石墨烯气凝胶介绍(英文)
气凝胶Aerogel绝缘材料
气凝胶(Aerogel)绝缘材料Cryogel®Z绝缘材料带有一体化蒸汽屏蔽层的柔韧性工业绝缘材料,可以在低于环境温度的条件下以及低温环境下应用Cryogel®Z是一种带有一体化蒸汽屏蔽层的柔韧性气凝胶衬垫绝缘材料。
其设计理念是力求在材料的重量和厚度上达到最小,并且实现水蒸气零渗透的目标,从而提供最大限度的热防护。
Cryogel®Z绝缘材料独特的属性——极低的热导性、超强的柔韧性、耐压力、疏水性,并且应用简单——使得它在低温应用所需的热防护方面成为了最佳的选择。
Cryogel®Z绝缘材料使用已获得专利的纳米技术,将硅气凝胶与增强纤维相结合,产品操作简易,安全环保,其热力性能行业领先。
Cryogel®Z绝缘材料极低的热传导性特点,极大的降低了热增益和液体的蒸发损耗,其衬垫形式使得产品应用所需的劳动力降至最低,其内在的柔韧性特点使得产品更加持久耐用,抗机械损伤的性能也大幅提高。
物理属性优点:超强的热力性能热力性能是其他绝缘产品的五倍厚度与剖面尺寸进一步降低厚度降低但是热阻性相等施用时所耗费的时间和人力更少便于切削,适用于任何复杂的形状、密封曲度以及受限空间带有一体化蒸汽屏蔽层,因此实现了零渗透在一个易于安装的安装包中提供了更多的防潮保护物理特性良好柔软灵活而又具有卓越的回弹性,Cryogel Z绝缘材料甚至是在承受高达850psi的压力后依然可以恢复其热力性能运费以及存储费用低材料体积减小,高存储密度以及低报废率,这些特点都降低了产品的后勤成本,与刚性、预成形的绝缘材料相比,其后勤成本可以降低5倍或更多消除收缩缝因为即使在低温条件下,Cryogel Z绝缘材料依然可以保持弹性,所以,Cryogel Z绝缘材料不需要其他绝缘材料所需的用来防止压缩毁坏现象发生的收缩缝。
®安全环保填埋处理、无弹丸,不含可呼吸纤维热传导性使用ASTM C177标准测定的结防止表面冷凝方面的厚度要求设计条件:环境温度=80°F(26.7°C),相对湿度=70%,露点温度=69.3°F(20.7°C),风速=0,表面发射系数=0.9。
石墨烯英文介绍
Composite Material
The main field contained such as Polymer and Inorganic Nano-materials.
Thank you for listening
Guilin University of Technology
张耕
Optical Properties
Voltage applied to the bigrid double-deck graphene field effect transistor, bandgap is around 0~0.25eV.
Magnetic Field applied to the nanobelt, responsiveness could up to the large range of terahertz.
Photosensitive Element
Penetrate specific construction, low energy standard, used in satellite imagery.
New Energy Battery
Nomo GP attached on the surface, lowering the transparent and transformable solar cell.
Redox Reaction Use vitriol and nitric acid, hydrogen peroxide and so forth.
Epitaxial Growth of SiC Absolute vacuum with high temperature, silicon atoms get rid of the materials.
气凝胶简介ppt课件
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱
SiO气凝胶的特性及应用PPT课件
2 SiO2 气凝胶特性
2.1 优越的隔热性能 由于SiO2 气凝胶的纳米孔超级绝热性能,常温常压下SiO2 气凝胶粉体总导
热率<0.015W/m.K,块体总导热率<0.013W/m·K,真空条件下粉体总导热率<0.0 03W/m·K,块体总导热率<0.007W/m·K,为目前世界上高温隔热领域导热系数最 低的材料之一.
iO2,在300℃以下使用具有超级疏水性.
2.4 优异的隔声性 SiO2气凝胶还具极低的密度、极低的声传播速度、极低的介电常数、极高的
比表面积等优异性能.SiO2气凝胶以其优异的保温隔声性能有望成为一种环保型高 效保温隔声轻质建材.
Page ▪ 5
2 SiO2 气凝胶特性
2.5 较好的透光性 SiO2气凝胶还具有透光性,可以有效地透过可见光,同时可以高效地阻隔红外
Page ▪ 6
3 SiO2 气凝胶的应用
热学特性及应用
具体应用涵盖了科研、工业、国防的保温隔热场合, 尤其是三航,还可用于生活日用的多种场合,如建筑隔热板 材、玻璃、衣物保暖、冰箱隔热、管道保温等,乃至提高 阳能集热器的效率.
SiO2 气凝胶采光隔热板
Page ▪ 7
4 研发方向
存在问题
在实际应用方面,SiO2气凝胶的高度松脆性、有限透明度以及吸湿性等问题的 存在,抑制了其商业前途.提高SiO2气凝胶的质量和品质,是SiO2气凝胶研究的主要 方向.
研发方向
1. 掺杂改性SiO2气凝胶是获得气凝胶新品种及其优良性质的有效方法,通过掺杂其 他的元素,实现对SiO2气凝胶结构的优化,以达到提高SiO2气凝胶的品质的效果; 2.研发新的制备工艺,尽可能地降低SiO2气凝胶的制备成本,也是目前研究的重点之 一.
气凝胶产品介绍
热学领域
气凝胶产品属于高效防火隔热材料,主要功能是节能、保温、防火,可 应用于以下领域: 建筑节能领域:外墙保温专用气凝胶板材、气凝胶玻璃、钢结构防火。 工业及民用领域:替代传统的保温材料对管道、炉窑及其他热工设备、 热水器、冷藏设备等进行保温,隔热效果更好。 特殊应用领域:用于海军核潜艇,、飞机、大型海洋舰艇、船舶、客车 的保温。在航天工业和军工导弹等方面都有广阔的应用前景。
光学领域
纯净的SiO2气凝胶是透明无色的,它的折射率(1.006~1.06)非常接 近于空气的折射率,这意味着SiO2气凝胶对入射光几乎没有反射损失, 能有效地透过太阳光。 SiO2气凝胶可以被用来制作绝热降噪玻璃。利用不同密度的SiO2气凝 胶膜对不同波长的光制备光耦合材料,可以得到高级的光增透膜。 SiO2气凝胶的折射率和密度满足n-1≈2.1×10-4r/(kg/m3),当通过控制制 备条件获得不同密度的SiO2气凝胶时,它的折射率可在1.008-1.4 范围内 变化,因此SiO2气凝胶可作为切仑科夫探测器中的介质材料,用来探测 高能粒子的质量和能2018 年进行 气凝胶正用来为人类首次登陆 火星时所穿的太空服研制一种 保温隔热衬里 Aspen Aerogel公司的一位资深 科学家马克· 克拉耶夫斯基认为 ,一层18毫米的气凝胶将足以 保护宇航员抵御零下130度的低 温。他说:“它是我们所见过 的最棒的绝热材料。”
可见,极低的折射率、热导率、介电常数、高比表面积、对气体的选 择透过等,它的力学、声学、热学、光学、电学性质都明显地不同于普通 固态材料,是一种具有许多奇异性质和广泛应用的轻质纳米多孔性材料。
气凝胶产品可应用领域
★热学领域
声学领域
光学领域
过滤与催化领域 吸附领域 捕获高速粒子 电学领域 分形特性
石墨烯气凝胶保温材料
石墨烯气凝胶保温材料英文回答:Graphene aerogel is a highly efficient and lightweight insulating material that has gained significant attentionin recent years. As a three-dimensional network of graphene sheets, it possesses remarkable properties such as low density, high porosity, and excellent thermal conductivity. These unique characteristics make it an ideal candidate for various applications in the field of thermal insulation.One of the key advantages of graphene aerogel as a thermal insulation material is its exceptional thermal conductivity. Due to its highly porous structure, it can effectively trap and slow down the transfer of heat. This property enables it to provide excellent insulation and reduce heat loss. For example, when used as insulation in buildings, graphene aerogel can significantly improve energy efficiency by reducing the need for heating and cooling.Furthermore, graphene aerogel is also highly flexible and compressible, making it suitable for use in various forms and shapes. It can be easily molded into different structures, such as sheets, films, or even coatings, to fit specific applications. This versatility allows for its integration into existing insulation systems without major modifications.In addition to its thermal insulation properties, graphene aerogel also exhibits excellent mechanicalstrength and stability. It can withstand high temperatures and maintain its structural integrity, even under extreme conditions. This durability makes it a reliable and long-lasting insulation material.Moreover, graphene aerogel is environmentally friendly and sustainable. It is derived from graphene, which is a carbon-based material, and can be produced from renewable sources. Unlike traditional insulation materials, it does not release harmful gases or chemicals into the environment. This aspect aligns with the growing demand for eco-friendlysolutions in various industries.中文回答:石墨烯气凝胶是一种高效轻便的保温材料,在近年来引起了广泛的关注。
聚二甲基硅氧烷 石墨烯气凝胶
聚二甲基硅氧烷石墨烯气凝胶
摘要:
1.聚二甲基硅氧烷(PDMS)简介
2.石墨烯气凝胶简介
3.聚二甲基硅氧烷与石墨烯气凝胶的复合材料优势
4.应用领域及前景展望
正文:
聚二甲基硅氧烷(PDMS)是一种常见的硅橡胶材料,具有优异的生物相容性、低摩擦系数和良好的化学稳定性。
石墨烯气凝胶则是一种具有高比表面积、高导电性和优异力学性能的纳米材料。
将这两种材料结合起来,制备聚二甲基硅氧烷/石墨烯气凝胶复合材料,可以充分发挥两者的优势,实现性能的互补。
聚二甲基硅氧烷(PDMS)在生物医学、电子器件、光学领域等方面具有广泛应用。
石墨烯气凝胶由于其高比表面积和优异的力学性能,被视为具有巨大潜力的功能材料。
将这两种材料复合,可以提高复合材料的力学性能、电导率和热稳定性。
聚二甲基硅氧烷/石墨烯气凝胶复合材料在以下几个方面表现出优异性能:
1.力学性能:石墨烯的加入可以显著提高聚二甲基硅氧烷的力学性能,使其更具韧性和耐磨性。
2.电导率:石墨烯气凝胶具有高导电性,将其与聚二甲基硅氧烷复合,可提高复合材料的电导率。
3.热稳定性:石墨烯的加入可以提高聚二甲基硅氧烷的热稳定性,使其在高温环境下仍具有良好的性能。
4.生物相容性:聚二甲基硅氧烷本身具有优异的生物相容性,石墨烯气凝胶也具有良好的生物相容性,因此复合材料在生物医学领域具有广泛的应用前景。
5.摩擦性能:石墨烯的加入可以降低复合材料的摩擦系数,提高其耐磨性能。
聚二甲基硅氧烷/石墨烯气凝胶复合材料在多个领域具有广泛的应用前景,如能源存储设备、传感器、生物医学、航空航天等。
国外气凝胶材料研究进展
Advanced Materials Industry38国外气凝胶材料研究进展■ 文/江 洪 王春晓 中国科学院武汉文献情报中心气凝胶是世界上密度最小的固体,密度仅为3.55k g /m 3,也被称为“固态的烟”,具有膨胀作用、离浆作用等,还具有高比表面积、绝热等特征。
气凝胶材料在20世纪30年代由美国塞缪尔·基斯勒(Samuel Kistler)教授采用超临界干燥方法制备而成。
气凝胶自身的结构和性能使其具有重要的应用价值,广泛应用于服饰、建筑、环保等众多领域。
本文对国外气凝胶材料的制备工艺和应用进展进行介绍。
1 不同气凝胶材料的制备1.1 纤维素气凝胶纤维素是自然界中一种可再生的绿色生物质材料,其广泛存在于植物和部分海洋生物中。
纤维素气凝胶是以纤维素作为原材料制备而成,这种材料具有生物降解等环保特性。
纤维素气凝胶种类丰富,如细菌纤维素气凝胶、纳米纤维素气凝胶,其制备工艺通常都包含冷冻干燥等流程。
法国国家科学研究中心G a v i l l o n等人[1]将纤维素材料溶解于氢氧化钠溶液中,制备了一种新型高度多孔纯纤维素气凝胶材料,其内部比表面积在200~300m 2/g左右,密度在0.06~0.3g/cm 3之间。
科罗拉多大学Blaise等[2]人利用啤酒酿造工业的废弃物作为培养基,将使用醋酸杆菌制备出的细菌纤维素,再通过超临界干燥法等方法制备出一种细菌纤维素气凝胶材料,具有低热导率的特征,并提出未来使用食物垃圾作为培养基来提高生产力。
德国航空航天中心Schestakow等人[3]首先使用微晶纤维素作为原材料制备一种气凝胶,然后通过使用普通溶剂如水、乙醇、异丙醇或丙酮等溶剂将气凝胶进行再生,制备出了一种浓度为1%~5%(质量分数)的纤维素气凝胶,通过扫描电镜对这些气凝胶的收缩、比表面积、密度以及微观结新材料产业 NO.02 202139构和力学性能进行了表征,结果表明用丙酮再生的纤维素气凝胶的比表面积比用水再生的纤维素气凝胶高出60%。
材料专业英语【石墨烯】
Lorem ipsum
Lorem ipsum dolor sit amet kolor that suum at si mement bereh that keu ubat jeurawat bak talak licen Lorem ipsum dolor sit amet kolor that suum at si mement bereh that
THANKS!
Graphene Called Amazing,
Versatile Material of the Future
Report: Qun Xiao(2013701031)
Summary
Graphene is the first man-made two-dimensional material.
PART 1
Summary
Graphene is the first man-made two-dimensional material.
PART 1
It is actually only a one-atom-thick layer of pure carbon.
Summary
Graphene is the first man-made two-dimensional material.
Novak Djokovic
Lorem ipsum dolor sit amet kolor that suum at si mement bereh that keu ubat jeurawat bak talak licen Lorem ipsum dolor sit amet kolor that suum at si mement bereh that
PART 2
石墨烯气凝胶水热法原理
石墨烯气凝胶水热法原理Graphene aerogels (GAs) are a promising material due to their unique properties, such as high surface area, good electrical conductivity, and mechanical strength. In recent years, water-based synthesis methods, such as the hydrothermal method, have been widely used to produce graphene aerogels.水热法合成石墨烯气凝胶是一种具有独特特性的材料,如高比表面积、良好的电导率和机械强度。
近年来,水基合成方法,如水热法,已被广泛用于生产石墨烯气凝胶。
The water-based synthesis of graphene aerogels typically involves the use of graphene oxide (GO) as a precursor, which is then reduced to graphene in the presence of a reducing agent during the hydrothermal process. During the water-based synthesis, the GO sheets are dispersed in water and form a stable colloidal solution, which is then subjected to hydrothermal treatment to form a three-dimensional porous structure.水基合成石墨烯气凝胶通常涉及使用氧化石墨烯(GO)作为前体,然后在水热过程中在还原剂存在的情况下还原为石墨烯。
竟然能用3D打印出比空气还轻的材料
竟然能用3D打印出比空气还轻的材料
气凝胶(Aerogels)是世界上最轻的材料之一。
石墨烯气凝胶(Graphene aerogel)又是该品类中最轻的一种——一大块放在小棉花球上都不会有压痕。
据美国网站QUARTZ报道,这种材料的密度约为水的千分之一,比空气还轻!超低密度的气凝胶应用范围极广,研究人员发现,它可以用来吸取漏油、制作“隐形”斗篷等。
目前,纽约州立大学水牛城分校(State University of New York at Buffalo,简称SUNY Buffalo)科学家在《Small》期刊上发表的文章表示,已经知道如何用3D打印技术打印石墨烯气凝胶,但目前仅限于实验室的原型。
石墨烯只是一个碳原子单层。
自2004年首次成功分离以来,因强度、柔软性和传导性等特性备受追捧。
本质上,气凝胶是一种用空气代替液体的凝胶。
石墨烯气凝胶因高压缩性和强导电性闻名。
这些特性均源自材料本身的。
材料类作文模板英语二
材料类作文模板英语二英文回答:Introduction。
The rapid development of materials science has revolutionized various aspects of modern society. Advanced materials have enabled groundbreaking advancements in industries ranging from healthcare to aerospace. This essay will delve into the significance of materials in our daily lives, highlighting specific examples and discussing their impact on our technological progress.Materials in Healthcare。
Materials play a crucial role in modern healthcare. Biocompatible materials have paved the way for medical implants, such as artificial joints and heart valves, significantly improving the lives of patients. Tissue engineering, using biomaterials as scaffolds for cellgrowth, holds promise for regenerating damaged tissues and organs. Advanced materials also contribute to diagnostic tools, such as MRI and CT scanners, enabling accurate disease detection.In the field of drug delivery, materials science has developed targeted drug delivery systems, which can release drugs directly to specific sites in the body, increasing efficacy and reducing side effects. Biodegradable polymers, for instance, are used to create drug-eluting stents, which gradually release medication to prevent blood clots in arteries.Materials in Energy。
聚二甲基硅氧烷 石墨烯气凝胶
聚二甲基硅氧烷石墨烯气凝胶
聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)是一种有机硅聚合物,具有较低的毒性和良好的热稳定性。
它常被用于制备气凝胶材料。
石墨烯气凝胶是一种由石墨烯构成的三维多孔固体材料。
石墨烯是由碳原子以蜂窝状排列形成的单原子厚度层状结构,具有优异的力学性能、导电性能和热导性能。
石墨烯气凝胶利用石墨烯的这些优良性能,结合多孔结构的特点,具有很多潜在的应用领域,如电子器件、催化剂载体、吸附材料等。
将聚二甲基硅氧烷与石墨烯混合制备石墨烯气凝胶可以改善气凝胶材料的柔软性和韧性,同时保留石墨烯的优异性能。
这样的复合材料可以具有较高的表面积和可调的孔隙结构,具有更多的应用潜力。
例如,可以用于吸附有机物、催化剂载体、能量存储等领域。
总的来说,聚二甲基硅氧烷与石墨烯的复合材料,即聚二甲基硅氧烷/石墨烯气凝胶,可以有效地将二者的性能进行结合,具有广泛的应用前景。
气凝胶简介
气凝胶简介气凝胶(Aerogel)是一种三维网络结构的纳米先进材料。
当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为气凝胶。
气凝胶具有低密度、低导热性、高孔隙率、耐高温、不燃等优越性能,在航空航天、建筑、石油化工、军工、热能工程、交通运输和家用电器等领域有非常广阔的应用前景。
简介气凝胶是一种固体物质形态,世界上密度最小的固体之一。
密度为3千克每立方米。
一般常见的气凝胶为硅气凝胶,最早由美国科学工作者Kistler在1931年因与其友打赌制得。
气凝胶的种类很多,有硅系,碳系,硫系,金属氧化物系,金属系等等。
aerogel是个组合词,此处aero是形容词,表示飞行的,gel显然是凝胶。
字面意思是可以飞行的凝胶。
任何物质的gel只要可以经干燥后除去内部溶剂后,又可基本保持其形状不变,且产物高孔隙率、低密度,则皆可以称之为气凝胶。
因为密度极低,目前最轻的气凝胶仅有0.16毫克每立方厘米,比空气密度略低,所以也被叫做“冻结的烟”或“蓝烟”。
由于里面的颗粒非常小(纳米量级),所以可见光经过它时散射较小(瑞利散射),就像阳光经过空气一样。
因此,它也和天空一样看着发蓝,如果对着光看则有点发红。
由于气凝胶中一般80%以上是空气,所以有非常好的隔热效果,一寸厚的气凝胶相当20至30块普通玻璃的隔热功能。
即使把气凝胶放在玫瑰与火焰之间,玫瑰也会丝毫无损。
制备方法气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为气凝胶。
在上世纪90年代中后期,随着常压干燥技术的出现和发展,科学界普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。
气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。
石墨烯文献
1、Free-Sta nding Hierarchically San dwich-Type Tun gste n Disulfide Nano tubes/Graphe neAnode for Lithium-Io n Batteries (独立的分层三明治型WS2纳米管与石墨烯复合型锂离子电池阳极材料)Renjie Chen, Teng Zhao, Weiping Wu, Feng Wu, Li Li, Ji Qian, Rui Xu,Huiming Wu, Hassan M. Albishri, A.S. Al-Bogami, Deia Abd El-Hady, Jun Lu, and Khalil AmineNano Lett., 2014, 14 (10), pp 5899 -5904Publication Date (Web): August 27, 2014 (Letter)DOI: 10.1021/nl502848z2、Graphene Nanoribbon/V z O s Cathodes in Lithium-IonBatteries (石墨烯纳米带与V2O5复合锂离子电池阴极)Yang Yang, Lei Li, Huilong Fei, Zhiwei Peng, Gedeng Ruan, and James M.TourACS Appl. Mater. Interfaces, 2014, 6 (12), pp 9590 -9594Publication Date (Web): May 20, 2014 (Research Article)DOI: 10.1021/am501969m3、Ano malous In terfacial Lithium Storage in Graphe ne/TiO2for Lithium Ion Batteries (锂离子电池用石墨烯/TiO2复合材料的无定形界面中Li存储研究)Enzuo Liu, Jiamei Wang, Chunsheng Shi, Naiqin Zhao, Chunnian He, JiajunLi, and Jian-Zhong JiangACS Appl. Mater. Interfaces, 2014, 6 (20), pp 18147 -8151Publication Date (Web): September 23, 2014 (Research Article)DOI: 10.1021/am50504234、Carbon-Coated Mesoporous TQ2 Nano crystals Grow n on Graphe ne forLithium-Ion Batteries (在石墨烯上生长用于锂离子电池的碳包覆介孔TiO2纳米晶)Zehui Zhang, Ludan Zhang, Wei Li, Aishui Yu, and Peiyi WuACS Appl. Mater. Interfaces, 2015, 7 (19), pp 10395 -0400Publication Date (Web): April 30, 2015 (Research Article)DOI: 10.1021/acsami.5b014505、Tin Disulfide Nano plates on Graphe ne Nan oribb ons for Full Lithium Ion Batteries (在石墨烯纳米带上生长用于全锂离子电池的SnS2纳米盘)Caitian Gao, Lei Li, Abdul-Rahman O. Raji, Anton Kovalchuk, Zhiwei Peng,Huilong Fei, Yongmin He, NamDong Kim, Qifeng Zhong, Erqing Xie, andJames M. TourACS Appl. Mater. Interfaces, 2015, 7 (48), pp 26549 -26556Publication Date (Web): November 12, 2015 (Research Article)DOI: 10.1021/acsami.5b077686、Si ~Mn/Reduced Graphe ne Oxide Nano composite Ano des with Enhanced Capacity and Stability for Lithium-Io nBatteries (用于提高锂离子电池的容量和稳定性的Si-Mn/还原氧化石墨烯纳米复合阴极材料)A Reum Park, Jung Sub Kim, Kwang Su Kim, Kan Zhang, Juhyun Park, Jong Hyeok Park, Joong Kee Lee, and PilJ. YooACS Appl. Mater. Interfaces, 2014, 6 (3), pp 1702 -1708Publication Date (Web): January 20, 2014 (Research Article)DOI: 10.1021/am404608d7、Branched Graphene Nanocapsules for Anode Material ofl.ithium-lon Batteries (用于锂离子电池阴极材料的树枝状石墨烯纳米胶囊材料)Chuangang Hu, Lingxiao Lv, Jiangli Xue, Minghui Ye, Lixia Wang, andLiangti QuChem. Mater., 2015, 27 (15), pp 5253 -5260Publication Date (Web): July 14, 2015 (Article)DOI: 10.1021/acs.chemmater.5b01398& Three-Dimensional Macroporous Graphene -_i2FeSiO4Composite as Cathode Material for Lithium-lo n Batterieswith Superior Electrochemical Performa nces (用于锂离子电池、具有优异的电化学性能的三维多孔石墨烯-Li 2FeSiO4复合阳极材料)Hai Zhu, Xiaozhen Wu, Ling Zan, and Youxiang ZhangACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11724 -1733Publication Date (Web): June 25, 2014 (Research Article)DOI: 10.1021/am502408m9、Fluorine-Doped SnO?@Graphene Porous Composite for HighCapacity Lithium-Ion Batteries (用于高容量锂离子电池的氟掺杂SnO2@石墨烯多孔复合材料)Jinhua Sun, Linhong Xiao, Shidong Jiang, Guoxing Li, Yong Huang, andJianxin GengChem. Mater., 2015, 27 (13), pp 4594 -4603Publication Date (Web): June 16, 2015 (Article)DOI: 10.1021/acs.chemmater.5b0088510、H ighly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-lonBatteries (用于柔性锂离子电池集流体的具有高电导率独立石墨烯薄膜)Kuldeep Rana, Jyoti Singh, Jeong-Taik Lee, Jong Hyeok Park, and Jong-Hyun AhnACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11158 -1166Publication Date (Web): April 23, 2014 (Research Article)DOI: 10.1021/am500996c11、G raphe ne as an In terfacial Layer for Improv ing Cycli ng Performa nee of Si Nano wiresin Lithium-Ion Batteries (石墨烯作为界面层提高锂离子电池用Si纳米线的循环性能)Fan Xia, Sunsang Kwon, Won Woo Lee, Zhiming Liu, Suhan Kim, TaeseupSong, Kyoung Jin Choi, Ungyu Paik, and Won Il ParkNano Lett., 2015, 15 (10), pp 6658 七664Publication Date (Web): September 11,2015 (Letter)DOI: 10.1021/acs.nanolett.5b0248212、F abrication of Graphene Embedded LiFePO4 Using a Catalyst Assisted Self AssemblyMethod as a Cathode Material for High Power Lithium-lo n Batteries (用催化辅助自组装法制备用于高能量型锂离子电池的嵌有石墨烯的LiFePO4的阳极材料)WonKeun Kim, WonHee Ryu, DongWook Han, SungJin Lim, JiYong Eom, and HyukSang KwonACS Appl. Mater. Interfaces, 2014, 6 (7), pp 4731 -4736Publication Date (Web): March 12, 2014 (Research Article)DOI: 10.1021/am405335k13、M esoporous Td Nanocrystals Grown in Situ onGraphene Aerogels for High Photocatalysis and Lithium-lon Batteries (在石墨烯上原位生长微孔TiO2纳米晶以用于高效光催化和锂离子电池)Bocheng Qiu, Mingyang Xing, and Jinlong ZhangJ. Am. Chem. Soc., 2014, 136 (16), pp 5852 -855Publication Date (Web): April 8, 2014 (Communication)DOI: 10.1021/ja500873u14、F abrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries (在中空微米球上制备氮掺杂多孑L石墨烯机器用于锂离子电池的活性电极中)Zhong-Jie Jiang and Zhongqing JiangACS Appl. Mater. Interfaces, 2014, 6 (21), pp 19082 -9091Publication Date (Web): October 13, 2014 (Research Article)DOI: 10.1021/am505060415、E lastic a-Silic on Nano particle Backb oned Graphe neHybrid as a Self-Compact ing Anode for High-Rate Lithiumlon Batteries (用于高倍率锂离子电池的具有自密实的阴极材料:生长弹性a-Si纳米颗粒的石墨烯)Minseong Ko, Sujong Chae, Sookyung Jeong, Pilgun Oh, and Jaephil ChoACS Nano, 2014, 8 (8), pp 8591 七599Publication Date (Web): July 31,2014 (Article)DOI: 10.1021/nn503294z16、H igh-Rate, Ultralong Cycle-Life Lithium/Sulfur BatteriesEnabled byNitrogen-Doped Graphene (用于高倍率超长循环寿命Li-S电池的氮掺杂石墨烯)Yongcai Qiu, Wanfei Li, Wen Zhao, Guizhu Li, Yuan Hou, Meinan Liu, LishaZhou, Fangmin Ye, Hongfei Li, Zha nhua Wei, Shihe Yang, Wenhui Duan,Yifan Ye, Jinghua Guo, and Yuegang ZhangNano Lett., 2014, 14 (8), pp 4821 -4827Publication Date (Web): July 29, 2014 (Letter)DOI: 10.1021/nl502047518、P hosphorus and Nitrogen Dual-Doped Few-Layered Porous Graphene: AHigh-Performa nee Anode Material for Lithium-I on Batteries (一种用于锂离子电池的具有高性能阴极材料:磷和氮双共掺杂少层多孔石墨烯)Xinlong Ma, Guoqing Ning, Chuanlei Qi, Chenggen Xu, and Jinsen GaoACS Appl. Mater. Interfaces, 2014, 6 (16), pp 14415 -4422Publication Date (Web): August 8, 2014 (Research Article)DOI: 10.1021/am503692g19、A n Advaneed Lithium-Ion Battery Based on a GrapheneAnode and a Lithium Iron Phosphate Cathode (一种基于石墨烯阴极和LiFePO4阳极的先进锂离子电池)Jusef Hassoun, Francesco Bonaccorso, Marco Agostini, Marco Angelucci,MariaGrazia Betti, Roberto Cingolani, Mauro Gemmi, Carlo Mariani,Stefania Panero, Vittorio Pellegrini, and Bruno Scrosati Nano Lett., 2014, 14 (8), pp 4901 -4906Publication Date (Web): July 15, 2014 (Letter)DOI: 10.1021/nl502429m20、U ltrasmall TiO 2 Nanoparticles in Situ Growth onGraphene Hybrid as Superior AnodeACS Appl. Mater. Interfaces, 2015, 7 (21), pp 11239 -1245Publication Date (Web): May 12, 2015 (Research Article)DOI: 10.1021/acsami.5b02724Material for Sodium/Lithium Ion Batteries (石墨烯上原位生长超小TiO2纳米颗粒复合材料用作钠/锂离子电池阴极材料)Huiqiao Liu, Kangzhe Cao, Xiaohong Xu, Lifang Jiao, Yijing Wang, andHuatang Yuan21、General Strategy for Fabricating Sandwich-likeGraphene-Based Hybrid Films for Highly ReversibleLithium Storage (用于高可逆Li存储的类三明治石墨烯基混合薄膜的常用制备方法)Xiongwu Zhong, Zhenzhong Yang, Xiaowu Liu, Jiaqing Wang, Lin Gu, andYan YuACS Appl. Mater. Interfaces, 2015, 7 (33), pp 18320 -8326Publication Date (Web): August 10, 2015 (Research Article)DOI: 10.1021/acsami.5b0394222、An ionic self-assembly approach towards sandwich-like graphene/SnOgraphene nano sheets for enhan ced lithium storage一种离子自组装法制备用于提高Li存储的类三明治型纳米片:石墨烯/SnO2/石墨烯)Jin zua n Wang, Ping Liu, Yan sha n Huang, Jia nzhong Jia ng, Sheng Han, Dongqing Wu andXin lia ng FengRSC Adv., 2014,4, 57869-57874DOI: 10.1039/C4RA10573G, Paper23、3D porous hybrids of defect-rich MoS2/graphe ne nano sheets with excelle nt electrochemical performa nee as anode materials for lithium ion batteries锂离子电池用具有优异的电化学性能的三维多孔复合阴极材料:具有大量缺陷的MoS2/石墨烯纳米片)Lon gshe ng Zhang, Wei Fan, Weng Weei Tjiu and Tianxi LiuRSC Adv., 2015,5, 34777-34787DOI: 10.1039/C5RA04391C, Paper24、Nb2O5/graphe ne nano composites for electrochemical en ergy storag 用于电化学能量存储的Nb2O5/石墨烯纳米复合材料)Paulraj Arun kumar, Ajithan G. Ashish, Bi nson Babu, Som Sara ng, Abhi n Suresh, Chithra H. Sharma, Madhu Thalakulam and Manikoth M. ShaijumonRSC Adv., 2015,5, 59997-60004DOI: 10.1039/C5RA07895D, Paper25、Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries (绿色合成3DSnO2/石墨烯气凝胶机器在锂离子电池中的应用)Chen Gong, Yon gqua n Zhang, Min ggua ng Yao, Yin gji n Wei, Quanjun Li, Bo Liu, Ran Liu, Zhen Yao, Tia n Cui, Bo Zou and Bingbing LiuRSC Adv., 2015,5, 39746-39751DOI: 10.1039/C5RA05711F, Paper26、Electrochemical lithium storage of a ZnF e2O4/graphe ne nano composite as an anode material for rechargeable lithium ion batterie (可充电锂离子电池阴极材料ZnFe2O4/ 石墨烯纳米复合材料的电化学Li存储)Alok Kumar Rai, Sungjin Kim, Jihyeon Gim, Muhammad Hilmy Alfaruqi, Vinod Mathew andJaekook KimRSC Adv., 2014,4, 47087-47095DOI: 10.1039/C4RA08414D, Paper27、TiO2 nano tubes grow n on graphe ne sheets as adva need anode materials for high rate lithium ion batteries (用于高倍率锂离子电池的在石墨烯片上生长TiO2纳米管的阴极材料)Yufeng Tang, Zhanqiang Liu, Xujie L , Baofe ngWa ng and Fuqia ng HuangRSC Adv., 2014,4, 36372-36376DOI: 10.1039/C4RA05027D, Paper28、N-doped TiO 2 nano tubes/N-doped graphe ne nano sheets composites as high performa nee anode materials in lithium-ion battery (氮掺杂TiO2纳米管/氮掺杂石墨烯纳米片复合材料用于高性能锂离子电池阴极材料)Yuem ing Li, Zhigua ng Wang and Xiao-Jun LvJ. Mater. Chem. A , 2014,2, 15473-15479DOI: 10.1039/C4TA02890B, Paper29、A highly nitrogen-doped porous graphene —an anode material for lithium ion batteries (高氮掺杂多孔石墨烯一一种用于锂离子电池的阴极材料)Zhu-Yin Sui, Caiy un Wang, Qua n-She ng Ya ng, Kewei Shu, Yu-Wen Liu, Bao-Ha ng Han and Gordo n G. WallaceJ. Mater. Chem. A , 2015,3, 18229-18237DOI: 10.1039/C5TA05759K, Paper30、The effect of titanium in Li 3V2(PO4)3/graphene composites as cathode material for high capacity Li-ion batteries (一种用于高容量锂离子电池阳极材料:Ti在Li3V2(PO4)3/石墨烯复合物中的作用)Man soo Choi, Kisuk Kang, Hyun-Soo Kim, Young Moo Lee and Bon g-Soo JinRSC Adv., 2015,5, 4872-4879DOI: 10.1039/C4RA09389E, Pap er31、Assess ing the improved performa nee of freesta nding, flexible graphe ne and carb on nano tube hybrid foams for lithium ion battery an odes (组装用于提高锂离子电池阴极性能的具有独立柔性的石墨烯和碳纳米管混合泡沫)Adam P. Coh n, La ndon Oakes, Rachel Carter, Shaha na Chatterjee, An drew S. Westover, Keith Share and Cary L. PintNan oscale, 2014,6, 4669-4675DOI: 10.1039/C4NR00390J, Pap er32、Con trolled Lithium Den drite Growth by a Syn ergistic Effect ofMultilayered Graphe ne Coati ng and an Electrolyte Additive (通过多层石墨烯包覆和电解液添力口剂的协同效应来控制锂枝晶的生长)Joo-Se ong Kim, Dae Woo Kim, Hee Tae Jung, and Jang Wook ChoiChem. Mater., 2015, 27 (8), pp 2780 T2787Publication Date (Web): March 26, 2015 (Article)DOI: 10.1021/cm503447u33、Self-assembled graphene and LiFePO4 composites with superior high rate capability forlithium ion batteries (自组装具有高倍率容量的石墨烯和LiFePO4复合材料用于锂离子电池)Wen-Bin Luo, Shu-Lei Chou, Yu-Chun Zhai and Hua-Kun LiuJ. Mater. Chem. A , 2014,2, 4927-4931DOI: 10.1039/C3TA14471B, Paper34、Graphe ne enhanced carb on-coated tin dioxide nano particles for lithium-i on sec on dary batteries (石墨烯增强碳包覆TiO2纳米颗粒用于锂离子电池)Zhon gtao Li, Guilia ng Wu, Dong Liu, Wen ti ng Wu, Bo Jia ng, Jin gta ng Zheng, Yanpeng Li,Jun hua Li and Min gbo WuJ. Mater. Chem. A , 2014,2, 7471-7477DOI: 10.1039/C4TA00361F, Paper35、Mild soluti on syn thesis of graphe ne loaded with LiFePO 4 -C nano platelets for highperformanee lithium ion batteries (温和溶液法在碳包覆LiFePO4上合成石墨烯用于提高锂离子电池性能)Much un Liu, Yan Zhao, Sen Gao, Yan Wang, Yuex in Duan, Xiao Han and Qi DongNew J. Chem., 2015,39, 1094-1100DOI: 10.1039/C4NJ01485E, Paper36、Flexible free-standing graphene paper with intereonneeted porous structure for energy storage (互联多孔结构的柔性独立石墨烯纸用于能量存储)Kewei Shu, Caiy un Wang, Sha Li, Chen Zhao, Yang Yang, Huak un Liu and Gordon WallaceJ. Mater. Chem. A , 2015,3, 4428-4434DOI: 10.1039/C4TA04324C, Paper37、Dual roles of iron powder on the syn thesis of LiFePO 4@C/graphe ne cathode a nano compositefor high-performanee lithium ion batteries (Fe粉在合成用于高性能锂离子电池阳极材料LiFePO4@C/石墨烯纳米复合材料中的双重作用)Tiefe ng Liu, Jin gxia Qiu, Bo Wang, Yazhou Wang, Dianlong Wang and Shanqing ZhangRSC Adv., 2015,5, 100018-100023DOI: 10.1039/C5RA20712F, Paper38、TiO2(B) -CNT -graphene ternary composite anode material for lithium ion batteries (用于锂离子电池的TiO2 (B)-碳纳米管-石墨烯三元复合阳极材料)Tao Shen, Xufe ng Zhou, Hailia ng Cao, Chao Zhe ng and Zhaop ing LiuRSC Adv., 2015,5, 22449-22454DOI: 10.1039/C5RA01337B, Pap er39、Desired crystal oriented LiFePO 4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage (用于快离子存储的在石墨烯上原位生长具有一定晶向方向的且互联导电LiFePO4纳米盘网络)Bo Wang, Anmin Liu, Wael Al Abdulla, Dia nlong Wang and X. S. ZhaoNanoscale, 2015,7, 8819-8828DOI: 10.1039/C5NR01831E, Paper40、Nitrogen and fluorine co-doped graphene as a high-performanee anode material forlithium-ion batteries (用于锂离子电池的高性能阴极材料:氮和氟共掺杂石墨烯)Shizhe ng Huang, Yu Li, Yiyu Feng, Haora n An, Peng Long, Chengqun Qin and Wei FengJ. Mater. Chem. A , 2015,3, 23095-23105DOI: 10.1039/C5TA06012E, Paper41、Ge -raphene -carbon nanotube composite anode for high performance lithium-ion ba卄eries (用于高性能锂离子电池的锗-石墨烯-碳纳米管复合材料)Shan Fang, Laifa Shen, Hao Zheng and Xiaoga ng ZhangJ. Mater. Chem. A , 2015,3, 1498-1503DOI: 10.1039/C4TA04350B, Paper42、Reduced Graphene Oxide in Cathode Formulations Based on LiNi0.5Mn 1.5O4 Batteries and Energy Storage(基于LiNi0.5Mn 1.5O4电池的还原氧化石墨烯在阳极中的构成)C. Arbizza ni, L. Da Col, F. De Giorgio, M. Mastragost ino, and F. SoaviJ. Electrochem. Soc. 2015 162:A2174-A2179; doi:10.1149/2.0921510jes。
石墨烯英文版资料
Molecular structure of graphene
High resolution transmission electron microscope images (TEM) of gra Geim & K. S. Novoselov. The rise of graphene. Nature Materials Vol . 6 ,183-191 (2007 ).
并且不可避免地变成在烟炱中发生的丰富多样的稳定的3D结构之一。 但是有一个解决问题的方法。 与3D结构的相互作用在生长期间稳定2D晶体。 因此,可以使2D晶体夹在块体晶体的原子平面之间或 放置在其上。 在这方面,石墨烯已经存在于石墨中...然后,人们可以希望愚弄自然,并在足够低的温 度下提取单原子厚的微晶,使得它们保持在由原始的较高温度的3D生长规定的淬火状态。
? 在2004年:曼彻斯特大学的Andre Geim和Kostya Novoselov设法从 块状石墨中提取单原子厚的微晶(石墨烯):从石墨中拉出石墨烯层 ,并将其转移到硅晶片上的薄二氧化硅上,有时称为微机械 切割, 或简单地,苏格兰带技术。 自2004年以来,报告了石墨烯在合成, 表征,性质以及特异性潜在应用方面的研究中的爆炸。
ever measured, some 200 times stronger
than structural steel
石墨烯是最强的材料 ,比结构钢强 200倍
A representation of a diamond tip with a two nanometer radius indenting into a single atomic sheet of graphene (Science, 321 (5887): 385)
中低温制备气凝胶及其在电池散热中的应用
中低温制备气凝胶及其在电池散热中的应用杨云龙;徐自强;吴孟强;张大庆;李元勋【摘要】石墨烯气凝胶(graphene aerogel,GA)由于其不理想的导热性能限制了它在储能装置中的应用.针对这个问题,系统而定量地研究了如何在提高GA热性能的同时降低电导率并应用在电池散热中的方法.该方法通过对GO进行氮掺杂并在中低温环境下进行水热反应制备复合气凝胶,对制备的复合气凝胶进行一系列相关测试,证明其优异的性能,并将制备的复合气凝胶用于电池散热中,设计了相关实验.实验结果表明,相较于空气自热冷却,采用复合气凝胶填充的电池pack组在放电时温升降低了15~23℃,表明了复合气凝胶用于电池散热的可行性和有效性.【期刊名称】《电源技术》【年(卷),期】2019(043)006【总页数】4页(P992-994,1076)【关键词】气凝胶;氮掺杂;储能装置;电池散热【作者】杨云龙;徐自强;吴孟强;张大庆;李元勋【作者单位】电子科技大学材料与能源学院,四川成都611731;电子科技大学材料与能源学院,四川成都611731;电子科技大学材料与能源学院,四川成都611731;成都汽车产业研究院,四川成都610101;电子科技大学电子薄膜与集成器件国家重点实验室,四川成都610054【正文语种】中文【中图分类】TM91在过去几年中,石墨烯在各个领域都产生了巨大的影响。
由于其卓越的电、热、机械和光学性能,使它在微电子器件和储能器件中有很大的应用潜力,然而,很少有可靠的方法来处理这种原子级厚度的二维材料,这严重阻碍了它的器件级特性和广泛应用。
近年来,石墨烯气凝胶(graphene aerogel,GA)作为一种自组装的石墨烯材料,因其超高的比表面积和超低的密度等特性而备受瞩目。
GA代表了一种孔隙率高、密度低、导电性好的新型单孔结构材料,在许多领域有着广阔的应用前景。
目前,GA的制备方法主要有水热反应制备法、化学气相沉积法、有机溶胶法等。