单筋矩形截面受弯构件正截面承载力计算

合集下载

受弯构件正截面承载力计算—单筋矩形截面受弯构件

受弯构件正截面承载力计算—单筋矩形截面受弯构件
根据公式
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类


纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x

M u f cd bxM u f sd As h0

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算
为简化计算,假定在bf′范围内压应力均匀分布,bf′称 为翼缘计算宽度。
60
第三章 受弯构件正截面承载力计算
翼缘计算宽度bf′取下表所列各项中的最小值。
翼缘计算宽度bf′
项 次
考虑情况
1
按计算跨度l0考虑
2
按梁(纵肋)净距sn考虑
3
按翼缘高度
hf'考虑
hf'/h0≥0.1
0.1>
hf'/h0≥0.05
x xb bh0

防止超筋脆性破坏:
b

As bh0

max

b
1 fc
fy
防止少筋脆性破坏: min AS AS,min minbh
单筋矩形截面所能承受的最大弯矩(极限弯矩):
Mu,max 1 fcbh02b (1 0.5b )
3.3 受弯构件正截面承载力计算
第三章 受弯构件正截面承载力计算
一、基本公式及适用条件 1.基本公式
按下图所示的计算应力图形,根据力和力矩平衡条 件,可得单筋矩形截面受弯构件正截面承载力计算基本 公式为
第三章 受弯构件正截面承载力计算
1 fcbx fy As
M Mu 1 fcbxh0 x 2
M M u f y As h0 x 2
1 fcb
②若x≤ξbho,且x≥2as′,则将x值代入第二个基本 公式 求Mu;
56
第三章 受弯构件正截面承载力计算
③若x>ξ bho,说明属超筋梁,此时应取x=ξ bho代 入第二个基本公式求Mu;
④若x<2as′,则
Mu AS f y h0 as'
⑤若Mu≥M则截面安全,否则截面不安全。

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是指具有一个纵向钢筋(单筋)和一个矩形截面的构件。

在受弯时,矩形截面受到压力,而钢筋受到拉力,通过计算正截面承载力可以确定该构件的安全性能。

下面将介绍单筋矩形截面受弯构件正截面承载力的计算方法。

首先,计算正截面的受压区高度h和内力矩M。

假设构件受弯时的截面高度为h,宽度为b,截面厚度为d。

根据等截面原则,构件的正截面宽度和截面高度相等,即b=h。

构件的弯矩M由下式计算得出:M=Rd·Z,其中Rd为设计弯矩,Z为正截面抵抗矩。

然后,计算正截面抵抗矩Z。

在单筋矩形截面中,正截面抵抗矩由钢筋和混凝土组成。

钢筋的抵抗矩可由以下公式计算得出:Zs=As·fy·(h-d/2),其中As为钢筋截面面积,fy为钢筋的抗拉强度。

混凝土的抵抗矩可由以下公式计算得出:Zc=0.85·fck·(b·h-(As+Asc)·(h/2-d/2)),其中fck为混凝土的抗压强度,Asc为纵向钢筋表面积。

正截面的抵抗矩由钢筋的抵抗矩和混凝土的抵抗矩之和得出:Z=Zs+Zc。

接下来,计算正截面的承载力。

正截面受弯构件的承载力由以下条件中的最不利情况决定:1.混凝土达到极限压应力或者钢筋达到屈服应力;2. 混凝土达到达到破坏应变时,即混凝土压应力达到0.45fck或者钢筋达到屈服应变。

计算混凝土达到极限压应力的情况下的承载力,可以得到下式:Nc=0.85·fcd0·A+(Rd-Zs)/Rd·fctd0·A,其中fcd0为混凝土的设计强度,fctd0为混凝土的设计抗拉强度,A为截面面积。

计算钢筋达到屈服应力的情况下的承载力,可以得到下式:Ns=(Zs/0.9zτs)·fsd,其中z为混凝土的截面中和高度,τs为混凝土的应力分布系数,fsd为钢筋的设计抗拉强度。

综合两种情况,正截面受弯构件的正截面承载力Fc为较小值:Fc=min{Nc,Ns}。

4(2)受弯构件的正截面受弯承载力-计算原理-单筋矩形截面(精)

4(2)受弯构件的正截面受弯承载力-计算原理-单筋矩形截面(精)

4. 3 正截面受弯承载力计算原理一、基本假定试验梁破坏特征→正截面承载力的四个基本假定: 1. 截面应变保持平面平截面假定:指梁在荷载作用下,正截面变形规律符合“平均应变平截面假定” 。

实验表明:砼和钢筋纵向应变呈直线变化钢筋混凝土梁的应变2. 不考虑混凝土的抗拉强度1) 砼的抗拉强度很小;2)其合力作用点离中和轴较近,抗弯力矩的力臂很小→忽略受拉区砼的抗拉作用4. 钢筋的应力-应变关系方程σs=Es⋅εs≤fy纵向钢筋的极限拉应变取为0.012. 等效矩形应力图公式复杂,可取等效矩形应力图形来代替受压区砼应力图形两个图形满足的等效条件:1)受压区砼压应力合力C 的大小相等2)两图形中受压区合力C的作用点不变fcxcx=β1xcα1fcC=α1fcbxzT=fyAszT=fyAs等效矩形应力图4.4 单筋矩形截面受弯构件正截面受弯承载力计算 (1) 基本计算公式及适用条件 1. 基本计算公式计算简图情形2:已知截面设计弯矩M、砼强度等级及钢筋级别,求构件截面尺寸bh和受拉钢筋截面面积As设计步骤:①b , h , As 和x均为未知数,解得有多组。

计算时需要增加条件,通常假定配筋率ρ和梁宽b配筋率的经济取值: 板的约为0.3%~0.8%;单筋矩形梁的约为0.6%~1.5%。

梁宽按构造要求确定矩形截面:宽度b 一般取为l00、120、150、(180)、200、(220)、250和300mm,300mm以上的级差为50mm;括号中的数值仪用于木模例1 现浇钢筋砼平板,安全等级为二级,处于一类环境,承受均布荷载设计值为6.50kN/m2(含板自重),砼:C25,钢筋:HRB335级。

试配置该平板的受拉钢筋。

解:截面设计问题(1)确定设计参数查附表2-7,HRB335钢筋fy=300 N/mm2附表2-2 ,C25混凝土fc= 11.9N/mm2ft= 1.27 N/mm2表4-5α1=1.0表4-6 ξb=0.550表αsb=0.399(4)选配钢筋及绘配筋图查附表4-1各种钢筋间距,每米板宽中的钢筋截面面积板的构造要求:常用直径是6、8、l0mm,其中现浇板的板钢筋直径不宜小于8mm.钢筋的间距:一般为70~200m。

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式根据图1和截面内力平衡条件,并满足承载能力极限状态计算表达式的要求,可得出如下基本计算公式:图1 单筋矩形截面梁板正截面受弯承载力计算简图∑x=0 f c bx=f y A s(1)∑M=0 KM≤f c bx(h0−)(2)式中M——弯矩设计值(N·mm);f c——混凝土轴心抗压强度设计值(N/mm2),按附表1–2取用;b——矩形截面宽度(mm);x——混凝土受压区计算高度(mm);h0——截面有效高度(mm);f y——受拉钢筋的强度设计值(N/mm2),按附表1–5取用;A s——受拉钢筋的截面面积(mm2);K——承载力安全系数, 按表1–7取用。

利用基本公式进行截面计算时,必须求解方程组,比较麻烦。

为简化计算,将式(1)、(2)改写如下:将ξ=x/h0代入公式(1)、(2),并引入截面抵抗矩系数αs,令αs =ξ(1–ξ)(3)则基本公式改写为:f c bξh0=f y A s(4)KM≤αs f c bh02(5)由式(4)可得:ρ= ξf c/f y基本公式是根据适筋破坏的情况推导出来的。

因此,它的适用条件为:(1)ρ≤ρmax或x ≤ξb h0或ξ≤ξb,以防止发生超筋破坏,ρmax=ξb f c/f y;基本公式是依据适筋构件破坏时的应力图形情况推导的,当受拉钢筋屈服的同时,受压区混凝土也达到极限压应变εcu,梁发生的临界破坏状态,就是适筋梁与超筋梁的界限。

但为了结构的安全,更有效地防止发生超筋破坏,,应用基本公式和由它派生出来的公式计算时,必须符合此条件。

(2)ρ≥ρmin,以防止发生少筋破坏钢筋混凝土梁板构件破坏时承担的弯矩等于同截面素混凝土梁板构件所能承担的弯矩时的受力状态,为适筋破坏与少筋破坏的分界。

这时梁板的配筋率应是适筋梁板的最小配筋率。

《规范》不仅考虑了这种“等承载力”原则,而且还考虑了混凝土的性质和工程经验等。

因此,基本公式应符合此条件。

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!单筋矩形截面受弯构件正截面承载力计算详解在结构工程中,混凝土受弯构件的承载力计算是至关重要的环节,特别是单筋矩形截面的受弯构件。

单筋矩形梁正截面受弯承载力计算实例

单筋矩形梁正截面受弯承载力计算实例

单筋矩形截面梁正截面受弯承载力计算实例单筋矩形截面梁、板构件正截面受弯承载力计算步骤见图1。

选配钢筋加大截面尺寸或是M 、b 、h 、f c 、f y 、a s 、K ,A s 、ρmin 、αsmasαs =KM / f c b h 02A s =f c b ξh 0/f ybs 85.0211ξαξ≤--=h 0=h -a s否A s = ρmin bh 0绘配筋图是是A s 已知?αs ≤αsmax提高砼强度等级ρ=A s /(bh 0)≥ρmin是ξ=f y A s / (f c b h 0)ξ≤0.85ξbαs = ξ(1−0.5ξ)M u = αs f c b h 02KM ≤M u是是安全αs = αsmax否否不安全否否否ρ=A s /(bh 0)> ρmin是重新设计图1 单筋矩形截面正截面受弯承载力计算流程图【案例1】某水电站厂房(2级建筑物)的钢筋混凝土简支梁,如图2所示。

一类环境,净跨l n =5.76m ,计算跨度l 0=6.0m ,承受均布永久荷载(包括梁自重)g k =12kN/m ,均布可变荷载q k =m ,采用混凝土强度等级为C20,HRB335级钢筋,试确定该梁的截面尺寸和纵向受拉钢筋面积A s 。

解:查表得:f c = mm 2,f y = 300N/ mm 2,K =。

(1)确定截面尺寸 由构造要求取:h =(1/8~1/12)l 0 =(1/8~1/12)×6000=750~500,取h =500mm b =(1/2~1/3)h =(1/2~1/3)×500=250~167,取b =250mm (2)内力计算M =(+ )l 02/8=(×12+×)×62 /8 = ·m (3)配筋计算取a s =40mm ,则h 0=h –a s =500–40=460mm==2c s bh f KMα248.04602506.91076.10420.126=⨯⨯⨯⨯ 290.0248.0211211s =⨯--=--=αξ<ξb =×=A s =f c bξh 0/f y =×250××460/300=1067mm 2 ρ= 1067/(250×460)=﹪>ρmin =﹪(4)选配钢筋,绘制配筋图选受拉纵筋为322(A s =1140 mm 2),需要最小梁宽b min =2c +3d +2e =2×30+ 3×22+2×25=176(mm )<250mm ,符合构造要求。

单筋矩形截面受弯构件正截面承载能力计算

单筋矩形截面受弯构件正截面承载能力计算

适用条件同矩形截面
M1
1 fc
b
' f


b
h
' f

h0


h
' f
2

M2
1
f
c
bx
h0

x
2
M M1 M2
As1

1 fc
b
' f
b
fy
h
' f
As
As1 As2
1 fc
b
' f

b
h
' f
fy
As2
3)如果截面平衡方程不满足要求,重新 按截面设计问题进行计算。
正截面承载能力计算系数与 计算方法
M

f
y
As

h0

x 2
f y As h0 1 0.5
f y As h0 s
M
1
f
c
bx
h0

x 2
1
fcbh02 1 0.5 1 fcbh02as
h0

x 2
f
' y
As'
h0

a
' s
较单筋增加项
适用条件
x b h0 1) x 2a ' 2)
不满足条件 2)
Mu f y As h0 as'
计算方法
1)截面设计 给定:截面尺寸、材料强度、弯矩
求:配筋
As , As'
受压和受拉都未知 受压已知,求受拉 受拉以知,求受压

单筋矩形截面受弯构件承载力计算与截面设计

单筋矩形截面受弯构件承载力计算与截面设计

受弯构件正截面承载力计算与截面设计系列总结之单筋矩形截面相关计算1 承载力计算:截面尺寸(b 、h 、h 0)、配筋(A s )和材料强度(f c ,f t 、f y )等条件已知情况下,求M u ,其计算步骤如下:1.1 计算配筋率:s A bh ρ=或s 0A bh ρ= 1.2若min ρρ<,则2u crA 0.292(1 2.5)t M M f bh α==+,其中s A E 2A bh αα= ;s E cE E α= 1.3若min max ρρρ<≤,按适筋梁进行计算,由1c y s f bx f A α=求x ,再将x 代入u 1c 0y s 0()()22x x M f bx h f A h α=−=−,其中1c max b y f f αρξ=;t min max y (0.2%,45%)f f ρ= 1.4若max ρρ>,按超筋梁进行计算,先将s y b 0.80.8f ξσξ−=−代入1c s s f bx A ασ=求x 或ξ,再将x 或ξ及s y b 0.80.8f ξσξ−=−代入u 1c 0s s 0()()22x x M f bx h A h ασ=−=− 说明:上述式中0h 按如下取值:单排配筋时, 02d h h c =−−;双排配筋时,()0max 25,22d h h c d =−−+,其中,c 为混凝土的保护层厚度,d 为钢筋的 直径,c 为混凝土保护层厚度。

2 截面设计:截面尺寸(b 、h 、h 0)、材料强度(f c ,f t 、f y )和M 等条件已知情况下,求配筋A s ,为保证所设计的截面在给定弯矩作用下不发生破坏,应要求截面的弯矩承载力不低于其所受弯矩,即:M u ≥ M ,其计算步骤如下:2.1 按22u,max 1c 0b b s,max 1c 0(10.5)M f bh f bh αξξαα=−=,其中s,max b b (10.5)αξξ=−求u,max M ,若u,max M M >则需加大截面重新计算;若u,max M M ≤则进行下一步2.2 由u 1c 0y s 0()()22x x M f bx h f A h α=−=−和1c y s f bx f A α=求s A2.3 计算配筋率:s A bhρ= 2.4 若min ρρ≥,计算结束2.5 若min ρρ<,取s min A bh ρ=说明:设计时钢筋直径未知,故上述式中0h 按如下取值:对钢筋混凝土梁,单排配筋时, 035h h =−(mm );双排配筋时,060h h =−(mm ),对钢筋混凝土板,020h h =−(mm )。

3.2 正截面承载力计算

3.2 正截面承载力计算

3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

3单筋矩形截面受弯构件正截面承载力计算

3单筋矩形截面受弯构件正截面承载力计算

3单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是一种常见的结构构件,广泛应用于建筑、桥梁、机械等领域。

它的正截面承载力是指在构件所受到的弯矩作用下,正截面能够承受的最大力矩值。

单筋矩形截面受弯构件的正截面承载力计算一般按照以下步骤进行:1.假设构件正截面处于弹性阶段,根据材料的弹性力学理论,正截面的受弯应力与弯曲弯矩之间的关系为σ=M/W,其中σ为正截面的受弯应力,M为弯矩,W为截面抗弯矩。

2.计算截面抗弯矩W。

对于单筋矩形截面,一般可将其简化为矩形截面,截面抗弯矩W为b*h^2/6,其中b为矩形截面的宽度,h为矩形截面的高度。

3.根据构件的几何尺寸和受力情况,计算弯矩M。

弯矩的计算可以采用静力学方法或者有限元分析方法。

静力学方法一般是通过平衡方程来计算弯矩,有限元分析方法则利用计算机模拟构件的力学行为,得到准确的弯矩数值。

4.将步骤1和步骤2得到的结果代入公式σ=M/W,计算出正截面的受弯应力。

5.根据材料的强度理论或者试验结果,确定构件正截面的抗弯强度。

抗弯强度一般是指正截面可以承受的最大受弯应力。

6.比较步骤4计算出的受弯应力与步骤5确定的抗弯强度,如果受弯应力小于抗弯强度,则正截面具有足够的承载力;如果受弯应力大于抗弯强度,则正截面不能承受所施加的弯矩。

7.如果正截面的承载力不足,可以通过增加构件的尺寸或者采用其他形状的截面来增加其抗弯强度。

需要注意的是,以上的计算步骤是在构件正截面处于弹性阶段的假设下进行的。

如果构件正截面处于塑性阶段或者受到其他复杂的荷载作用,需要进行强度计算,采用不同的计算方法和理论,并考虑构件的完全塑性铰的形成等因素。

总而言之,单筋矩形截面受弯构件正截面承载力的计算是一项重要的结构设计工作,需要根据构件的几何尺寸、材料的性能以及受力情况等因素进行详细的计算分析,确保构件的安全可靠。

受弯构件的正截面受弯承载力计算原理单筋矩形截面

受弯构件的正截面受弯承载力计算原理单筋矩形截面

α β β1
1 --等效矩形应力图的强度与受压区砼最大应力的比值
--等效矩形应力图的 受压区高度与平截面假
1 = x xc
定的中和轴高度的比值 混凝土受压区等效矩形应力图系数表
≤C50 C55 C60 C65 C70 C75 C80
α1 1.0 0.99 0.98 0.97 0.96 0.95 0.94 β1 0.8 0.79 0.78 0.77 0.76 0.73 0.74

α 1
fcbx
=
f y As
ξ
=x
As
h0

ξ
αb 1 f
值查表
fc bh0
y
•根据理论面积选择实际截面面积,要求两者相差不超过±5%
•检查实际的as选与假定的是否大致相符,如果相差太大,重算
⑤验算是否少筋
要求满足:As ≥ ρminbh
若不满足:A按s = ρminbh配置
或ρ

ρ min
h h0
xb
β1h0
=
ε cu
εcu + ε y

ξ b
=
xb h0
--等效矩形图界限 相对受压区高度
xb
β1h0
=
ε cu
ε +ε
cu
y
ε y
=
fy
ES
ξ=
β 1
b
1+
fy
Es ⋅ ε cu
相对界限受压区高度 ξ 取值 b
种类
≦C50
C60
C70
钢 300MPa 筋 335MPa 强
度 400MPa 等 级 500MPa
Mu
=

第三章 第四节 单筋矩形截面受弯构件正截面承载力计算

第三章 第四节  单筋矩形截面受弯构件正截面承载力计算

Mu
xc
C
Z
x 0 T C
xt
h0
Tc T s
M 0
M u TZ CZ
设AS—钢筋的面积;fy—钢筋的屈服强度,T= ASfy 。 Z和C与压区高度及压区应力分布有关。
第四节
单筋矩形截面受弯构件正截面承载力计算
b x h
一、计算基本公式及适用条件
基本公式 h0 受弯构件正截面承载能力计算,应满足作用 在结构上的荷载在结构截面中产生的弯矩设计 值M不超过按材料的强度设计值计算得到的受 as 弯构件承载能力设计值Mu, 即:M ≤ Mu
h0——截面有效高度, h0=h-as h——截面高度 as ——受拉钢筋合力点至混凝土受拉边缘的距离,初步计算时,对 于C25~C45等级的混凝土,可按35mm(单排受拉筋)、60mm(双排受拉 筋)、20mm(平板)取值。
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
◆ 例题3-1
解:查表得: fc=9.6N/mm2 ,; fy=300N/mm2 ; ξb=0.55;截面有效 高度 h。=500-40=460mm ;纵向受拉钢筋按一排放置,则梁的有效 高度h0=500—40=460mm。 1.计算受压区高度x
f y As 300 804 x 125.6mm b h0 0.55 460 253mm 1 f cb 1.0 9.6 200
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
单筋矩形截面 仅在受拉区布置纵向受力钢筋的矩形截面 双筋矩形截面 同时在受拉区和受压区布置纵向受力钢筋的矩形截面

3.2正截面承载力计算

3.2正截面承载力计算

3.2-正截面承载力计算3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
(a) 单肢箍 (b) 双肢箍
箍筋的肢数
(c) 四肢箍
混凝土保护层厚
度c:
最外层钢筋(包 括箍筋、构造筋、 分布筋等)的外 缘至混凝土表面 的最小距离 。
保护层最小厚度 的规定是为了使 混凝土结构构件 满足的耐久性要 求和对受力钢筋 有效锚固的要求。
混凝土保护层厚度c≥混凝土保护层最小厚度
一般设计中是采
图3-4 试验梁
适筋梁正截面受弯的全过程可划分为三个 阶段——未裂阶段、带裂缝工作阶段和破坏阶段。
(1)第Ⅰ阶段:混凝土开裂前的未裂阶段

0 tu
➢第梁I阶基段本特上点处:于弹1)性混工凝作土阶没段有,开弯裂矩;-曲率曲线基本接近
直2)线受。压区混凝土的应力图形是直线,受拉区混凝土的应
➢力当图弯形矩在增第加Ⅰ到阶M段c0r 前期时是,直受线拉,边后缘期的是拉曲应线变;达到混凝土
受3)弯弯时矩极与限截拉面应曲变率(基t 本上t0u 是直线关)系,。截面处于即将开裂
的临界状态(Ia状态),此时的弯矩值称为M开c0裂r 弯

。受压区应力图形接近三角形,受拉区呈曲线分
(2)第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段
在开裂瞬间,开裂截面受拉区混凝土退出工作,导致钢筋应力
有第一II突阶然段增特加点(:应1力)在重分裂布缝)截,面裂处缝,出受现拉时区梁大的部挠度分和混截凝面土曲退率 都出突工然作增,大拉,力使主中要和由轴比纵开向裂受前拉有钢较筋大承上担移,。但当弯钢矩筋继没续有增屈大服到; 受2)拉受钢压筋区应混力凝即土将已到有达屈塑服性强变度形f,y0时但,不称充为分第,II压阶应段力末,图I形Ia为。 只平有均上应升变段沿的截面曲高线度;的分布近似直线。 3由)弯于矩受与压截区面混凝曲土率压是应曲力线不关断系增,大截,面其曲弹塑率特增性长表大现于得弯越矩来增越 显长著。,受压区应力图形逐渐呈曲线分布。
3 界限破坏及界限配筋率(最大配筋率ρmax)
比较适筋梁和超筋梁的破坏,可以发现,两者 的差异在于:前者破坏始自受拉钢筋屈服;后者则始自
受压区混凝土压碎。显然,总会有一个界限配筋率ρb,
图5-2
2 梁、板的截面尺寸
梁 的 尺
次梁 l2=4 ~ 6m h=(1/12 ~ 1/18)l2
主梁 l3=5 ~ 8m h=(1/8 ~ 1/14)l3

b=(1/2 ~ 1/3)h
b=(1/2 ~ 1/3)h
► 矩形截面梁的高宽比h/b 一般取2.0 ~ 3.0; T 形截面梁的 h/b 一般取2.5 ~ 4.0
(1)梁的钢筋强度等级及常用直径
2)梁内纵向受力钢筋 梁中纵向受力钢筋宜采用HRB400级和HRB500级,常
用直径为12mm、14mm、16mm、18mm、20mm、22mm和25mm。
纵向受力钢筋的直径,当梁高大于等于300mm时, 不应小于10mm;当梁高小于300mm时,不应小于8mm。
3)梁的箍筋:宜采用HRB400级、HRB335级,少量用 HPB300级钢筋,常用直径是6mm、8mm和10mm。
边缘混凝土压碎。
图3-7 矩形截面梁应变及钢筋应 力 (a)混凝土的应变 (b)钢筋的应力
从荷钢开载筋始继屈加续服荷增,到加截受,面拉钢曲区筋率混拉和凝应梁土力挠开、度裂挠突,度然梁变增的形大整不,个断裂截增缝面大宽均,度参裂随加缝着受宽扩力。
虽面度凝展减然的也土第并小受受不压沿,I拉力阶断应梁受区基开力段高压混本展不:向区凝接,断上塑抗土近但增延性在线裂中大伸特开弹计和,,征裂性算轴其中表以。位弹的和现前截置塑依轴的有面没性继更据一抗有特续为定弯;显性上充的刚著表移分塑度变现,,性较化得受受变大。越压压形,由来区区,挠于越高应但度受显度力整和压著进图个截区,一形截面混受步更 曲压趋率区第丰很应满I小I力。阶,图钢段形筋:逐的构渐应呈件力曲在也线正很分小常布,使。且用当都荷极与载限弯达状矩到近态某似中一成变数正值形比时与。,裂纵
(3)第III阶段:钢筋开始屈服至截面破坏的破坏阶段
超 钢第过筋IMIu屈0I后阶,服段承,特载点截力:将面1有)曲纵所率降筋低屈和,服梁直,至挠拉受力度压不突区变混然,凝增拉土压区大酥混,。凝裂M土u0称缝退为出宽极 度限对弯应随工2矩截)着作弯,面,矩扩此受压可时力展区略的状并混有受态压为沿凝增边I土加梁I缘I应;a状高混力态凝向曲。土线上的丰压延满应伸,变,有称为上中极升和限及压轴下应继降变段续实;验上值移ε,cu0, 受ε压3c)u0区受约压在高0区.度0边0进3缘-0一混.0凝0步5范土减围压小,应超变,过达受该到应压极变区限值压塑,应压性变区特混,凝征混土凝表即土现开被始的压压 更坏可,为碎见表充,截面截面分梁破面达,坏破到受的坏极过限压。程承区是载破应力坏。力始图于纵形向更受拉趋钢丰筋满屈服。,终结于受压区
延性破坏:破坏前,变形较大,有明显的破坏 预兆,不是突然破坏的,属于延性破坏类型。
脆性破坏将造成严重后果,且材料没有得到充 分利用,因此在工程中,脆性破坏类型是不允许的。
2 正截面受弯的三种破坏形态
超配断适筋筋,筋梁较梁梁的少的的破时破破坏,坏坏特钢与特点筋素点:有混:混可凝纵凝能土向土在梁受受梁类拉压一似钢区开,筋边裂属先缘时于屈先就受服压进拉,碎 入 脆受,强性压纵化破区向段坏边受最特缘拉终征混钢被,凝筋拉少 土不筋随屈梁后服的压,这碎在种时没受,有拉截明脆面显性才预破破兆坏坏的比,情超属况筋延下梁性由受破于压坏受脆类压性型 区破。混坏凝更土为被突压然碎,而很 突不适然安筋破全梁坏,的,而破属且坏于很特脆不点性经是破济破坏,坏类因始型此自。在受建拉筑区结钢构筋中的不屈容服许。采用。
钢筋一般为一排钢筋,as =c+d/2。
a
≥cmin 1.5d
c≥cmin
d ≥cmin c≥cmin
1.5d d
3.1.3 受弯构件的力学性能 • bc段称为纯弯段,ab、cd段称为弯剪段。
钢筋混凝土受弯构件的设计内容
3.2 受弯构件的正截面计算
3.2.1 受弯构件的正截面受力性能试验分析 1 适筋梁正截面受弯的三个受力阶段
纵筋为一排钢筋时,as= c+dsv+d/2; 纵筋为两排钢筋时,as= c+dsv+d+e/2; 其中,c为混凝土保护层厚度,按附表3-2选用;
dsv箍筋直径;d钢筋直径; e为上下两排钢筋的净距,一般取e=25mm计算。
≥30mm 1.5d c≥cmin d
h0
►板的截面有效高度h0=h–as,受力
图3-2 梁截面内纵向钢筋布置
用最小值的。
及截面有效高度h0
截面有效高度h0:系指截面受压
区的外边缘至受拉钢筋合力重
心的距离。
4)梁侧构造钢筋 ◆ 梁高度h>450mm时,要求在梁两侧沿高度设置纵向构造钢筋,
直径≥10mm;每侧纵向构造钢筋(不包括梁上、下部受力钢筋及 架立钢筋)的截面面积不应小于腹板截面面积bhw的0.1%,且间 距不宜大于200mm。
60
悬臂 板
板的悬臂长度大于500mm
80
无 梁 楼板
150
3.1.2 材料选择与一般构造级是C25、C30,一般不超过C40。
2钢 筋
(1)梁的钢筋强度等级及常用直径
1)架立筋:梁上部无受压钢筋时,需配置2根架立筋,以 便与箍筋和梁底纵筋形成钢筋骨架,直径一般不小于 8mm、10mm、12mm。
向缝当受宽弯拉度矩钢验达筋算到将极开的限始依弯屈据矩服;值。时,此时受压区边缘混凝土达到极
限当第压受应I拉I变I边阶,缘段截的面:拉开应承始变载破达力坏到极。混限凝状土极态限计拉算应的变依时据(。t t0)u ,
为截面即将开裂的临界状态,此时的弯矩值称为开裂弯

M
0 cr

(2)各阶段和特征点的截面应力 — 应变分析
(3)纵向受拉钢筋的配筋率
配筋率: 纵 向受拉钢筋总
面积As(mm2)与
正截面的有效
面积bh0的比值。
As (%)
bh0
纵向受拉钢筋的配筋率ρ在一定程度上标志了正
截面上纵向受拉钢筋与混凝土之间的面积比率,它是对 梁的受力性能有很大影响的一个重要指标。
3 混凝土保护层厚度
从最外层钢筋的外表面到截面边缘的垂直距离,称 为混凝土保护层厚度,用c表示,最外层钢筋包括箍筋、构 造筋、分布筋等。
混凝土结构的环境类别,见附表3-1。
注:1.混凝土强度等级不大于C25时,表中保护层数值增加5mm。 2.钢筋混凝土基础宜设置混凝土垫层,基础中钢筋的混凝
土保护层厚度应从垫层顶面算起,且不应小于40mm。
4 截面有效高度
►梁的截面有效高度h0为梁截面受压区的外边缘至受拉钢筋合力 点的距离,h0= h–as,as为受拉钢筋合力点至受拉区边缘的距离。
应变图
c max
应力图 M
t max
Mcr
M
y
My
M
xf D
Mu Z
sAs I
ftk sAs Ia
sAs II
fyAs IIa
fyAs III
fyAs=Z IIIa
受力全过程的特点
2 正截面受弯的三种破坏形态
结构、构件和截面的破坏有脆性破坏和延性破 坏两种类型。
脆性破坏:破坏前,变形很小,没有明显的破 坏预兆,突然破坏的,属于脆性破坏类型。
第3章 受弯构件的承载力计算
3.1 受弯构件的一般构造 3.2 受弯构件的正截面承载力计算 ——受弯构件的正截面受力性能试验分析 ——单筋矩形、双筋矩形、T形截面受弯构件正截
面受弯承载力计算 3.3 受弯构件的斜截面承载力计算 3.4 梁内钢筋的构造要求
第3章 受弯构件的承载力计算
教学要求: 1 深刻理解适筋梁正截面受弯全过程的三个阶段 及其应用,了解斜截面破坏类型和主要形态。 2 熟练掌握单筋矩形截面、双筋矩形截面和T形 截面受弯构件的正截面受弯承载力计算。 3 熟练掌握无腹筋梁和有腹筋梁斜截面抗剪承载 力的计算公式及适用条件。 4 了解材料抵抗弯矩图的画法、了解受弯钢筋的 弯起、截断和锚固方法。
相关文档
最新文档