高考物理电磁感应现象专题复习教案

合集下载

高考物理三轮冲刺:电磁感应综合应用+教案

高考物理三轮冲刺:电磁感应综合应用+教案

电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。

高三物理综合实践——电磁感应教案

高三物理综合实践——电磁感应教案

高三物理综合实践——电磁感应教案电磁感应教案一、教学目标1.了解电磁感应的基本概念和本质;2.系统地掌握电磁感应和感应电动势的基本原理和方法;3.能够运用电磁感应原理进行相关实验、检验和分析,并得到正确的结论;4.培养学生分析问题、处理问题的能力,以及综合实践能力。

二、教学重点和难点1.掌握电磁感应的基本概念和本质,能够简单解释电磁感应的原理和基本公式;2.掌握电磁感应和感应电动势的基本原理和方法,能够使用精确的语言和符号来表达和计算;3.进行相关实验、检验和分析,得到正确的结论;4.培养学生分析问题、处理问题的能力,以及综合实践能力。

三、教学内容1.电磁感应基本概念通过引导学生对电磁感应现象进行观察和实验,让学生了解电磁感应的概念和本质。

2.感应电动势基本原理和公式通过对电磁感应知识的整合,让学生系统地掌握感应电动势的基本原理和公式,并运用所学知识进行训和练习。

3.相关实验及分析通过各种实验进行训练,让学生掌握实验技巧和方法。

同时,经过实验和分析,培养学生的综合实践能力和科学素养。

四、教学方法1.教师引导发现性学习教师通过引导,发掘学生能够自己探究的问题,让学生具有自主探究和领悟知识的能力。

2.实验教学实验教学是本次教学的重要方法,让学生能够亲自进行实验,从中体验感性认识和个性化发展。

同时,通过实验,让学生掌握实验方法和技巧,提高实验能力和综合素质。

3.讨论式教学讨论式教学是本次教学中的重要方法,让学生在讨论中积极思考和交流,推动彼此内心的理解和认识。

四、教学安排1.开学之际,进行电磁感应的基本概念的讲解和讨论,让学生能够了解和认识电磁感应的基本概念和现象;2.通过相关的实验,辅助讲解和探究感应电动势的基本原理和公式;3.进行感应电动势的相关实验,检验学生所学知识的掌握程度,并通过讨论、分析等方法,提高学生的思维和分析能力。

五、教学反思与展望本次教学最终达到了预期目标,学生也对电磁感应有了更深刻的了解。

高三物理一轮复习 电磁感应现象应用教学案

高三物理一轮复习 电磁感应现象应用教学案

课题:电磁感应现象应用知识梳理:1.电磁感应中常涉及磁感应强度B 、磁通量、感应电动势和感应电流I 等随时间变化的图线,即B —t图线、φ—t 图线、E —t 图线和I —t 图线。

对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I 等随位移x 变化的图线,即E —x 图线和I —x 图线等。

2.这些图像问题大体上可分为两类:⑴由给定的电磁感应过程选出或画出正确的图像;⑵由给定的有关图像分析电磁感应过程,求解相应的物理量。

注意点: ①画图象时要注意横、纵坐标的单位长度定义或表达。

②在图象中E 、I 、B 等物理量的方向是通过正负值来反映;3.互感现象:当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为 。

如 就是利用互感现象制成。

4.自感现象:导体本身电流发生变化而产生的电磁感应现象叫 现象。

5.自感系数:自感电动势的大小与线圈中电流的变化率△I /△t 成正比,与线圈的自感系数L 成正比.写成公式为E =L tI ∆∆,L 叫自感系数是用来表示线圈的自感特性的物理量。

实验表明,自感系数与 、 、 有关,另外,带有铁芯的线圈的自感系数比没有铁芯时 。

自感系数的单位:亨利。

符号H ,更小的单位有 、 。

1H = mH 1H = μH例题分析:例1.如图所示,电路甲、乙中,电阻R 和自感线圈L 的电阻值都很小,接通S ,使电路达到稳定,灯泡D 发光。

则( )A.在电路甲中,断开S ,D 将逐渐变暗B.在电路甲中,断开S ,D 将先变得更亮,然后渐渐变暗C.在电路乙中,断开S ,D 将渐渐变暗D.在电路乙中,断开S ,D 将变得更亮,然后渐渐变暗例2.如图所示,自感线圈的自感系数很大,电阻为零。

电键K 原来是合上的,在K 断开后,分析: ⑴若R 1>R 2,请分析灯泡的亮度怎样变化?并画出灯泡中的电流随时间变化的图像.⑵若R 1<R 2,请分析灯泡的亮度怎样变化?并画出灯泡中的电流随时间变化的图像.⑴ ⑵例3.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间t 如图2变化时,图3中正确表示线圈感应电动势E 变化的是 ( )例4.水平面上两根足够长的金属导轨平行固定放置,间距为l ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆,金属杆与导轨的电阻忽略不计;匀强磁场竖直向下。

高三第一轮复习电磁感应复习教案精品

高三第一轮复习电磁感应复习教案精品

第九章 电磁感应电磁感应 楞次定律一、电磁感应现象感应电流产生的条件是:穿过闭合电路的磁通量发生变更。

以上表述是充分必要条件。

不管什么状况,只要满意电路闭合和磁通量发生变更这两个条件,就必定产生感应电流;反之,只要产生了感应电流,那么电路肯定是闭合的,穿过该电路的磁通量也肯定发生了变更。

当闭合电路的一局部导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比拟便利。

2.感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变更。

这里不要求闭合。

无论电路闭合与否,只要磁通量变更了,就肯定有感应电动势产生。

这好比一个电源:不管外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

二、右手定那么伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。

三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变更。

( 阻碍⇔原磁场增加时,对抗, 原磁场减小时,补充 )2.对“阻碍〞意义的理解:〔1〕阻碍原磁场的变更。

“阻碍〞不是阻挡,而是“延缓〞〔2〕阻碍的是原磁场的变更,而不是原磁场本身,假如原磁场不变更,即使它再强,也不会产生感应电流.〔3〕阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.〔4〕由于“阻碍〞,为了维持原磁场变更,必需有外力克制这一“阻碍〞而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的表达.3.楞次定律的详细应用从“阻碍相对运动〞的角度来看,楞次定律的这个结论可以用能量守恒来说明:既然有感应电流产生,就有其它能转化为电能。

又由于是由相对运动引起的,所以只能是机械能削减转化为电能,表现出的现象就是“阻碍〞相对运动。

2024届高考一轮复习物理教案(新教材粤教版):法拉第电磁感应定律、自感和涡流

2024届高考一轮复习物理教案(新教材粤教版):法拉第电磁感应定律、自感和涡流

第2讲 法拉第电磁感应定律、自感和涡流目标要求 1.理解法拉第电磁感应定律,会应用E =n ΔΦΔt 进行有关计算.2.会计算导体切割磁感线产生的感应电动势.3.了解自感现象、涡流、电磁驱动和电磁阻尼.考点一 法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:I =ER +r.(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt.1.Φ=0,ΔΦΔt不一定等于0.( √ )2.穿过线圈的磁通量变化越大,感应电动势也越大.( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大.( √ )4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大.( × )对公式E =n ΔΦΔt的理解1.若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt.2.当ΔΦ仅由B 的变化引起时,E =n ΔB ·SΔt,其中S 为线圈在磁场中的有效面积.若B =B 0+kt ,则ΔBΔt=k .3.当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt.4.当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.例1 (2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2.同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρLS 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6 根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR可得电流之比为I 1∶I 2∶I 3=2∶2∶ 3 即I 1=I 2>I 3,故选C.例2 (多选)(2023·广东名校联考)如图甲所示,等边三角形金属框ACD 的边长均为L ,单位长度的电阻为r ,E 为CD 边的中点,三角形ADE 所在区域内有磁感应强度垂直纸面向外、大小随时间变化的匀强磁场,图乙是匀强磁场的磁感应强度B 随时间t 变化的图像.下列说法正确的是( )A .t 0时刻,穿过金属框的磁通量为3B 0L 24B .5t 0时刻,金属框内的感应电流由大变小C .0~5t 0时间内的感应电动势小于5t 0~8t 0时间内的感应电动势D .5t 0~8t 0时间内,A 、E 两点的电势差的绝对值恒为3B 0L 248t 0答案 CD解析 t 0时刻,穿过金属框的磁通量Φ=15B 0×12×12L ×32L =3B 0L 240,A 错误;根据法拉第电磁感应定律可知E =ΔΦΔt ,结合题图乙可知,0~5t 0时间内的感应电动势小于5t 0~8t 0时间内的感应电动势,结合闭合电路欧姆定律可知,5t 0时刻,金属框内的感应电流由小变大,B 错误,C 正确;5t 0~8t 0时间内,A 、E 两点的电势差的绝对值恒为U =I ×12R =ΔΦR Δt ×12R =3B 0L 248t 0,D 正确.考点二 动生电动势1.导体平动切割磁感线产生感应电动势的算式E =BL v 的理解(1)直接使用E =BL v 的条件是:在匀强磁场中,B 、L 、v 三者互相垂直.如果不相互垂直,应取垂直分量进行计算. (2)有效长度公式E =BL v 中的L 为导体两端点连线在垂直于速度方向上的投影长度.如图,导体的有效长度分别为:图甲:L =cd sin β.图乙:沿v 方向运动时,L =MN .图丙:沿v 1方向运动时,L =2R ;沿v 2方向运动时,L =R . (3)相对速度E =BL v 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 2.导体转动切割磁感线如图,当长为L 的导体在垂直于匀强磁场(磁感应强度为B )的平面内,绕一端以角速度ω匀速转动,当导体运动Δt 时间后,转过的弧度θ=ωΔt ,扫过的面积ΔS =12L 2ωΔt ,则E =ΔΦΔt =B ΔS Δt =12BL 2ω(或E =BL v =BL v A +vC 2=BL ωL 2=12BL 2ω).1.公式E =BL v 中的L 是导体棒的总长度.( × )2.磁场相对导体棒运动,导体棒中也可能产生感应电动势.( √ ) 考向1 有效长度问题例3 如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差U ab 为( )A.2BR vB.22BR v C .-24BR v D .-324BR v答案 D解析 有效切割长度即a 、b 连线的长度,如图所示由几何关系知有效切割长度为2R ,所以产生的电动势为E =BL v =B ·2R v ,电流的方向为a →b ,所以U ab <0,由于在磁场部分的阻值为整个圆的14,所以U ab =-34B ·2R v =-324BR v ,故选D.考向2 平动切割磁感线例4 (多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 答案 BC解析 由题图(b)可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2 m/s =0.5 m/s ,选项B 正确;由题图(b)可知,cd 边切割磁感线产生的感应电动势E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5 T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.考向3 转动切割磁感线例5 (多选)金属棒ab 长度L =0.5 m ,阻值r =1 Ω,放在半径分别为r 1=0.5 m 和 r 2=1.0 m 的水平同心圆环导轨上,两圆环之间有竖直向上的匀强磁场,磁感应强度为B =2 T ;从两圆环下端引出导线连接一阻值为R =2 Ω的电阻,ab 在外力作用下以角速度ω=4 rad/s 绕圆心顺时针(从上往下看)做匀速圆周运动,不计圆环导轨的电阻和一切摩擦,下列说法正确的是( )A .a 点的电势高于b 点的电势B .电阻R 两端的电压为2 VC .在金属棒旋转一周的时间内,金属棒上产生的焦耳热为π4 JD .在金属棒旋转半周的时间内,金属棒上产生的焦耳热为π4 J答案 ABD解析 由右手定则可知,金属棒顺时针转动时,感应电流方向由b 到a ,金属棒充当电源,则a 点的电势高于b 点的电势,故A 正确;金属棒产生的感应电动势E =BLω·r 1+r 22=3 V ,则电阻R 两端的电压为U R =R R +r·E =2 V ,故B 正确;金属棒旋转半周的时间t ′=πω=π4 s ,通过的电流I =E R +r=1 A ,产生的焦耳热为Q =I 2rt ′=π4 J ,故C 错误,D 正确.考点三 自感现象1.概念:当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势.这种现象称为自感,由于自感而产生的感应电动势叫作自感电动势. 2.表达式:E =L ΔIΔt.3.自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.1.线圈中电流越大,自感系数也越大.(×)2.对于同一个线圈,电流变化越快,线圈中的自感电动势也越大.(√) 3.自感电动势总是阻止原电流的变化.(×)通电自感和断电自感的比较电路图器材要求A1、A2同规格,R=R L,L较大L很大(有铁芯)通电时在S闭合瞬间,灯A2立即亮起来,灯A1逐渐变亮,最终一样亮灯A立即亮,然后逐渐变暗达到稳定断电时回路电流减小,灯泡逐渐变暗,A1电流方向不变,A2电流反向①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况下灯泡中电流方向均改变总结自感电动势总是阻碍原电流的变化例6(2023·湖南省长郡中学模拟)某同学想对比自感线圈和小灯泡对电路的影响,他设计了如图甲所示的电路,电路两端电压U恒定,A1、A2为完全相同的电流传感器.先闭合开关K 得到如图乙所示的i-t图像,等电路稳定后,断开开关(断开开关的实验数据未画出).下列关于该实验的说法正确的是()A.闭合开关时,自感线圈中电流为零,其自感电动势也为零B.图乙中的a曲线表示电流传感器A2测得的数据C.断开开关时,小灯泡会明显闪亮后逐渐熄灭D.t1时刻小灯泡与线圈的电阻相等答案 D解析闭合开关时,其线圈自感电动势等于电源电动势,自感线圈中电流为零,故A错误;A2中电流等于自感线圈中电流,自感线圈中电流从零开始逐渐增大,最后趋于稳定,故A2中数据应为题图乙中b曲线,故B错误;断开开关前,两支路中电流相等,刚断开开关时,回路中的电流不变,故灯泡不会发生明显闪亮,而是逐渐熄灭,故C错误;t1时刻,两支路中电压相等,电流相等,则电阻相等,即小灯泡与线圈的电阻相等,故D正确.分析自感问题的三个技巧考点四涡流电磁阻尼和电磁驱动1.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在非均匀磁场中运动时,金属块内产生的漩涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.2.电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动.3.电磁驱动如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力而运动起来.1.电磁阻尼体现了能量守恒定律.(√)2.电磁阻尼阻碍相对运动,电磁驱动促进二者相对运动.(×)例7如图所示,关于涡流的下列说法中错误的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁炉锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流答案 B例8(2023·广东深圳市建文外国语学校模拟)如图是汽车上使用的电磁制动装置示意图.电磁制动是一种非接触的制动方式,其原理是当导体在通电线圈产生的磁场中运动时,会产生涡流,使导体受到阻碍运动的制动力.下列说法正确的是()A.制动过程中,导体不会产生热量B.如果导体反向转动,此装置将不起制动作用C.制动力的大小与线圈中电流的大小无关D.线圈中电流一定时,导体运动的速度越大,制动力就越大答案 D解析电磁制动的原理是当导体在通电线圈产生的磁场中运动时,会产生涡流,电流流过导体时会产生热量,A错误;如果改变线圈中的电流方向,铁芯产生的磁感线的方向反向,此时产生的涡流方向也相反,电流和磁场方向同时反向,安培力方向不变,故仍使导体受到阻碍运动的制动力,B错误;线圈中电流越大,则产生的磁场越强,转盘转动产生的涡流越强,则制动器对转盘的制动力越大,C错误;线圈电流一定时,导体运动的速度越大,转盘转动产生的涡流越强,制动力就越大,D正确.课时精练1.如图所示,在某次阅兵盛典上,我国预警机“空警-2000”在通过天安门上空时机翼保持水平,以4.5×102 km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场向下的竖直分量大小为4.7×10-5 T,则()A .两翼尖之间的电势差为2.9 VB .两翼尖之间的电势差为1.1 VC .飞机左方翼尖的电势比右方翼尖的电势高D .飞机左方翼尖的电势比右方翼尖的电势低 答案 C解析 飞机的飞行速度为 4.5×102 km/h =125 m/s ,飞机两翼尖之间的电动势为E =Bl v =4.7×10-5×50×125 V ≈0.29 V ,A 、B 项错误;飞机从东向西飞行,磁场竖直分量向下,根据右手定则可知,飞机左方翼尖的电势高于右方翼尖的电势,C 项正确,D 项错误. 2.(2022·江苏卷·5)如图所示,半径为r 的圆形区域内有垂直于纸面的匀强磁场,磁感应强度B 随时间t 的变化关系为B =B 0+kt ,B 0、k 为常量,则图中半径为R 的单匝圆形线圈中产生的感应电动势大小为( )A .πkr 2B .πkR 2C .πB 0r 2D .πB 0R 2答案 A解析 由题意可知磁场的变化率为ΔB Δt =kt t =k ,根据法拉第电磁感应定律可知E =ΔΦΔt =ΔB πr 2Δt =k πr 2,故选A.3.(2023·广东广州市模拟)如图所示,电路中A 、B 是规格相同的灯泡,L 是电阻可忽略不计的自感线圈,那么( )A .合上S ,A 、B 一起亮,然后A 变暗,最后熄灭 B .合上S ,B 先亮,A 逐渐变亮,最后A 、B 一样亮C .断开S ,A 立即熄灭,B 由亮变暗,最后熄灭D.断开S,A、B同时熄灭答案 A解析合上S,线圈中电流要增加,会产生自感电动势,故只能缓慢增加,所以A、B一起亮,然后A变暗,最后熄灭,B更亮,故A正确,B错误;断开S,线圈中电流要减小,会产生自感电动势,故只能缓慢减小,通过灯泡A构成回路,所以B立即熄灭,A闪亮一下后熄灭,故C、D错误.4.(2023·广东省模拟)在油电混合小轿车上有一种装置,刹车时能将车的动能转化为电能,启动时再将电能转化为动能,从而实现节能减排.图中,甲、乙磁场方向与轮子的转轴平行,丙、丁磁场方向与轮子的转轴垂直,轮子是绝缘体,则采取下列哪个措施,能有效地借助磁场的作用,让转动的轮子停下()A.如图甲,在轮上固定如图绕制的线圈B.如图乙,在轮上固定如图绕制的闭合线圈C.如图丙,在轮上固定一些细金属棒,金属棒与轮子转轴平行D.如图丁,在轮上固定一些闭合金属线框,线框长边与轮子转轴平行答案 D解析题图甲和题图乙中当轮子转动时,穿过线圈的磁通量都是不变的,不会产生感生电流,则不会有安培力阻碍轮子的运动,选项A、B错误;题图丙中在轮上固定一些细金属棒,当轮子转动时会产生感应电动势,但是不会形成感应电流,则也不会产生安培力阻碍轮子转动,选项C错误;题图丁中在轮上固定一些闭合金属线框,线框长边与轮子转轴平行,当轮子转动时会产生感应电动势,形成感应电流,则会产生安培力阻碍轮子转动,使轮子很快停下来,选项D正确.5.(2023·广东深圳市模拟)电磁阻尼可以无磨损地使运动的线圈快速停下来.如图所示,扇形铜框abcd在绝缘细杆作用下绕转轴O在同一水平面内快速逆时针转动,虚线把圆环分成八等份,扇形铜框恰好可以与其中一份重合.为使线框快速停下来,实验小组设计了以下几种方案,其中虚线为匀强磁场的理想边界,边界内磁场大小均相同,其中最合理的是()答案 C解析扇形铜框逆时针转动时,对于A、D选项,通过铜框的磁通量不发生变化,无感应电流产生,则线圈不会受到安培力作用;对于B、C选项,通过铜框的磁通量发生变化,产生感应电流,B项的铜框只有单边ad或bc受到安培力作用,而C项的铜框ad边、bc边同时受到安培力作用,所以最合理的是C选项.6.(多选)(2023·湖北省模拟)如图所示,在距地面高h=1.25 m处固定有两根间距为l=0.5 m 水平放置的平行金属导轨,导轨的左端接有电源E,右端边缘处静置有一长l=0.5 m、质量m=0.2 kg、电阻R=5.0 Ω的导体棒ab,导体棒所在空间有磁感应强度大小B=1.0 T、方向竖直向上的匀强磁场.闭合开关后,导体棒ab以某一初速度水平向右抛出,已知导体棒落地点到抛出点的水平距离d=2.5 m,重力加速度g=10 m/s2,则()A.在空中运动过程中,导体棒a端的电势低于b端的电势B.导体棒抛出时的初速度大小为5 m/sC.在空中运动过程中,导体棒上产生的感应电动势大小恒定D.在空中运动过程中,导体棒的速度逐渐变大,棒上产生的感应电动势增大答案BC解析由右手定则可知,导体棒在空中运动过程中,在水平方向上要切割磁感线,从而产生感应电动势,但无感应电流,不受安培力,故导体棒在平抛运动过程中水平方向上的速度v0不变,由E =Bl v 0可知,导体棒上产生的感应电动势大小不变,且a 端电势高于b 端电势,故A 、D 错误,C 正确;导体棒从抛出到落地的时间为t =2h g =0.5 s ,故导体棒做平抛运动的初速度v 0=d t=5 m/s ,故B 正确. 7.(多选)如图所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的范围足够大的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是( )A .CD 段直导线不受安培力B .CD 段直导线受安培力C .感应电动势最大值E m =2Ba vD .感应电动势平均值E =14πBa v 答案 BD解析 由楞次定律可知,感应电流始终沿逆时针方向,由左手定则判断,CD 段直导线所受安培力始终向下,A 错误,B 正确;当线框有一半进入磁场时,切割磁感线的有效长度最大,最大感应电动势为E m = Ba v ,C 错误;根据法拉第电磁感应定律可得,平均感应电动势E=BS Δt =B ·πa 222a v=14πBa v ,D 正确.8.(多选)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场.长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO ′上,随轴以角速度ω匀速转动.在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态.已知重力加速度为g ,不计其他电阻和摩擦,下列说法正确的是( )A .电阻R 两端的电势差为12Br 2ωB .微粒的电荷量与质量之比为2gd Br 2ωC .电阻消耗的电功率为πB 2r 4ω2RD .若增大角速度ω和电阻R 的阻值,微粒有可能仍保持静止状态答案 AB解析 如图所示,金属棒绕OO ′轴切割磁感线转动,棒产生的电动势即为电阻R 两端的电势差,E =Br ·ωr 2=12Br 2ω,故A 正确;电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则q E d =mg ,即q m =dg E =dg 12Br 2ω=2dg Br 2ω,故B 正确;电阻消耗的功率P =E 2R =B 2r 4ω24R,故C 错误;若增大角速度ω,则电动势增大,即电容器的电压E ′增大,q E ′d>mg ,则微粒向上运动,故D 错误. 9.(多选)(2023·广东深圳市光明区高级中学模拟)发光竹蜻蜓是一种常见的儿童玩具.某同学对竹蜻蜓的电路作如下简化:如图所示,导电圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω逆时针(俯视)匀速转动.圆环上接有三根金属辐条OP 、OQ 、OR ,辐条互成120°角.在圆环左半部分张角也为120°角的范围内(两条虚线之间)分布着垂直圆环平面向下、磁感应强度大小为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(二极管)相连.除LED 灯电阻外,其他电阻不计.下列说法中正确的是( )A .若OP 棒进入磁场中,P 点电势小于O 点电势B .金属辐条在磁场中旋转产生的是正弦式交变电流C .若导电圆环顺时针转动(俯视),也能看到LED 灯发光D .角速度比较大时,能看到LED 灯更亮答案 AD解析 由右手定则可知OP 切割磁感线产生的感应电流在OP 辐条上从P 流向O ,则OP 为电源时O 为正极,P 为负极,所以P 点电势小于O 点电势,故A 正确;金属辐条在磁场中旋转产生的感应电流大小和方向都恒定,为直流电,故B 错误;导电圆环顺时针(俯视)转动产生的感应电流与逆时针转动时产生的感应电流方向相反,逆时针转动时二极管发光,由二极管的单向导电性可知顺时针转动时二极管不发光,故C 错误;假设辐条长度为L ,辐条切割磁感线产生的感应电动势大小为E =BL v =BL ωL 2=BωL 22, 可知角速度变大时,感应电动势变大,感应电流变大,则LED 灯更亮,故D 正确.10.(2022·重庆卷·13)某同学以金属戒指为研究对象,探究金属物品在变化磁场中的热效应.如图所示,戒指可视为周长为L 、横截面积为S 、电阻率为ρ的单匝圆形线圈,放置在匀强磁场中,磁感应强度方向垂直于戒指平面.若磁感应强度大小在Δt 时间内从0均匀增加到B 0,求:(1)戒指中的感应电动势和电流;(2)戒指中电流的热功率.答案 (1)B 0L 24πΔt B 0LS 4πρΔt (2)B 02L 3S 16π2ρ(Δt )2解析 (1)设戒指环的半径为r ,则有L =2πr磁感应强度大小在Δt 时间内从0均匀增加到B 0,产生的感应电动势为E =B 0Δt·πr 2 可得E =B 0L 24πΔt戒指的电阻为R =ρL S则戒指中的感应电流为I =E R =B 0LS 4πρΔt(2)戒指中电流的热功率为P =I 2R =B 02L 3S 16π2ρ(Δt )2.11.(2023·广东广州市第七中学月考)如图甲所示,ACD 是固定在水平面上的半径为2r 、圆心为O 的金属半圆弧导轨,EF 是半径为r 、圆心也为O 的半圆弧,在半圆弧EF 与导轨ACD 之间的半圆环区域内存在垂直导轨平面向外的匀强磁场,磁感应强度大小为B ,B 随时间t 变化的图像如图乙所示.OA 间接有电阻P ,金属杆OM 可绕O 点转动,M 端与轨道接触良好,金属杆OM 与电阻P 的阻值均为R ,其余电阻不计.(1)0~t 0时间内,OM 杆固定在与OA 夹角为θ1=π3的位置不动,求这段时间内通过电阻P 的感应电流大小和方向;(2)t 0~2t 0时间内,OM 杆在外力作用下以恒定的角速度逆时针转动,2t 0时转过角度θ2=π3到达OC 位置,求电阻P 在这段时间内产生的焦耳热Q .答案 (1)πB 0r 24t 0R 方向为A →O (2)π2B 02r 416t 0R解析 (1)0~t 0时间内的感应电动势E 1=ΔΦΔt =ΔB Δt ·S 1其中ΔB Δt =B 0t 0S 1=16·π(2r )2-16πr 2=πr 22感应电流I 1=E 12R联立解得I 1=πB 0r 24t 0R由楞次定律可判断通过电阻P 的感应电流方向为A →O .(2)t 0~2t 0时间内,OM 转动的角速度为ω=π3t 0感应电动势为E 2=B 0r v其中v =ωr +2ωr 2又I 2=E 22R则电阻P 在这段时间内产生的焦耳热Q =I 22Rt 0联立得Q=π2B02r416t0R.。

高考物理课程复习:电磁感应现象 楞次定律

高考物理课程复习:电磁感应现象 楞次定律
第十一章 第1节 电磁感应现象 楞次定律
内பைடு நூலகம்
01 强基础 增分策略


02 增素能 精准突破

【课程标准】
1.收集资料,了解电磁感应现象的发现过程,体会科学探索中科学思想和科 学态度的重要作用。 2.通过实验,探究并了解感应电流产生的条件。探究影响感应电流方向的 因素,理解楞次定律。 3.理解法拉第电磁感应定律。通过实验,了解自感现象和涡流现象。能举 例说明自感现象和涡流现象在生产生活中的应用。 4.能分析电磁感应中的电路、动力学、能量、动量问题以及生产生活中 的应用
解析 同时增大B1减小B2,向里的磁通量增大,根据楞次定律,产生逆时针方 向感应电流,选项A错误;同时减小B1增大B2,向外的磁通量增大,根据楞次 定律,产生顺时针感应电流,选项B正确;同时以相同的变化率增大B1和B2或 者以相同的变化率减小B1和B2,磁通量不变,没有感应电流,选项C、D错误。
3.(多选)两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导 体环。当A以如图所示的方向绕中心转动的角速度大小发生变化时,B中 产生如图所示方向的感应电流。则( ) A.A可能带正电且转速增大 B.A可能带正电且转速减小 C.A可能带负电且转速减小 D.A可能带负电且转速增大
旁栏边角 人教版教材选择性必修第二册P27 阅读“科学方法”——归纳推理 楞次定律中“阻碍”的含义可以归纳为:感应电流的效果总是阻碍引起感应 电流的原因。列表说明如下:
阻碍原磁通
使回路面积有扩大或缩 阻碍原电流

阻碍相对运动——
量变化——“
小的趋势——“增缩减 的变化——“

“来拒去留”
增反减同”
答案 AD 解析 B环不闭合,磁铁插向B环时,产生感应电动势,不产生感应电流,环不受 力,横杆不转动,故B、C错误;A环闭合,磁铁插向A环时,环内产生感应电流, 环受到磁场的作用,横杆转动,故A、D正确。

2023最新-高三物理教案电磁感应(优秀8篇)

2023最新-高三物理教案电磁感应(优秀8篇)

高三物理教案电磁感应(优秀8篇)教学成效考评只能以教学过程前后的变化以及对学生作业的科学测量为依据。

这次漂亮的小编为您带来了高三物理教案电磁感应(优秀8篇),希望能够给予您一些参考与帮助。

物理电磁感应教案篇一教学目标1、知道电磁感应现象,知道产生感应电流的条件。

2、会运用楞次定律和左手定则判断感应电流的方向。

3、会计算感应电动势的大小(切割法、磁通量变化法)。

4、通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。

教学重点、难点分析1、楞次定律、法拉第电磁感应定律是电磁感应一章的重点。

另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。

2、在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。

同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。

3、电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。

关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。

4、电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系。

但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。

电磁感应专题复习

电磁感应专题复习

【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。

及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

高三物理第一轮复习教学案(电磁感应)原创的

高三物理第一轮复习教学案(电磁感应)原创的

高三物理总复习教案十三、电磁感应第一课时:电磁感应现象 楞次定律一、知识要点:1.电磁感应现象及产生感应电流的条件:2.感应电流的方向确定――楞次定律:(1)阻碍的是原磁通量的变化,而不是原磁场本身,如果原磁通不变化,即使它再强,也不会产生感应电流.(2)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动,将和磁体运动同向,以阻碍其相对运动.(3)由于“阻碍”,为了维持原磁通的变化,必须有外力克服这一“阻碍”做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的应用步骤:①确定原磁场方向; ②判定原磁通如何变化;③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。

二、例题分析:1.【96全国】一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为:【 】位置Ⅰ 位置ⅡA .逆时针方向 逆时针方向B .逆时针方向 顺时针方向C .顺时针方向 顺时针方向D .顺时针方向 逆时针方向2.如图所示,ab 是一个可绕垂直于纸面的轴O 转动的闭合矩形导线框,当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸内看,线框ab 将:【 】A .保持静止不动B .逆时针转动C .顺时针转动D .发生转动,但电源极性不明,无法确定转动方向3.如图所示装置中,cd 杆原来静止。

当ab 杆做如下那些运动时,cd 杆将向右移动?【 】A .向右匀速运动B .向右加速运动C .向左加速运动D .向左减速运动4.如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有匀强磁场。

以下哪些情况下abcd 中有感应电流产生?方向如何? A .将abcd 向纸外平移 B .将abcdC .将abcd 以ab 为轴转动60°D .将abcd 以cd5.如图所示,有两个同心导体圆环。

高三物理电磁感应考点讲解与应对教案

高三物理电磁感应考点讲解与应对教案

高三物理电磁感应考点讲解与应对教案一、教学目标:1.掌握电磁感应原理和法拉第电磁感应定律的理论知识;2.理解变化磁通量对电动势的影响,并能够应用法拉第电磁感应定律解决实际问题;3.能够熟练掌握感应电动势的公式、有关知识和计算方法;4.了解具有环路的变化磁通量的电动势;5.了解变压器原理和应用。

二、教学重点:1.电磁感应原理和法拉第电磁感应定律的理论知识;2.变化磁通量对电动势的影响,掌握相应计算方法;3.感应电动势的计算公式及其应用。

三、教学难点:1.理解感应电动势的来源;2.应用法拉第电磁感应定律解决实际问题。

四、教学方法:1.讲解法;2.举例分析;3.练习演算。

五、教学内容:1.电磁感应原理和法拉第电磁感应定律电磁感应现象是当磁场的磁通量发生变化时,在导体中出现感应电动势,它是电磁学的重要现象之一。

弗朗茨·韦伯和约瑟夫·亨利等多位科学家在电磁感应方面做了大量研究,最终证实了这一现象,并提出了完整的电磁感应理论。

法拉第电磁感应定律说明了感应电动势的大小与变化率成正比。

若变化磁通量Φ发生变化,时间为Δt,则感应电动势emf等于变化磁通量Φ的变化率:emf= -dΦ/dt。

其中的负号是因为根据楼恒定定律,感应电动势总是会产生与它形成相反的电流。

2.变化磁通量对电动势的影响当磁通量Φ改变的速度变化时,电动势emf的大小和方向也会改变。

例如,当一个导体在磁场中移动时,磁通量Φ会发生变化,并且将导致感应电动势emf产生。

要计算感应电动势的大小,需要知道变化磁通量Φ的变化率,即dΦ/dt的值。

如果变化越快,emf的幅值也就越大。

换句话说,感应电动势与变化磁通量的速率成正比。

3.感应电动势的计算公式及其应用感应电动势通常由以太极搜索线圈的变化磁通量引起的。

感应电动势的大小可以通过以下公式进行计算:emf= -N(dΦ/dt)。

其中,N是线圈的匝数,dΦ/dt是磁通量的变化率,结果用伏(V)表示。

高中物理——电磁感应现象详解教案

高中物理——电磁感应现象详解教案

高中物理——电磁感应现象详解教案电磁感应现象详解教案一、教学目标:1.技能目标:(1)了解电磁感应现象的相关定义概念,明确电磁感应现象与电路中的关系以及电磁感应的应用。

(2)掌握法拉第电磁感应定律以及其应用。

(3)了解二次电流的概念和发现二次电流的条件。

2.知识目标:(1)通过本节课程的学习,学生将学习到电磁感应现象的相关知识,包括电磁感应现象的产生、电磁感应现象的应用以及法拉第电磁感应定律的应用等。

(2)了解电路中电磁感应现象的相关知识,包括自感和互感的概念、电感的作用以及变压器的工作原理等。

二、教学重点:1.理解电磁感应现象的产生原理以及其应用。

2.掌握法拉第电磁感应定律及其应用。

3.掌握电路中电磁感应现象的相关知识。

三、教学难点:1.理解电路中电磁感应现象的产生原理以及其应用2.了解电感的作用以及变压器的工作原理。

四、教学方法:1.课堂讲授法2.实验教学法3.讨论分析法五、教学内容1.电磁感应的概念及其应用电磁感应是指当导体中的磁通量发生改变时,导体内就会出现感生电动势,产生电磁感应电流,这种现象称为电磁感应现象。

电磁感应现象被广泛应用于电子、通信、能源和化工等领域。

2.法拉第电磁感应定律及其应用法拉第电磁感应定律是指导体中感生电动势的大小与导体与磁场的相对运动速度以及磁场的强度有关。

具体数学表达式为:$\mathrm{E}=-\frac{\mathrm{d}\varPhi}{\mathrm{d}t}$。

其中,$\mathrm{E}$为感生电动势的大小,$\varPhi$为磁通量的大小,$\mathrm{d}\varPhi$为磁通量的微小变化量,$\mathrm{d}t$为时间的微小变化量。

应用方面,法拉第电磁感应定律可以用于解释自感电路和互感电路中的现象,推导变压器方程,以及检验电磁波的自相似性等。

3.电路中电磁感应现象的相关知识电路中的电磁感应现象包括自感和互感。

自感是指当电流在导体中发生变化时,导体内会自感到一定的电动势,阻碍电流的变化,这种现象称为自感现象。

高三物理电磁感应教案

高三物理电磁感应教案

高三物理电磁感应教案高三物理电磁感应教案【教学目标】1、知识与技能:(1)、知道感应电动势,及决定感应电动势大小的因素。

(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、。

(3)、理解法拉第电磁感应定律的内容、数学表达式。

(4)、知道E=BLvsinθ如何推得。

(5)、会用解决问题。

2、过程与方法(1)、通过学生实验,培养学生的动手能力和探究能力。

(2)、通过推导闭合电路,部分导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。

3、情感态度与价值观(1)、从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。

(2)、通过比较感应电流、感应电动势的特点,引导学生忽略次要矛盾、把握主要矛盾。

【教学重点】法拉第电磁感应定律。

【教学难点】感应电流与感应电动势的产生条件的区别。

【教学方法】实验法、归纳法、类比法【教具准备】多媒体课件、多媒体电脑、投影仪、检流计、螺线管、磁铁。

【教学过程】一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么?答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。

2、恒定电流中学过,电路中存在持续电流的条件是什么?答:电路闭合,且这个电路中一定有电源。

3、在发生电磁感应现象的情况下,用什么方法可以判定感应电流的方向?答:由楞次定律或右手定则判断感应电流的方向。

二、引入新课1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?答:既然有感应电流,那么就一定存在感应电动势.只要能确定感应电动势的大小,根据闭合电路欧姆定律就可以确定感应电流大小了.2、问题2:如图所示,在螺线管中插入一个条形磁铁,问①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么?答:有,因为磁通量有变化②、有感应电流,是谁充当电源?答:由恒定电流中学习可知,对比可知左图中的虚线框内线圈部分相当于电源。

高三物理复习教案:电磁感应

高三物理复习教案:电磁感应

高三物理复习教案:电磁感应教学目标:1. 理解电磁感应的基本原理2. 掌握电磁感应的公式和计算方法3. 了解电磁感应在生活和工业中的应用教学重点:1. 电磁感应的基本原理2. 电磁感应的公式和计算方法教学难点:1. 理解电磁感应的原理和机制2. 运用电磁感应公式解决实际问题教学准备:1. 教师准备:教学课件、实验装置、相关实物模型、多媒体设备2. 学生准备:教科书、笔记本、计算器教学过程:Step 1: 引入新知识教师向学生介绍电磁感应的概念,并提问学生对电磁感应的了解和应用。

通过引入实际案例或实验现象,激发学生的学习兴趣和思考。

Step 2: 理解电磁感应的原理教师通过示意图或实物模型向学生解释电磁感应的原理,包括自感应和互感应的概念。

引导学生理解磁感线剪切导体产生感应电动势的机制。

Step 3: 学习电磁感应的公式和计算方法教师向学生介绍电磁感应的公式和计算方法,包括法拉第电磁感应定律的公式表达和计算应用。

通过例题和实例演示,让学生掌握基本的计算方法和技巧。

Step 4: 练习和巩固教师布置一些练习题让学生自主练习,然后进行答疑和讲解。

通过讲解过程,强调常见的错误和易混淆的知识点,加深学生对电磁感应的理解和记忆。

Step 5: 应用和拓展教师介绍电磁感应在生活和工业中的应用,如电磁感应发电机、变压器等。

让学生思考和讨论其他相关应用,并鼓励他们进行进一步的探究和研究。

Step 6: 实验展示和讨论教师进行相关的实验展示,通过实验现象和数据,让学生进一步理解电磁感应的原理和公式。

引导学生进行实验数据的分析和讨论,提高他们的实验能力和科学思维。

Step 7: 总结和评价教师对本节课的内容进行总结,并对学生的学习情况进行评价。

鼓励学生总结和归纳电磁感应的关键知识点,并指导他们进行复习和强化练习。

Step 8: 课后作业教师布置适量的课后作业,包括练习题、课外阅读或实验报告等。

鼓励学生主动思考和解决问题,加深对电磁感应的理解和掌握。

高三物理教案电磁感应(优秀4篇)

高三物理教案电磁感应(优秀4篇)

高三物理教案电磁感应(优秀4篇)物理电磁感应教案篇一[要点导学]1. 这一节学习法拉第电磁感应定律,要学会感应电动势大小的计算方法。

这部分内容和楞次定律是本章的两大重要内容,应该高度重视。

2. 法拉第电磁感应定律告诉我们电路中产生感应电动势的大小跟成正比。

若产生感应电动势的电路是一个有n匝的线圈,且穿过每匝线圈的磁感量变化率都相同,则整个线圈产生的感应电动势大小E= 。

3. 直导线在匀强磁场中做切割磁感线的运动时,如果运动方向与磁感线垂直,那么导线中感应电动势的大小与、和三者都成正比。

用公式表示为E= 。

如果导线的运动方向与导线本身是垂直的,但与磁感线方向有一夹角,我们可以把速度分解为两个分量,垂直于磁感线的分量v1=vsin,另一个平行于磁感线的分量不切割磁感线,对感应电动势没有贡献。

所以这种情况下的感应电动势为E=Blvsin。

4.应该知道:用公式E=n/t计算的感应电动势是平均电动势,只有在电动势不随时间变化的情况下平均电动势才等于瞬时电动势。

用公式E=Blv计算电动势的时候,如果v是瞬时速度则电动势是瞬时值;如果v是平均速度则电动势是平均值。

5.公式E=n/t是计算感应电动势的普适公式,公式E=Blv则是前式的一个特例。

6.关于电动机的反电动势问题。

①电动机只有在转动时才会出现反电动势(线圈转动切割磁感线产生感应电动势);②线圈转动切割磁感线产生的感应电动势方向与电动机的电源电动势方向一定相反,所以称为反电动势;③有了反电动势电动机才可能把电能转化为机械能,它输出的机械能功率P=E反I;④电动机工作时两端电压为U=E反+Ir(r是电动机线圈的电阻),电动机的总功率为P=UI,发热功率为P热=I2r,正常情况下E反Ir,电动机启动时或者因负荷过大停止转动,则I=U/r,线圈中电流就会很大,可能烧毁电动机线圈。

[范例精析]例1法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小( )A、跟穿过这一闭合电路的磁通量成正比B、跟穿过这一闭合电路的磁感应强度成正比C、跟穿过这一闭合电路的磁通量的变化率成正比D、跟穿过这一闭合电路的磁通量的变化量成正比解析:E=/t,与t的比值就是磁通量的变化率。

高三物理复习教案:电磁感应

高三物理复习教案:电磁感应

高三物理复习教案:电磁感应导读:本文高三物理复习教案:电磁感应,仅供参考,如果觉得很不错,欢迎点评和分享。

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。

2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。

公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。

图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。

3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.第一课时电磁感应现象楞次定律【教学要求】1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。

2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。

【知识再现】一、电磁感应现象—感应电流产生的条件1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.2、条件:①____________; ②____________.二、感应电流方向——楞次定律1、感应电流方向的判定:方法一:右手定则; 方法二:楞次定律。

2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

3、掌握楞次定律,具体从下面四个层次去理解:①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.知识点一磁通量及磁通量的变化磁通量变化△ф=ф2-ф1,一般存在以下几种情形:①投影面积不变,磁感强度变化,即△ф=△B•S;②磁感应强度不变,投影面积发生变化,即△ф=B•△S。

高考第一轮复习教案13电磁感应

高考第一轮复习教案13电磁感应

高考第一轮复习教案13电磁感应目的要求:重点难点:教具:过程及内容:电磁感应现象愣次定律第1课基础知识一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3.引起磁通量变化的常见情形①闭合电路中的部分导线做切割磁感线运动导致Φ变化;②线圈在磁场中转动导致Φ变化③磁感应强度随时刻或位置变化,或闭合回路变化导致Φ变化注意:磁通量的变化,应注意方向的变化,如某一面积为S的回路原先的感应强度垂直纸面向里,如下图,后来磁感应强度的方向恰好与原先相反,那么回路中磁通量的变化最为2BS,而不是零.4.产生感应电动势的条件:不管回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源.电磁感应现象的实质是产生感应电动势,假如回路闭合,那么有感应电流,假如回路不闭合,那么只能显现感应电动势,而可不能形成连续的电流.我们看变化是看回路中的磁通量变化,而不是看回路不处的磁通量变化【例1】线圈在长直导线电流的磁场中,作如下图的运动:A向右平动;B向下平动,C、绕轴转动〔ad 边向外〕,D、从纸面向纸外作平动,E、向上平动〔E线圈有个缺口〕,判定线圈中有没有感应电流?解析:A.向右平移,穿过线圈的磁通量没有变化,故A线圈中没有感应电流;B.向下平动,穿过线圈的磁通量减少,必产生感应电动势和感应电流;C.绕轴转动.穿过线圈的磁通量变化〔开始时减少〕,必产生感应电动势和感应电流;D.离纸面向外,线圈中磁通量减少,故情形同BC;E.向上平移,穿过线圈的磁通量增加,故产生感应电动势,但由于线圈没有闭合电路,因而无感应电流因此,判定是否产生感应电流关键是分清磁感线的疏密分布,进而判定磁通量是否变化.答案:BCD中有感应电流【例2】如下图,当导线MN中通以向右方向电流的瞬时,那么cd中电流的方向〔 B 〕A.由C向dB.由d向CC.无电流产生D.AB两情形都有可能解析:当MN中通以如图方向电流的瞬时,闭合回路abcd中磁场方向向外增加,那么依照楞次定律,感应电流产生磁场的方向应当垂直纸面向里,再依照安培定那么可知,cd中的电流的方向由d到C,因此B结论正确.二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向.【例3】图中为地磁场磁感线的示意图,在南半球地磁场的竖直重量向上,飞机在南半球上空匀速飞行,机翼保持水平,飞机高度不变,由于地磁场的作用,金属机翼上有电势差.设飞行员左方机翼末端处的电势为U1,右方机翼末端处的电势为U2〔〕A.假设飞机从西往东飞,U1比U2高;B.假设飞机从东往西飞,U2比U1高;C.假设飞机从南往北飞,U1比U2高;D.假设飞机从北往南飞,U2比U1高;解析:在地球南半球,地磁场在竖直方向上的重量是向上的,飞机在空中水平飞行时,飞行员的右手掌向上,大姆指向前〔飞行方向〕,那么其余四指指向了飞行员的左侧,确实是感应电流的方向,而右手定那么判定的是电源内部的电流方向,故飞行员右侧的电势总比左侧高,与飞行员和飞行方向无关.应选项B、D正确。

高中物理必修三复习教案

高中物理必修三复习教案

高中物理必修三复习教案
第一课:电磁感应
目标:通过本节课的复习学习,学生能够了解电磁感应的基本原理和应用。

一、知识回顾:
1. 什么是电磁感应?电磁感应的条件是什么?
2. 什么是法拉第电磁感应定律?请写出定律的数学表达式。

3. 什么是感应电动势?它与导体运动的方向有什么关系?
4. 什么是自感现象?如何避免自感现象对电路的影响?
二、重点概念强化:
1. 理解电磁感应与磁通量变化的关系。

2. 掌握用右手定则确定感应电动势的方向。

3. 理解感应电动势与电路中电流方向的关系。

三、案例分析:
1. 当一个圆环状导体绕垂直磁场转动时,产生的感应电动势的方向是怎样的?
2. 一个长直导线以速度$v$向电磁感应方向穿过磁场时,产生的感应电动势大小为多少?
四、课堂练习:
1. 一根导线以速度$v$切入磁场,电动势的大小为$E$,磁感应强度为$B$,求导线的长度。

2. 一个导体环以角速度$\omega$绕垂直磁场转动,求导体环上感应电动势的大小。

五、拓展延伸:
1. 电磁感应在生活中的应用有哪些?
2. 电磁感应与发电机的关系是怎样的?
本节课学习重点是加强学生对电磁感应的理解和运用能力,帮助学生在考试中取得更好的
成绩。

希望同学们认真复习,做好准备。

2022高考物理总复习教学案第56讲-电磁感应现象

2022高考物理总复习教学案第56讲-电磁感应现象

2022高考物理总复习教学案第56讲-电磁感应现象16.1 电磁感应现象16.2 法拉第电磁感应定律----感应电动势的大小一、教育目标1.明白得电磁感应现象2.明白产生电磁感应现象和感应电流的条件3.把握右手定则二、重点、难点、疑点及解决方法1.重点①产生感应电流的条件②右手定则2.难点闭合电路中磁通量变化的判定3.疑点闭合电路中磁通量变化的缘故4.解决方法①通过演示教材中的三个系列实验,引导学生观看、分析,将学生思维逐步引向感应电流形成的全然缘故——闭合电路中的磁通量发生了变化,从而关心学生克服并明白得本课的重难点。

②利用幻灯显示实验过程的平面图,关心学生直观形象地了解磁通量变化的缘故。

③运用对比教学及适当的练习,使学生区分右手定则和左手定则的本质不同,从而进一步明白得两大定则并能熟练应用。

三、教具预备蹄形磁铁、条形磁铁、电流计、导体棒、原副线圈、滑动变阻器、电源电键、导线若干、幻灯片四、教学步骤1.引入新课通过前一章的学习,我们认识到电与磁确实是密不可分的,奥斯特的电流磁效应实验给出了充分的证明,既然电流能够产生磁场,那么,反过来能否利用磁场产生电流呢?英国科学家法拉第对那个课题着手进行了研究。

介绍法拉第的研究情形法拉第通过分析奥斯特的电流磁效应后认为,既然磁铁能够使靠近它的铁块具有磁性,静电荷能够使靠近它的导体带电,那么磁铁也应当使靠近它的线圈感生出电流。

因此,他在日记中写下了“转磁为电”那个伟大的设想,并朝着那个设想开始了许多次实验和困难地奋斗。

法拉第的最初设想,用强磁铁靠近导线,导线中就会产生稳恒电流,他开始苦苦思索,千方百计地设计各种实验,妄图证实上述设想,都一次又一次地失败了,但法拉第并没有丧气,而且是从失败中总结教训,意识到磁产生电必须具备一定的条件,为此整整困难地探究了10年的岁月,终于在1831年8月,有了重大的突破性发觉。

法拉第的成功的实验设计如图所示,当K接通或断开时,线圈B中就产生了瞬时电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁感应现象专题复习教案
一、概述
电磁感应是物理学中的重要概念,涉及到电磁场和运动导体之间的
相互作用。

在高考物理考试中,电磁感应是一个重点难点,考察的内
容包括楞次定律、法拉第电磁感应定律以及互感现象等。

本文将针对
电磁感应的相关知识进行复习总结和教学指导。

二、楞次定律
楞次定律是电磁感应中的基础定律,描述了电流的感应方向。

根据
楞次定律可知,当导体中的磁场发生变化时,导体内会产生感应电流,感应电流的方向使得产生的磁场与原磁场的变化态势相反。

1. 楞次定律表达式:设导体中的磁场变化率为dB/dt,导体上感应
电动势为ε,感应电流为I,则楞次定律表达式可以表示为ε = -dΦ/dt,
其中Φ为磁通量。

2. 楞次定律应用举例:
a. 导体运动磁场:当导体以速度v在磁感应强度为B的磁场中运
动时,所感应出的电动势为ε = Blv,其中l为导体长度。

b. 磁场变化磁场:当磁场B的磁感应强度随时间变化时,所感应
出的电动势为ε = -d(BA)/dt,其中A为导体所围面积。

三、法拉第电磁感应定律
法拉第电磁感应定律是对电磁感应现象的定量描述,描述了导体中
的电动势与磁通量变化的关系。

在高考物理中,对于导体线圈的电动
势计算以及应用是重点内容。

1. 法拉第电磁感应定律表达式:设导体中的磁通量变化率为dΦ/dt,导体上感应电动势为ε,导体匝数为N,则法拉第电磁感应定律表达式
可以表示为ε = -NdΦ/dt。

2. 法拉第电磁感应定律应用举例:
a. 磁通量变化:当磁通量Φ随时间变化时,所感应出的电动势为
ε = -NdΦ/dt。

b. 多匝电磁铁:当电磁铁线圈匝数为N,磁通量变化率为dΦ/dt 时,所感应出的电动势为ε = -N(dΦ/dt)。

四、互感现象
互感是指两个或多个线圈之间通过磁场相互感应的现象。

在高考物
理中,互感是一个难点,需要理解线圈之间的相互作用和计算方法。

1. 互感表达式:设两个线圈的自感系数分别为L1和L2,它们之间
的互感系数为M,则互感可表示为M = k√(L1L2),其中k为系数,0 <
k < 1。

互感系数越大,两个线圈之间的相互感应越强。

2. 互感应用举例:
a. 互感诱导电动势:当磁感应强度发生变化时,线圈1和线圈2之间会产生互感电动势,大小为ε = -MdI1/dt,其中dI1/dt表示线圈1中的电流变化率。

b. 互感诱导电流:当线圈1中有电流变化时,会在线圈2中感应出电流,大小为I2 = -(M/L2)dI1/dt,其中L2为线圈2的自感系数。

五、教学指导
在高考物理电磁感应现象的教学过程中,需要注重以下几点:
1. 理论与实践结合:理论知识与实际场景相结合,引导学生从生活中寻找与电磁感应相关的现象,帮助学生真正理解物理原理和现象。

2. 解题策略指导:针对不同类型的电磁感应题目,提供解题思路和解题策略,教会学生如何灵活运用楞次定律、法拉第电磁感应定律和互感等知识解决问题。

3. 实验与模拟演示:通过实验和模拟演示,让学生亲身感受电磁感应现象,加深对概念和定律的理解。

4. 多维拓展:在教学过程中,引导学生了解电磁感应的其他应用领域,如电磁感应传感器、发电机、变压器等,培养学生的应用能力。

结语
通过对高考物理电磁感应现象专题的复习教案,我们可以帮助学生系统地掌握楞次定律、法拉第电磁感应定律和互感等知识,提高解题
能力和应用能力。

希望同学们在备考过程中,能够充分理解和掌握相关内容,顺利应对高考物理考试。

相关文档
最新文档