ABC的面积=111 341223244 222.【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可. 23.点A和点B的位置如图,见解析;(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=13【分析】先根据已知描出点A和点B的位置;(1)根据平面内两个关于x轴对称的点,横坐标不变,纵坐标互为相反数即可确定C的坐标;(2)直接用两点距离公式即可求解.解:点A 和点B 的位置如图:(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)BC=()()22243152213⎡⎤--+--==⎣⎦. 【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.24.(1)见解析;(2)见解析;P ()2,0【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点A 关于x 轴的对称点,再连接A′B ,与x 轴的交点即为所求.【详解】(1)如图所示,111A B C △即为所求.(2)如图所示,点P 即为所求,其坐标为()2,0.【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.25.(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)21317;(2)见解析;(3)图见解析,2225【分析】(1) 根据勾股定理结合每一格点都是1个单位分别计算即可;(2) 根据根据轴对称的意义找到对称轴作图即可;(3)作A 点关于直线MN 的对称点A′,连接A′B 与MN 交于点P ,此时A′B 的长即为PAB △周长的最小值.【详解】(1)根据勾股定理可得:222222AB =+ ,222313AC +221417BC =+=; 故答案为:21317;(2)如图:(3)如图:作A点关于直线MN的对称点A′,连接A′B与MN交于点P,△APB的周长为AP+BP+AB,∵A′P=AP,∴△APB的周长为AP+BP+AB= A′P+BP+AB=A′B+A B,由勾股定理得:22A B'=+=2425∴△APB的周长为2225【点睛】此题考查坐标系中关于轴对称的坐标点的变化,最小值作对称图形根据关于轴对称的线段相等的性质解题即可.。

最新北师大版八年级上册第三单元位置和坐标单元测试试题以及答案

最新北师大版八年级上册第三单元位置和坐标单元测试试题以及答案

八年级上册位置和坐标单元测试试题一、选择题。

1、如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()A.(4,0)B.(1,0)C.(﹣22,0)D.(2,0)2、在平面直角坐标系中,点P(x2+1,-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3、下列说法错误的是()A.平行于x轴的直线上所有点的纵坐标相同;B.平行于y轴的直线上所有点的横坐标相同;C.若点P(a,b)在x轴上,那么a=0;D.(-2,3)与(3,-2)表示两个不同的点。

4、如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)5、已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)6、A.第一象限B.第二象限C.第三象限D.第四象限7、已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)8、点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)9、已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m 的值为()A、﹣1B、1C、﹣3D、310、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1对称,点C的坐标为(4,1),则点B的坐标为( )A.(-2,1)B.(-3,1)C.(-2,-1)D.(-2,-1)二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第3章 位置与坐标》一、选择题1.在平面直角坐标系中,已知点P (2,﹣3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,将点P (1,2)向左平移2个单位长度后得到点Q ,则点Q 的坐标是( )A .(﹣1,2)B .(3,2)C .(1,4)D .(1,0)3.如果P (m+3,2m+4)在y 轴上,那么点P 的坐标是( )A .(﹣2,0)B .(0,﹣2)C .(1,0)D .(0,1)4.如果P 点的坐标为(a ,b ),它关于y 轴的对称点为P 1,P 1关于x 轴的对称点为P 2,已知P 2的坐标为(﹣2,3),则点P 的坐标为( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣2,3)D .(2,3)5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=16.一个矩形,长为6、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系,下面哪个点不在矩形上( )A .(3,﹣2)B .(﹣3,3)C .(﹣3,2)D .(0,﹣2)7.如图,点A 的坐标为(﹣1,0),点B 在第一、三象限的角平分线上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0) B.(,﹣)C.(﹣,﹣)D.(﹣,﹣)8.在平面直角坐标系中,A、B、C三点的坐标分别为(0,0)、(0,﹣5)、(﹣2,﹣2),以这三点为平行四边形三的三个顶点,则第四个顶点D不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标为()A.(1,2) B.(﹣1,﹣2)C.(1,﹣2)D.(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()A.(4,0) B.(1,0) C.(﹣2,0)D.(2,0)二、填空题11.点P(1,2)关于x轴的对称点P1的坐标是,点P(1,2)关于y轴的对称点P2的坐标是.12.已知线段AB=3,AB∥x轴,若点A的坐标为(﹣1,2),则点B的坐标是.13.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.14.如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为.15.如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…,已知点A 、B 的坐标分别为:(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出三个符合条件的点P 的坐标: .17.如图所示,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称点C ′的坐标是 .18.如图,在平面直角坐标系xOy 中,分别平行于x 、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线b 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是 .三、解答题(共66分)19.有一张图纸被损坏,但上面有如图所示的两个标志点A (﹣3,1),B (﹣3,﹣3)可认,而主要建筑C (3,2)破损,请通过建立直角坐标系找到图中C 点的位置.20.)图中标明了小强家附近的一些地方:(1)写出公园、游乐场和学校的坐标.(2)某周末早晨,小强同学从家里出发,沿(﹣3,﹣1),(﹣1,﹣2),(0,﹣1),(2,﹣2),(1,0),(1,3),(﹣1,2)的路线转了一下,又回到家里,写出他一路上依次经过的地方.21.如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.22.如图,三角形BCO是三角形BAO经过某种变换得到的.(1)写出A,C的坐标;(2)图中A与C的坐标之间的关系是什么?(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?23.小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;(2)小金鱼身上的点的纵坐标都乘以﹣1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?(3)小金鱼身上的点的横坐标都乘﹣1,所得图形与原图形相比有哪些变化?24.如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?25.(12分)如图,在平面直角坐标系中,已知A(1,0),B(2,0),四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90°后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90°后,所得四边形的四个顶点坐标又分别是多少?《第3章位置与坐标》参考答案与试题解析一、选择题1.在平面直角坐标系中,已知点P(2,﹣3),则点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)可以得到答案.【解答】解:∵横坐标为正,纵坐标为负,∴点P(2,﹣3)在第四象限,故选:D.【点评】此题主要考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.2.在平面直角坐标系中,将点P(1,2)向左平移2个单位长度后得到点Q,则点Q的坐标是()A.(﹣1,2)B.(3,2) C.(1,4) D.(1,0)【考点】坐标与图形变化-平移.【分析】向左平移2个长度单位长度,即点P的横坐标减2,纵坐标不变,得到点Q的坐标.【解答】解:点P(1,2)向左平移2个长度单位后,坐标为(1﹣2,2),即Q(﹣1,2).故选A.【点评】本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)【考点】点的坐标.【分析】根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P的坐标即可.【解答】解:∵P (m+3,2m+4)在y 轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P 的坐标是(0,﹣2).故选B .【点评】解决本题的关键是记住y 轴上点的特点:横坐标为0.4.如果P 点的坐标为(a ,b ),它关于y 轴的对称点为P 1,P 1关于x 轴的对称点为P 2,已知P 2的坐标为(﹣2,3),则点P 的坐标为( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣2,3)D .(2,3)【考点】关于x 轴、y 轴对称的点的坐标.【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变分别确定P 1和P 的坐标即可.【解答】解:∵P 2的坐标为(﹣2,3),P 1关于x 轴的对称点为P 2,∴P 1(﹣2,﹣3),∵P 点的坐标为(a ,b ),它关于y 轴的对称点为P 1,∴a=2,b=﹣3,∴点P 的坐标为(2,﹣3),故选:B .【点评】此题主要考查了关于x 、y 轴对称点的坐标,关键是掌握点的坐标的变化规律.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.6.一个矩形,长为6、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系,下面哪个点不在矩形上()A.(3,﹣2)B.(﹣3,3)C.(﹣3,2)D.(0,﹣2)【考点】矩形的性质;坐标与图形性质.【分析】先建立直角坐标系,再确定出矩形的四个顶点的坐标,从而得出答案.【解答】解:建立如图所示的直角坐标系,矩形的四个顶点坐标是(﹣3,2),(﹣3,﹣2),(3,2),(3,﹣2);或(﹣2,3),(﹣2,﹣3),(2,3),(2,﹣3),故选B.【点评】此题是矩形的性质,主要考查了直角坐标系的建立,点的坐标的确定,解本题的关键是建立直角坐标系.7.如图,点A的坐标为(﹣1,0),点B在第一、三象限的角平分线上运动,当线段AB最短时,点B的坐标为()A.(0,0) B.(,﹣)C.(﹣,﹣)D.(﹣,﹣)【考点】坐标与图形性质.【专题】计算题.【分析】过点A作AH⊥第一、三象限的角平分线于点M,作MN⊥x轴于N,如图,根据垂线段最短可判断点B在点H时,AB最短,然后根据等腰直角三角形的性质求出MN和ON的长可确定H点的坐标,从而得到满足条件的B点坐标.【解答】解:过点A作AH⊥第一、三象限的角平分线于点M,作MN⊥x轴于N,如图,∵∠AOM=45°,∴△AOM为等腰直角三角形,∴MN=ON=AN=,∴H(﹣,﹣),∴当线段AB最短时,点B的坐标为(﹣,﹣).故选C.【点评】本题考查了坐标与图形性质:利用点的坐标特征计算线段的长和判断线段与坐标轴的位置关系.8.在平面直角坐标系中,A、B、C三点的坐标分别为(0,0)、(0,﹣5)、(﹣2,﹣2),以这三点为平行四边形三的三个顶点,则第四个顶点D不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】坐标与图形性质;平行四边形的性质.【专题】压轴题.【分析】可用点平移的问题来解决,从A到B横坐标不变,纵坐标变化5,那么从C到点D,横坐标不变,纵坐标也变化5,为(﹣2,﹣7)或(﹣2,3)分别在第三象限或第二象限;从C到A横坐标加2,纵坐标加2,那么从B到D也应如此,应为(2,﹣3),在第四象限,所以不可能在第一象限.【解答】解:根据平移的性质分两种情况①从A到B横坐标不变,纵坐标变化5,那么从C到点D,横坐标不变,纵坐标也变化5,则D点为(﹣2,﹣7)或(﹣2,3),即分别在第三象限或第二象限.②从C到A横坐标加2,纵坐标加2,那么从B到D也应如此,应为(2,﹣3),即在第四象限.故选A.【点评】本题画出图后可很快求解.不画图的话可利用两组对边分别相等的四边形是平行四边形,用点的平移来解决问题.9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标为()A.(1,2) B.(﹣1,﹣2)C.(1,﹣2)D.(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度,解答即可.【解答】解:∵点M到x轴的距离为1,到y轴的距离为2,∴点M的横坐标为2或﹣2,纵坐标是1或﹣1,∴点M的坐标为(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()A.(4,0) B.(1,0) C.(﹣2,0)D.(2,0)【考点】等腰三角形的性质;坐标与图形性质;勾股定理.【专题】压轴题.【分析】本题可先根据两点的距离公式求出OA的长,再根据选项的P点的坐标分别代入,求出OP、AP的长,根据三角形的判别公式化简即可得出P点坐标的不可能值.【解答】解:点A的坐标是(2,2),根据勾股定理:则OA=2,若点P的坐标是(4,0),则OP=4,过A作AC⊥X轴于C,在直角△ACP中利用勾股定理,就可以求出AP=2,∴AP=OA,同理可以判断(1,0),(﹣2,0),(2,0)是否能构成等腰三角形,经检验点P的坐标不可能是(1,0).故选:B.【点评】此题主要考查了坐标与图形的性质,等腰三角形的判定,关键是掌握等腰三角形的判定:有两边相等的三角形是等腰三角形,再分情况讨论.二、填空题的坐标是(1,﹣2),点P(1,2)关于y轴的对称点11.点P(1,2)关于x轴的对称点P1P的坐标是(﹣1,2).2【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答;根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.的坐标是(1,﹣2);【解答】解:点P(1,2)关于x轴的对称点P1的坐标是(﹣1,2).点P(1,2)关于y轴的对称点P2故答案为:(1,﹣2);(﹣1,2).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.已知线段AB=3,AB∥x轴,若点A的坐标为(﹣1,2),则点B的坐标是(﹣4,2)或(2,2).【考点】坐标与图形性质.【专题】分类讨论.【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(﹣1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x+1|=3,解得:x=﹣4或2,∴点B的坐标为(﹣4,2)或(2,2).故本题答案为:(﹣4,2)或(2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.13.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(1,2).【考点】坐标与图形变化-平移.【专题】常规题型.【分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.【解答】解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.14.如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为(﹣3,3).【考点】坐标确定位置.【分析】根据士与相的位置,得出原点的位置即可得出炮的位置,即可得出答案.【解答】解:∵所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),得出原点的位置即可得出炮的位置,∴所在位置坐标为:(﹣3,3).故答案为:(﹣3,3).【点评】此题主要考查了点的坐标的位置,根据已知得出原点的位置是解决问题的关键.15.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(2010•泰州)已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标:(4,0)或(4,4)或(0,4).【考点】全等三角形的性质;坐标与图形性质.【专题】开放型.【分析】画出图形,根据全等三角形的性质和坐标轴与图形的性质可求点P 的坐标.【解答】解:如图,∵△ABO ≌△ABP ,∴①OA=AP 1,点P 1的坐标:(4,0);②OA=BP 2,点P 2的坐标:(0,4);③OA=BP 3,点P 3的坐标:(4,4).故填:(4,0),(4,4),(0,4).【点评】本题考查了全等三角形的性质及坐标与图形的性质;解题关键是要懂得找全等三角形,利用全等三角形的性质求解.17.如图所示,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称点C ′的坐标是 (3,3) .【考点】关于x 轴、y 轴对称的点的坐标.【分析】过点C 作CD ⊥OB 于D ,根据等腰直角三角形的性质可得CD=OD=OB ,从而求出点C 的坐标,再根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数求解即可.【解答】解:如图,过点C 作CD ⊥OB 于D ,∵∠OCB=90°,OC=BC ,∴△BOC 是等腰直角三角形,∴CD=OD=OB ,∵O (0,0),B (﹣6,0),∴OB=6,∴CD=OD=×6=3,∴点C的坐标为(﹣3,3),∴点C关于y轴对称点C′的坐标是(3,3).故答案为:(3,3).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,等腰直角三角形的性质,对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.如图,在平面直角坐标系xOy中,分别平行于x、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线b上存在点P,使△AOP是等腰三角形.那么所有满足条件的点P的坐标是.【考点】等腰三角形的判定;坐标与图形性质.【分析】先根据题意化成符合条件的所有情况,再根据A的坐标和等腰三角形的性质逐个求出即可.【解答】解:∵A (3,4),∴由勾股定理得:OA=5,OM=3,AM=4,如图,有三种情况:①以O 为圆心,以OA 为半径作弧交直线b 于P 1,此时OP=OA ,P 1M=AM=4,即此时P 的坐标是(3,﹣4);②以A 为圆心,以OA 为半径作弧交直线b 于P 2,P 3,此时OP=PA ,P 3M=5+4=9,P 2M=5﹣4=1,即此时P 的坐标是(3,9)或(3,﹣1);③作OA 的垂直平分线交直线b 于P 4,此时AP=OP ,则32+P 4M 2=(4﹣P 4M )2,解得:P 4M=(负数舍去),此时P 的坐标是(3,),故答案为:(3,)或(3,﹣4)或(3,﹣1)或(3,9).【点评】本题考查了勾股定理,等腰三角形的性质的应用,注意:用了分类讨论思想.三、解答题(共66分)19.有一张图纸被损坏,但上面有如图所示的两个标志点A (﹣3,1),B (﹣3,﹣3)可认,而主要建筑C (3,2)破损,请通过建立直角坐标系找到图中C 点的位置.【考点】坐标确定位置.【分析】先根据点A(﹣3,1),B(﹣3,﹣3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.【解答】解:点C的位置如图,【点评】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.20.)图中标明了小强家附近的一些地方:(1)写出公园、游乐场和学校的坐标(3,﹣1),(4,2),(1,3).(2)某周末早晨,小强同学从家里出发,沿(﹣3,﹣1),(﹣1,﹣2),(0,﹣1),(2,﹣2),(1,0),(1,3),(﹣1,2)的路线转了一下,又回到家里,写出他一路上依次经过的地方.【考点】坐标确定位置.【分析】(1)在坐标系中,过一点作x轴的垂线,垂足对应的点表示的数,即横坐标,作y轴的垂线,垂足对应的点表示的数,即纵坐标;(2)如确定(﹣3,﹣1)表示的位置,先在x轴上找出表示﹣3的点,再在y轴上找出表示﹣1的点,过这两个点分别做x轴和y轴的垂线,垂线的交点即所要表示的位置,即(﹣3,﹣1)表示邮电局.【解答】解:(1)由图可知:公园、游乐场和学校的坐标分别为(3,﹣1),(4,2),(1,3).(2)他一路上依次经过的地方是:邮电局,宠物店,姥姥家,消防站,汽车站,学校,糖果店.【点评】在平面直角坐标系中,一定要理解点与坐标的对应关系,是解决此类问题的关键.21.如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.【考点】坐标与图形性质.【分析】过A作AC⊥x轴,作BD⊥x轴,在Rt△AOC中,根据OA的长度结合勾股定理以及∠AOC=45°即可得出点A的坐标,在Rt△BOD中,利用特殊角的三角函数值结合OB的长度即可得出点B的坐标.【解答】解:过A作AC⊥x轴,作BD⊥x轴,如图所示.在Rt△AOC中,∠AOC=45°,∴OC=AC,∴AC2+OC2=OA2,即2OC2=64,解得:OC=4,∴点A的坐标为(4,4).在Rt△BOD中,∠BOD=180°﹣∠AOB=60°,∵∠DBO=30°,∴OD=OB=3,∵BD2+OD2=OB2,∴BD2=62﹣32=27,解得BD=3,∴点B的坐标为(﹣3,3).【点评】本题考查了坐标与图形的性质、勾股定理以及特殊角的三角函数值,在直角三角形中利用勾股定理以及特殊角的三角函数值求出边的长度是解题的关键.22.如图,三角形BCO是三角形BAO经过某种变换得到的.(1)写出A,C的坐标;(2)图中A与C的坐标之间的关系是什么?(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?【考点】坐标与图形性质.【分析】(1)根据图形结合坐标系找出点A、C的坐标即可;(2)根据点A、C横纵坐标的特点,即可得出点A与点C关于x轴对称;(3)由(2)结合O、B点即可得出△BCO与△BAO关于x轴对称,再由点M的坐标即可得出点N的坐标.【解答】解:(1)观察图形,可得出点A的坐标为(5,3),点C的坐标为(5,﹣3).(2)∵5=5,3+(﹣3)=0,∴点A与点C关于x轴对称.(3)∵点A与点C关于x轴对称,点O、B在x轴上,∴△BCO与△BAO关于x轴对称,∵点M(x,y)在△AOB中,∴与点M对应的点N的坐标为(x,﹣y).【点评】本题考查了坐标与图形性质,结合坐标系与图形找出△BCO与△BAO关于x轴对称是解题的关键.23.小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;(2)小金鱼身上的点的纵坐标都乘以﹣1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?(3)小金鱼身上的点的横坐标都乘﹣1,所得图形与原图形相比有哪些变化?【考点】作图-位似变换;作图-平移变换.【分析】(1)直接利用已知点位置得出各点坐标即可;(2)直接利用各点坐标的变化在坐标系中找出,进而得出符合题意的答案;(3)直接利用各点坐标的变化在坐标系中找出,进而得出符合题意的答案.【解答】解:(1)如图所示:A(0,﹣4),B(4,﹣1),C(4,﹣7),D(10,﹣3),E(10,﹣5),F(8,﹣4);(2)如图所示:多边形A′B′F′C′与△F′D′E′即为所求,与原图案关于x轴对称;(3)如图所示:多边形AMSN和△SHJ即为所求,与原图案关于y轴对称.【点评】此题主要考查了轴对称变换,正确得出各对应点坐标是解题关键.24.如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?【考点】规律型:点的坐标.【分析】根据图形和点的坐标特点说出即可.【解答】解:(1)→(2)纵坐标不变,横坐标都加1,(2)→(3)横坐标不变,纵坐标都加1,(3)→(4)横、纵坐标都乘以﹣1,(4)→(5)横坐标不变,纵坐标都乘以﹣1.【点评】本题考查了点的坐标的应用,能正确根据图形得出信息是解此题的关键.25.(12分)如图,在平面直角坐标系中,已知A(1,0),B(2,0),四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90°后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90°后,所得四边形的四个顶点坐标又分别是多少?【考点】正方形的性质;坐标与图形变化-旋转.【专题】计算题.【分析】(1)先计算出AB=1,然后利用正方形的性质和点的坐标的表示方法写出C,D两点坐标;(2)利用正方形和旋转的性质画出正方形ABCD绕O点逆时针旋转90°后所得四边形A′B′C′D′,然后写出四边形A′B′C′D′四个顶点的坐标;(3)利用正方形和旋转的性质画出正方形A′B′C′D′绕O点逆时针旋转90°后所得四边形A″B″C″D″,然后写出四边形A″B″C″D″四个顶点的坐标.【解答】解:(1)∵A(1,0),B(2,0),∴AB=1,∵四边形ABCD是正方形,∴AD=BC=CD=1,∴C(2,1),D(1,1);(2)如图,A′(0,1),B′(0,2),C′(﹣1,2),D′(﹣1,1);(3)如图,A″(﹣1,0),B″(﹣2,0),C″(﹣2,﹣1),D″(﹣1,﹣1).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.也考查了坐标与图形性质和旋转的性质.。

相关文档
最新文档