发电厂锅炉过热蒸汽温度控制系统

合集下载

基于组态王温度控制系统

基于组态王温度控制系统

1 / 38摘 要要:过热温度是各种工业锅炉设备的重要参数。

如果过热蒸汽温度过高,则过热器容易损坏,也会使汽轮机内部引起过度的热膨胀严重影响生产运行的安全;过热蒸汽温度偏低,则设备的效率将会降低,同时使通过汽轮机最后几级的蒸汽湿度增加,引起叶片的磨损。

因此,必须控制过热器出口蒸汽温度。

锅炉过热蒸汽温度的控制任务,就是为了维持过热器出口蒸汽温度在允许的范围内,并保护过热器管壁温度不超过允许的工作温度。

内,并保护过热器管壁温度不超过允许的工作温度。

本课题利用智能仪表控制系统,结合组态王监控软件设计人机对话界面,实现锅炉过热蒸汽控制系统设计。

通过对现场系统数据的采集处理,在组态王中实现动画显示、报警处理、流程控制、实时曲线和报表输出等功能。

同时利用智能仪表控制系统,在所设计的组态王监控界面中,进行相关仪表调校和控制器参数整定。

最后向用户提供锅炉过热蒸汽控制系统的动态运行结果。

整定。

最后向用户提供锅炉过热蒸汽控制系统的动态运行结果。

关键词:过热蒸汽温度;智能仪表;组态王过热蒸汽温度;智能仪表;组态王Abstract:Superheated steam temperature is a variety of important industrial boiler equipment parameters, in the production process, the entire path of soft drink is the highest temperature of superheated steam temperature, superheater temperature normal working hours, there are generally closer to the material to allow the maximum temperature, if overheating steam temperature too high, easy to damage superheater and steam turbine will cause excessive internal seriously affected the production of thermal expansion of the safety of operation 。

SMITH预估器技术在火电厂过热汽温控制中的应用优势

SMITH预估器技术在火电厂过热汽温控制中的应用优势

l简介 现代锅 炉的过热器是在高温 、 高压条件下 工作的。锅炉 出口过热蒸汽温度是整个汽水 回 路中工质的最高温度 , 于电厂的安全 、 对 经济运 行有重大的影 响。过热器正常运行 的温度 已接 近钢材允许 的极 限温度 ,强度方面的安全系数 也很小 , 因此, 必须严格地将过热汽温控制在给 定的范围。高 压锅炉过热汽温 的暂时偏差不允 许超过 ±I &C,长期偏差不允许超过 45C, - 这 o 个要求对 于汽温控制系统来说是非常高的。 影响过 热器 出口蒸汽 温度变 化的原 因很 多, 如蒸 汽流量 变化 、 燃烧工 况变化 、 给水 温度 变化、 进入过热器 的蒸汽焓值变化 、 流经过热器 的烟气温度及流速变化 、 锅炉受热面结垢等 , 但 归结起来扰动 主要有 以下几种 : 蒸汽扰动 、 过热 器吸热量 扰动 、 过热器入 口汽温扰动。 这三种扰 动是造成过热器 出口汽温变化的主要原因。 简单的 控制理论 无法保 证锅炉 汽温 的稳 定和平衡 , 应用了 S IH预估 器模 拟控制技术 MT 的串级过热汽温控制 系统在这方面显示出突出 的优势。 2S T MIH预估器模拟控制技术 介绍 在现今所 用的纯迟延补偿方法 中, 密斯 史 算法是最著名 的一种方法。 它是史密斯在 15 97 年提出的。 这是一种 以模型为基础 的方法 , 可以 用以改善大迟延控制系统的控制品质 ,后来 控 制界逐 渐把这种方法称为史密斯预估器。 下面介绍 一种用 于… 阶过程 的史密斯 预 估器算法,该过程可用于一个一阶惯性加纯迟 延的模 型来描述 。 这个过程从 原理 上可分 解为一 个纯惯性 环节和一个纯迟延环节 。如果能设 法将假想 的 变量 B测量 出来 , 那么就可以把 B信号输入 到 调节器 ,这样就把纯迟延环节移到了控制 回路 的外边。 经过迟延时间以后 , 被调量 c将重复 B 同样的变化。 由于反馈信 号 B没有迟延 , 以 所 系统的响应将会大大地改善。 3 S IH预估器模 拟控 制技术 的串级 过 MT 热汽温控 制系统 中的应用 蒸 汽扰动 、 过热器 吸热量 扰动 、 过热器人 口汽温扰 动是造成过热器出 口汽温变化的主要 原因。 当锅炉负荷变化时 , 沿过热器管道整个 长 度各点的温度几乎同时变化 , 其特点是有 滞后 、 有惯性 、 自平衡能力 。当锅炉负荷增 加时 , 有 过 热器出口温度升高。 很 显然 , 当流经过热器的烟气量或烟气 温 度增加时, 过热器 出口汽温也将增加。 在其它条 件都不变 的情况 F, 过热器 人口汽温增 加时, 过 热器出口汽温增加 。 下面介绍 一种典 型的 半级过热 汽温控 制

火电厂热控专业介绍

火电厂热控专业介绍

热控主要设备——DCS控制系统
DCS控制系统——新华XDC800系统
第二部分: 热控专业主要控制系统
1. 自动发电控制系统 automatic generation control System,AGC 机组发电指令由电网调度中心的能量管理系统 来实现遥控自动控制时,则称为自动发电控制 (AGC),实现二次调频。
2. 单元机组协调控制系统 (coordination control system,CCS) 协调控制是单元机组自动控制的核心内容。 3. 锅炉炉膛安全监控系统 (furnace safeguard supervisory system,FSSS)或 称燃烧器管理系统(burner management system,BMS) 炉膛安全监视系统包括炉膛火焰监视,炉膛压力监视, 炉膛吹扫,自动点火,燃烧器自动切换,紧急情况下的主 燃料跳闸等。
36
自动控制系统包括
序号
1 2 3 4 5 6 7 8 9 10 11 12 13
系统名称
协调控制 AGC控制 一次调频 送风量控制 炉膛负压控制 一次风压控制 给粉机控制 一级过热汽温控制 二级过热汽温控制 三级过热汽温控制 再热汽温控制(摆动火嘴) 再热汽温控制(喷水减温) 汽包水位控制
套数
4 1 1 3 2 2 5 1 2 2 1 3 4
31
4. 顺序控制系统 (sequence control system,SCS) 主要用于主机或辅机的自动启停程序控制,以及辅 助系统的程序控制。如汽轮机的自动启停程序控制、 磨煤机自动启停程序控制、定期排污和吹灰的程序 控制等。
32
5. 数据采集系统 (data acquisition system,DAS)
二、调节仪表

锅炉过热蒸汽温度控制系统设计研究毕业设计开题报告

锅炉过热蒸汽温度控制系统设计研究毕业设计开题报告
本课题的主要内容、
重点解决的问题
主要内容:
1、建立被控对象数学模型。
2、基于单片机设计总体方案,进行PID控制规律的选用与数字化。
3、硬件设计,包括单片机输入信号接口电路、外围电路等。
4、软件设计,包括初始化及主程序、控制程序、A/D和D/A转换程序及其他处理程序。
5利用PROTUES仿真。
重点解决的问题:
锅炉是我国工业生产和生活上应用面最广、数量最多的热力设备,是石油化工、发电等工业过程必不可少的重要动力设备,其产物蒸汽不但可以作为蒸馏、干燥、反应、加热等过程的热源,而且还可以作为驱动设备的动力源。
过热蒸汽温度控制是锅炉控制系统不可缺少的重要组成部分,其性能和可靠性已成为保证锅炉安全性和经济性的重要因素。由于锅炉往往负荷变化大,起停频繁,依靠人工操作很难保证其安全、稳定地在经济工况下长期运行。温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,影响了生产安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸,从而造成重大事故。因此,工业过程对锅炉控制系统都有很高的要求,在锅炉运行中,保证过热蒸汽的温度在正常的范围内具有非常重要的意义。
完成论文的初稿;
修改、完善毕业设计并送指导老师审阅;
完成论文的PPT文件,准备毕业答辩。






***同学查阅了大量与课题相关的文献资料,对设计意图和课题意义清
楚明确,设计了初步的研究方案,预见了难点和关键问题,并拟定了工作计划,
为开题做了充分准备。目前已达到开题要求,同意开题。
指导教师签名:
年 月 日
1、了解锅炉过热蒸汽的工艺过程,对被控对象进行分析,设计控制方案。

热工控制系统第八章 汽温控制系统PPT课件

热工控制系统第八章 汽温控制系统PPT课件
输出对输入x1的传递函数:
W X 1 S x y 1 1 S S 1 W T 1 S W W T 1 T S 2 W S T W 2 D S 1 W S D W 1 D S 2 W S D 2 W m S 1 S W Z S
(8-2) (8-3)
对于一个定值系统,扰动造成的影响应该越小越好,而定值部分应尽量保持恒定,因
1 WB 1
W0(s)
θ2
γθ2
上图中对应的主回路广义调节器的传递函数为:
W T2
sW 2B
1
2
1T1isTds
则主回路广义调节器的等效比例带为:
2
2 1 1 2
此时主回路广义调节器中各参数可以通过试验得到的等效被
控对象W0(s)的输出端过热汽温θ2在减温水量WB扰动下的阶跃响 应曲线,按单回路控制系统整定方法进行计算:(P175表6-6)
(8-5)
则有:
W b 2SK zK T 2K fK 2 1 K T 2K fK 2K m 2K z
T 2 1 K T 2K fK 2K m 2K z S 1
令: K b 2 1 K K T z2 K K T 2 fK K 2 fK K m 2 2K z,T b 2 1 K T 2K T f2 K 2K m 2K z
Iθ 2 -
I 2 1 1
内回路
γθ2
W2(s) θ2
主回路原理方框图 如果主调节器为PID调节器,其传递函数为:
WT2
s
1
2
1T1is
Tds
忽略导前区的惯性和迟延,则简化后导前区传递函数为:
W1
s
1
WB
1
1
此时主回路原理方框图可以简化为:

660MW超临界机组过热蒸汽温度的控制系统及运行调整

660MW超临界机组过热蒸汽温度的控制系统及运行调整

660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。

过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。

因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。

关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。

DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。

在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。

2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。

在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。

在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。

图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。

锅炉燃烧系统的控制系统设计毕业论文

锅炉燃烧系统的控制系统设计毕业论文

锅炉燃烧系统的控制系统设计摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。

主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和气温在允许范围内,以确保机组运行的安全性和[1]经济性。

锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可以作为精馏、干燥、反可以作为精馏、干燥、反应、加热等过程的热源。

随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。

在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。

运行。

关键词:锅炉;蒸汽压力;单回路控制;关键词:锅炉;蒸汽压力;单回路控制;ControlsystemdesignoftheboilercombustionsystemAbstract:Theboilerisimportantandbasicequipmentofthethermalpowerplan t,oneofthemainoutputvariableisthemainsteampressure.Thetaskoftheauto maticadjustmentofthemainsteampressureistomaintainthesuperheateroutle ttemperaturewithintheallowablerange,toensurethesafetyandeconomyofth eunitoperation.Theboilersproducehighpressuresteamcanbeusedasasource ofpower-driventurbine,butalsoasadistillation,drying,reaction,heatingandprocesshe atsource.Withindustrialproductionexpanding,asafilterforpowerandheat,b utalsotowardthehigh-capacity,high-parameter,high-efficiencydirection.Inthecontrolalgorithm,theintegrateduseofsingle-loopcontrol,cascadecontrol,ratiocontrol,thecontrolmethodoffuelcontroltoadjustthevaporpressure,airvolumecontroltoadjustthefluegasoxygenconten t,thewindcontrolthefurnacenegativepressure,andeffectivelyovercomeeac hotherdisturbancessothatthewholestabilityofthesystem.Keywords:Boiler;Vaporpressure;Single-loopcontrol引言引言随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。

锅炉燃烧控制系统

锅炉燃烧控制系统

燃气锅炉燃烧控制系统摘要这篇文章主要介绍了锅炉燃烧控制系统的设计过程。

在设计过程中介绍了锅炉燃烧控制系统的控制任务和控制特点,对于燃烧控制系统的设计方案,根据不同的控制任务分别设计了蒸汽压力控制和燃料空气比值控制以及防脱火回火选择性控制系统,并在设计中给出了不同的设计方案,以对比各自的优缺点,选择最优的控制。

然后,把分别设计的控制系统组合起来,构成完整的锅炉燃烧过程控制系统。

最后,对设计好的控制系统进行仪表选型。

关键词:燃气锅炉,燃烧系统,比值控制,脱火回火0引言:大型火力发电机组是典型的过程控制对象,它是由锅炉、汽轮发电机组和辅助设备组成的庞大的设备群。

锅炉的燃烧控制过程是一个复杂的物理,化学过程,影响因素众多,并且具有强耦合,非线性等特性。

锅炉的自动化控制经历了三、四十年代的单参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。

尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到了普及和应用。

电厂锅炉利用煤或煤气的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。

在锅炉燃烧系统中,燃料供给系统,送风系统以及引风系统是燃烧控制系统的重要环节。

锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同时还要保证经济燃烧和锅炉的安全运行。

具体控制任务可分为三个方面:一,稳定蒸汽母管压力。

二,维持锅炉燃烧的最佳状态和经济性。

三,维持炉膛负压在一定范围(-20~-80Pa)。

这三者是相互关联的。

另外,在安全保护系统上应该考虑燃烧嘴背压过高时,可能使燃料流速过高而脱火;燃烧嘴背压太低又可能回火。

本次课程设计的题目为燃气锅炉燃烧控制系统的设计。

主要内容包括燃烧控制系统的概述;燃烧控制系统的基本方案;以及燃烧控制系统的仪表选型。

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统一、作用1、从蒸汽发生器向汽轮机供给蒸汽;2、正常运行时向汽水分离再热器供汽;3、在机组事故冷却时向大气排汽;4、在汽机抽汽未投入时向厂用蒸汽系统供汽;5、在事故时将发生事故的蒸汽发生器隔离;6、防止蒸汽发生器超压。

二、工作原理2.1 主蒸汽系统工作原理主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。

对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。

主蒸汽系统采用“2-1—2”布置。

主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。

发电厂常用的主蒸汽系统有四种形式:(1)集中母管制系统。

其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。

这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。

(2)切换母管制系统。

其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。

它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。

该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。

(3)单元制系统。

其特点是每台锅炉与对应的汽轮机组成一个独立单元,各单元间无母管横向联系,单元内各用汽设备的新蒸汽支管均引自机炉之间的主汽管。

单元制系统的优点是系统简单、管道短、阀门少(引进型300MW级机组有的取消了主汽阀前的电动隔离阀)能节省大量高级耐热合金钢;事故仅限于本单元内,全厂安全可靠性较高;控制系统按单元设计制造,运行操作少,易于实现集中控制;工质压力损失少,散热少,热经济型较高;维护工作量少,费用低;无母管,便于布置,主厂房土建费用少。

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。

锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。

在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。

在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。

本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。

考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。

在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。

关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。

同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。

这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。

为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。

火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。

电厂锅炉简介介绍课件

电厂锅炉简介介绍课件
电厂锅炉简介介绍课 件
contents
目录
• 电厂锅炉概述 • 电厂锅炉系统组成 • 电厂锅炉运行与维护 • 电厂锅炉安全与环保 • 电厂锅炉发展趋势与展望
01
电厂锅炉概述
定义与功能
定义
电厂锅炉是指发电厂中将燃料燃 烧产生的热量转化为蒸汽或热水 的设备。
功能
电厂锅炉的主要功能是将燃料的 化学能转化为蒸汽或热水的热能 ,以满足发电厂的需求。
燃烧设备
包括燃烧器、炉排、送风 机等,用于将燃料高效燃 烧。
排渣除灰
燃烧后的灰渣需及时排出 ,保持锅炉正常运行。
通风系统
送风设备
包括鼓风机、引风机等, 为燃烧提供充足空气。
风量调节
根据燃烧需求,调节送风 量,确保燃烧效率。
烟气处理
对烟气进行除尘、脱硫、 脱硝等处理,降低污染物 排放。
汽水系统
汽包
类型与结构
类型
电厂锅炉有多种类型,包括燃煤锅炉 、燃气锅炉、燃油锅炉等,根据不同 的燃料类型和用途进行选择。
结构
电厂锅炉由燃烧系统、水系统、烟气 系统等组成,各系统协同工作,实现 锅炉的正常运行。
工作原理与流程
工作原理
电厂锅炉的工作原理主要是通过燃烧燃料产生热量,将水加热转化为蒸汽,蒸 汽再推动汽轮机发电。
THANKS
感谢观看
用于汽水分离,产生饱和蒸汽。
过热器
将饱和蒸汽加热成过热蒸汽,供 汽轮机使用。
再热器
对汽轮机高压缸排出的蒸汽进行 再热处理,提高热效率。
控制系统测锅炉运行参数,如压力、温 度、水位等。
在异常情况下,可迅速切断燃料供应 ,停止锅炉运行。
自动控制
通过控制系统自动调节锅炉运行状态 ,确保安全稳定运行。

第五章锅炉蒸汽温度控制系统

第五章锅炉蒸汽温度控制系统

W(s)
K (1 Ts)4
17
第五章 锅炉蒸汽温度控制系统
§5-2 蒸汽温度控制
策略
18
第五章 锅炉蒸汽温度控制系统
一、过热蒸汽温度串级控制
在大型锅炉中,过热 器管道较长,结构亦复杂, 为了改善控制品质,一般 采用分段控制,即将整个 过热器分成若干段,每段 设置一个减温器,分别控 制各段的汽温,以维持主 汽温为给定值。
23
第五章 锅炉蒸汽温度控制系统
3. 串级控制系统主副回路和主副调节器选择
(1) 主副回路的选择原则 1) 副回路应该把生产过程的主要干扰包括在内,力 求把变化幅度最大、最剧烈和最频繁的干扰包括在副回 路内,充分发挥副回路改善系统动态特性的作用,保证 主参数的稳定; 2) 选择副回路时,应力求把尽量多的干扰包括进去, 以尽量减少它们对主参数的影响,提高系统抗干扰能力; 3) 主副对象的时间常数应适当匹配,串级控制系统 与单回路控制系统相比,其工作频率提高了,但这与主 副对象的时间常数选择是有关的。原则是两者相差大一 些,效果好一些。
10
第五章 锅炉蒸汽温度控制系统
有延迟,有惯性, 有自平衡能力。
图5-1 蒸汽量变化与对流过热器及辐射过热 器出口汽温变化的静态特性
图5-2 蒸汽量变化对过热器汽 温的影响
实际生产中,通常把两种过热器结合使用,还增 设屏式过热器,且对流方式下吸收的热量比辐射方式 下吸收的热量要多,因此综合而言,过热器出口汽温 是随流量D的增加而升高的。动态特性如图5-2所示。
15~25。
过热汽温的影响
由于烟气扰动时,过热汽温的动态特性较好,因此可利
用烟气侧的扰动作为控制汽温的手段,例如采用烟气再
循环和改变燃烧器摆角等,但这些控制方法需要锅炉具

发电厂热力系统介绍

发电厂热力系统介绍

第二部分发电厂热力系统介绍仪控技术员,一般从事锅炉、汽机、DCS、外围这几个专业的仪控技术工作。

作为技术员,首先得清楚这台机组的工作流程,也就是热力系统。

我们热工的系统图,也就是在机务的流程图基础上,标注上热工仪表及控制设备。

这一讲我们简单介绍火力发电厂的热力系统及热工设备。

1、系统流程火力发电厂是将燃料(煤、油、天然气)的化学能转变为热能和电能的工厂。

基本的热力系统图见下图:储存在储煤场中的原煤由输煤设备从储煤场送到锅炉的原煤斗中,再由给煤机送到磨煤机中磨成煤粉。

合格的煤粉由热二次风送到锅炉本体的喷燃器,由喷燃器喷到炉膛内燃烧。

燃烧的煤粉放出大量的热能将炉膛四周水冷壁管内的水加热成汽水混合物。

混合物被锅炉汽包内的汽水分离器进行分离(目前一般用汽水分离器、储水箱替代汽包及下降管),分离出的水经下降管送到水冷壁管继续加热,分离出的蒸汽送到过热器,加热成符合规定温度和压力的过热蒸汽,经管道送到汽轮机作功。

过热蒸汽在汽轮机内作功推动汽轮机旋转,汽轮机带动发电机发电,发电机发出的三相交流电通过发电机端部的引线经变压器什压后引出送到电网。

在汽轮机内作完功的过热蒸汽被凝汽器冷却成凝结水,凝结水经凝结泵送到低压加热器加热,然后送到除氧器除氧,再经给水泵送到高压加热器加热后送到锅炉继续进行热力循环。

再热式机组采用中间再热过程,即把在汽轮机高压缸做功之后的蒸汽,送到锅炉的再热器重新加热,使汽温提高到一定温度后,送到汽轮机中压缸继续做功。

2、锅炉主要系统1)汽水系统:锅炉的汽水系统的主要功用是接受燃料的热能,提升介质的热势能,增压增温,完成介质的状态转换。

2)烟风系统:提供锅炉燃烧的氧气,带动干燥的燃料进入炉膛,维持炉膛风压以稳定燃烧。

3)制粉系统:完成燃料的磨碎、干燥。

使之形成具有一定细度和干燥度的燃料,并送入炉膛。

4)其它辅助系统:包括燃油系统、吹灰系统、火检系统、除灰除渣系统等。

3、锅炉主要设备1)锅炉本体:锅炉设备是火力发电厂中的主要热力设备之一。

电厂锅炉蒸汽温度串级控制系统设计

电厂锅炉蒸汽温度串级控制系统设计

本科毕业设计论文题目电厂锅炉蒸汽温度串级控制系统设计专业名称学生姓名指导教师毕业时间毕业设计任务书一、题目电厂锅炉蒸汽温度串级控制系统设计二、指导思想和目的要求通过毕业设计使学生对所学自动化基本知识和专业理论加深理解,掌握工业生产过程控制系统设计和仿真的基本方法,培养独立开展设计工作的能力。

要求在毕业设计中:1.分析研究火力发电厂锅炉蒸汽温度控制要求,特点及控制系统设计方法,设计电厂锅炉蒸汽温度串级控制系统,达到要求的主要技术指标;2.开展控制系统方案论证,建立系统数学模型,进行温度控制系统分析;3.设计串级控制系统控制规律,进行参数整定;4.进行数学仿真,验证设计;5.撰写毕业设计论文。

三、主要技术指标1.350MW机组锅炉过热蒸汽温度保持在00C±;5505在减温水流量变化时,锅炉过热蒸汽温度控制系统能稳定运行,衰减系数9.0ϕ;=75~.02.过程动态性能指标为:1)温度波动最大偏差不超过04C;2)过渡过程时间不大于min2;3. 锅炉稳定运行时,过热蒸汽温度应在给定值的02C范围内四、进度和要求1.1-3周:收集查阅资料;2.4-6周:完成总体方案设计和建模;3.7-8周:完成系统分析和控制规律设计;4.9-11周:完成仿真验证及修改;5.12-13周:完成毕业设计论文.五、主要参考书及参考资料⑴金以慧等,《过程控制》,清华大学出版社,2000年;⑵张栾英,孙万云,《火电厂过程控制》,中国电力出版社,2004年;⑶于希宁,刘红军,《火电场自动控制理论》,中国电力出版社,2004年.学生指导教师系主任电厂锅炉温度串级控制系统设计摘要本文是针对锅炉蒸汽温度控制系统进行的分析和设计,而对锅炉蒸汽的良好控制是保证系统输出蒸汽温度稳定的前提,所以本系统采用串级控制系统,这样可以极大的消除控制系统工作中的各种干扰因素,是系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。

第五讲-主再热蒸汽系统和旁路系统

第五讲-主再热蒸汽系统和旁路系统

描述:冷再热蒸汽从高压汽 轮机的排汽口经一根管道通 往锅炉,靠近锅炉再热器处, 分成两根管道分别接到再热 器入口联箱的两个接口上。
二、单元制主蒸汽及再热蒸汽系统
(二)再热蒸汽系统 3.双管-单管-双管系统 描述:从高压缸(图中略) 两侧排汽口引出两根管道, 汇总成单管,到再热器减 温器前,分成双管进入再 热器进口联箱。 再热热段管道系统, 在锅炉侧双管并成单管和 汽轮机侧单管分成双管处 均用了斜三通,并且靠近 中压联合汽门处串联了两 只斜三通,它们的斜插支 管分别至对称布置的中压 缸再热汽门,后一只斜三 通直通管到低压旁路装置。
特点:介于双管与单管-双管 系统之间。
二、单元制主蒸汽及再热蒸汽系统
(一)主蒸汽系统 4.阀门及管道附件 说明:(1)取消电动主汽门,水压试验时自动主汽门处加临时堵板; (2)取消主蒸汽流量喷嘴,减少节流损失,用调节级前后压差估算; (3)高压缸排汽口设逆止门,投旁路时防止高压缸进汽。 (4)过热蒸汽出口联箱设置向空排汽门,减少安全门动作次数。 (5)再热器出口联箱设置向空排汽门,真空系统故障时开启。
特点:输送工质流量大,参数高,用的金属材料质量高,对发电厂运行的安 全性、可靠性、经济性影响大。
要求:系统简单,工作安全可靠;运行调度灵活,能进行各种切换,便于维 修、安装和扩建;投资费用少,运行费用低。
一、主蒸汽管道系统
1.集中母管制系统 描述:发电厂所有锅炉生产的蒸汽都 送到集中母管中,再由集中母管把蒸 汽引到各汽轮机和辅助用汽设备去的 蒸汽管道系统。
二、单元制主蒸汽及再热蒸汽系统
(一)主蒸汽系统 2.单管-双管系统
描述:过热蒸汽出口联箱 经一根主管引出,到自动 主蒸汽门或中压联合汽门 前又分叉为两根。
特点:布置简单,混温好, 投资较大。

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计⽬录1锅炉⼯艺简介 (1)1.1锅炉的基本结构 (1)1.2⼯艺流程 (2)1.2煤粉制备常⽤系统 (3)2 锅炉燃烧控制 (4)2.1燃烧控制系统简介 (4)2.2燃料控制 (4)2.2.1燃料燃烧的调整 (4)2.2.2燃烧调节的⽬的 (5)2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)2.2.4影响炉内燃烧的因素 (6)2.3锅炉燃烧的控制要求 (11)2.3.1 锅炉汽压的调整 (11)3锅炉燃烧控制系统设计 (14)3.1锅炉燃烧系统蒸汽压⼒控制 (14)3.1.1该⽅案采⽤串级控制来完成对锅炉蒸汽压⼒的控制 (14)3.2燃烧过程中烟⽓氧含量闭环控制 (17)3.2.1 锅炉的热效率 (18)3.2.2反作⽤及控制阀的开闭形式选择 (20)3.2.3 控制系统参数整定 (20)3.3炉膛的负压控制与有关安全保护保护系统 (21)3.3.1炉膛负压控制系统 (22)3.3.2防⽌回⽕的连锁控制系统 (23)3.3.3防⽌脱⽕的选择控制系统 (24)3.4控制系统单元元件的选择(选型) (24)3.4.1蒸汽压⼒变送器选择 (24)3.4.2 燃料流量变送器的选⽤ (24)4 DCS控制系统控制锅炉燃烧 (26)4.1DCS集散控制系统 (26)4.2基本构成 (27)锅炉燃烧系统的控制4.3锅炉⾃动燃烧控制系统 (31)总结 (33)致谢 (34)参考⽂献 (35)1锅炉⼯艺简介1.1锅炉的基本结构锅炉整体的结构包括锅炉本体和辅助设备两⼤部分。

1、锅炉本体锅炉中的炉膛、锅筒、燃烧器、⽔冷壁、过热器、省煤器、空⽓预热器、构架和炉墙等主要部件构成⽣产蒸汽的核⼼部分,称为锅炉本体。

锅炉本体中两个最主要的部件是炉膛和锅筒。

炉膛⼜称燃烧室,是供燃料燃烧的空间。

将固体燃料放在炉排上进⾏⽕床燃烧的炉膛称为层燃炉,⼜称⽕床炉;将液体、⽓体或磨成粉状的固体燃料喷⼊⽕室燃烧的炉膛称为室燃炉,⼜称⽕室炉;空⽓将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,⼜称流化床炉;利⽤空⽓流使煤粒⾼速旋转并强烈⽕烧的圆筒形炉膛称为旋风炉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁工业大学过程控制课程设计(论文)题目:发电厂锅炉过热蒸汽温度控制系统设计院(系):电气工程学院专业班级:自动化093学号: *********学生姓名:指导教师:(签字)起止时间:课程设计(论文)任务及评语院(系):电气工程学院 教研室:注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号090302075 学生姓名 专业班级 自动化093课程设计(论文)题目发电厂锅炉过热蒸汽温度控制系统设计 课程设计(论文)任务课题完成的功能、设计任务及要求、技术参数 进度计划指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计,而对锅炉过热蒸汽的良好控制是保证系统输出蒸汽温度稳定的前提。

所以本设计采用串级控制系统,这样可以极大地消除控制系统工作中的各种干扰因素,使系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。

在本设计用到串级控制系统中,主对象为送入负荷设备的出口温度,副对象为减温器和过热器之间的蒸汽温度。

通过控制减温水的流量来实现控制过热蒸汽温度的目的关键词:串级控制系统;过热蒸汽温度;温度控制;目录第1章绪论 (1)第2章生产工艺概述 (2)2.2过热器的介绍 (3)2.3过热蒸汽温度控制对象的动态特性 (4)第3章过热蒸汽温度控制原理简介 (10)3.1简单蒸汽温度控制系统 (10)3.2复杂蒸汽温度控制系统 (11)3.3采用串级调节系统的条件 (11)3.4串级控制系统的特点 (13)第4章过热蒸汽温度控制系统的设计 (15)4.1系统控制参数的确定 (15)4.1.1主变量的选择 (15)4.1.2副变量的选择 (15)4.1.3操纵变量的选择 (15)4.2执行器的选择 (16)4.3控制仪表的选择 (16)4.3.1温度变送器的选择 (16)4.3.2温度传感器的选择 (16)4.4主、副控制器控制规律的选择 (17)4.5控制器正、反作用选择 (17)第5章系统仿真 (18)5.1串级控制系统MATLAB仿真分析 (18)5.2蒸汽温度控制系统仿真分析 (19)第6章总结 (22)第1章绪论蒸汽温度是锅炉安全高效经济运行的主要参数,因此对蒸汽温度控制要求严格。

过高的蒸汽温度会造成过热器,蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。

锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,而且可靠性也不高。

本次课设设计的主要考虑部分是锅炉蒸汽温度控制系统的设计。

蒸汽过热系统包括一级过热器、减温器、二级过热器。

锅炉汽温控制系统主要包括过热汽和再热蒸汽温度的的调节。

主要蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行时非常重要的。

过热蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超允许的工作温度。

过热蒸汽温度是锅炉汽水系统中的温度的最高点,过热蒸汽温度过高或是过低,对锅炉运行及蒸汽设备是不利的。

蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。

一般规定过热器的温度与规定值的暂时偏差不超过+-10摄氏度,长期偏差不超过+-5摄氏度。

如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。

据估计,温度每降低5摄氏度,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。

一般规定过热气温下限不低于其额定值10 摄氏度。

通常,高参数电厂都要求保持过热汽温在540摄氏度的范围内。

由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下两个方面:1 由于过热器是一个多容且延迟较大的惯性环节,设备结构设计与控制要求存在很多矛盾,所以影响汽温变化的因素很多,例如,蒸汽量、减温水给水量、烟气侧的过剩空气系数和温度等都可能引起汽温变化。

2 随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。

第2章生产工艺概述2.1锅炉生产工艺介绍锅炉是过程工业中必不可少的动力设备。

它所产生的蒸汽不仅可提供生产过程作为热源,而且还可以作为蒸汽透平的动力源。

在热电厂中按锅炉设备所使用的燃料的种类、燃烧设备、锅体形式、锅炉功能和运行要求的不同,锅炉生产有各种不同的流程。

常见锅炉设备的工业流程如图1.1 所示蒸汽发生系统由给水泵、给水调节阀、省煤器、汽包及循环管组成。

燃料和热空气按照一定的比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,生产饱和蒸汽Ds,然后经过过热器成一定气温的过热蒸汽D,汇集至蒸汽母管。

压力为Pm的过热蒸汽,经负荷设备调节阀供给生产负荷使用。

与此同时,燃烧过程中产生烟气,将饱和的蒸汽变成过热蒸汽后,经省煤器预热锅炉预热空气,最后经引风机送往烟筒排入大气。

锅炉设备的控制任务:根据生产负荷的要求,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。

按照这些控制要求,锅炉设备将有如下主要的控制系统:a)锅炉气包水位控制系统:主要是保持汽包内部的水位平衡,使积水量适应锅炉的蒸汽汽量,维持汽包中水位在工艺允许的范围内;b)锅炉燃烧系统的控制:其控制方案要求满足燃烧所产生的热量,适应蒸汽负荷的需要,使燃烧与空气量保持一定的比值,保证燃烧的经济性和锅炉的安全运行,使引风量与送风量相适应,保持炉膛负压在一定范围;c)过热蒸汽系统控制:主要使过热器出口温度在保持在允许范围内,并保证管壁温度不超过工艺允许范围;d)锅炉水处理过程:主要使锅炉给水的水性能指标达到工艺要求。

图1.1锅炉设备主要工艺流程2.2过热器的介绍过热器定义:锅炉中将蒸汽从饱和温度进一步加热至过热温度的部件。

过热器概述:过热蒸汽温度的高低取决于锅炉的压力,蒸发量、刚才的耐高温性能及燃料与刚才的比价等因素,对电站锅炉来说,低压锅炉的温度一般为350~375摄氏度,过热器前布置有大量对蒸汽管束,进入过热器的烟温约在700摄氏度上下,中压锅炉多为烧煤粉或重油的室燃炉,其过热汽温为450摄氏度,这时的炉膛辐射传热的烟温可达1000摄氏度左右。

高压锅炉,尤其超高压锅炉,加热水的热量和过热热量增大很多,而蒸发热减少,当有中间再过热时,情况更为突出,这时必须把一部分过热器受热布置在炉膛内,是吸收部分辐射热。

为了提高电厂热力循环的效率,蒸汽的初参数不断提高。

蒸汽压力的提高要求相应的提高过热蒸汽温度,否则蒸汽在汽轮机膨胀终了的湿度就会过高,影响汽轮机的安全。

但蒸汽温度的增高需受到过热器刚才高湿强度性能的限制,因而采用了中间再热,即高压高温蒸汽在汽轮机内膨胀至某一中间压力后,引到布置在锅炉烟道内的再热器,再一次加热升温,然后又回到汽轮机的中、低压缸,继续膨胀至凝汽器压力,这样蒸汽膨胀终了的湿度可控制在允许的范围内。

超高压机组采用中间再热时,理论上可使循环经济性相对提高6~8%,在实际设备中,由于有压降损失,热经济性的提高比理论值稍低。

由于过热器管壁金属在锅炉受压部件中承受的温度最高,因此必须采用耐高温的优质低碳钢和各种铬合金钢等,在最高的温度部分有时还要用奥氏体铬镍不锈钢。

锅炉运行中如果管子承受的温度超过材料的持久强度、疲劳强度或表面氧化所容许的温度限值,则会发生管子爆裂等事故。

2.3过热蒸汽温度控制对象的动态特性过热蒸汽温度调节对象的动态特性是指引起过热汽温变化的扰动与汽温之间的动态关系。

引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、锅炉给水温度变化、进入过热器的蒸汽温度变化、流经过热器的烟气的温度和流速变化、锅炉受热面结垢、给水母管压力和减温水量等等,这些因素还可能相互制约。

归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。

通过对过热汽温调节对象作阶跃扰动试验,可得到在不同扰动作用下的对象动态特性。

1 蒸汽流量扰动下过热汽温对象的动态特性引起蒸汽流量扰动的原因有两个:一是蒸汽母管的压力变化:二是汽轮机调节阀的开度变化。

结构形式不同的过热器,在相同蒸汽流量的扰动下,汽温变化的特性是不一样的。

当锅炉负荷扰动时,蒸汽流量的变化使沿整个过热器管路长度上各点的蒸汽流速几乎同时改变,从而改变过热器的对流放热系数,使沿整个过热器各点的蒸汽温度几乎同时改变,因而汽温反应较快。

其传递函数可以表示为:(2.1)式中: K棚炉负荷扰动时被控对象的放大系数;T一负荷扰动后对象的滞后时间;TD_对象的时间常数。

从阶跃响应曲线可知,其特点是:有延迟、有惯性、有自平衡能力,但其延迟和惯性都比较小,即时间常数TD和滞后时间T都比较小,且T几较小。

动态特性曲线如图2。

图2锅炉负荷扰动下过热器出口汽温的阶跃响应曲线2烟气热量扰动下过热汽温对象的动态特性烟气传热量扰动引起的原因很多,如给粉机给粉不均匀、煤中水分改变、蒸发受热面结渣、过剩空气系数改变、汽包给水温度变化、燃烧火炽中心位置改变等。

当烟气热量扰动(烟气温度和流速产生变化)时,由于烟气流速和温度的变化也是沿整个过热器同时改变的,因而沿过热器整个长度使烟气传递热量也同时变化,所以汽温反应较快,时间常数和延迟均比其它扰动小。

和蒸汽流量扰动的影响类似,烟气热量的扰动也几乎同时影响过热器管道长度方向各处的蒸汽温度,故它是一个具有自平衡能力、滞后和惯性都不大的对象,其传递函数可表示为一个二阶系统,即:式中:o。

为烟气温度但对象特征总的特点是:有迟延,有惯性,有自平衡能力,其动态特性曲线如图3所示。

图3烟气热量扰动下过热汽温的阶跃响应曲线2过热蒸汽控制系统的控制策略的设计3减温水量扰动下过热汽温对象的动态特性常见的减温方式有两种:喷水式减温和表面式减温,前者的效果比后者好。

减温器一般装在末级过热器高温段前面,一方面保护了过热器高温段;另一方面又改善了调节性能。

这种过热器的安装方法与在饱和侧装设表面式减温器相比,延迟时间能减小1/4。

当减温水流量扰动时,改变了高温过热器入口汽温,从而影响了过热器出口汽温。

在喷水减温过热蒸汽温度调节系统中,喷水量扰动是系统的基本扰动。

从喷水减温的工艺过程可知,以喷水量为输入,过热蒸汽温度为输出,对象具有分布参数的特性,即管内的蒸汽和管壁可视为众多的单容对象串联组成的多容对象,喷水量的变化必须通过这些单容对象,才能影响到过热器出口蒸汽温度。

由于大型锅炉的过热器管路很长,减温水流量扰动时,汽温的反应是较慢的。

相关文档
最新文档