人教版九年级下册数学《第26章反比例函数》单元测试题含答案

合集下载

人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解

人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解

人教版九年级数学下册《第26章反比例函数》单元测试卷(2)一.选择题1.(3分)将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.62.(3分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.106.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.59.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣210.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=.13.(3分)反比例函数经过(﹣3,2),则图象在象限.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向平移个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)写出该函数两条不同类型的性质:①;②;(3)写出不等式﹣+4>0的解集.人教版九年级数学下册《第26章反比例函数》单元测试卷(2)参考答案与试题解析一.选择题1.(3分)将x =代入反比例函数y =﹣中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,…,如此继续下去,则y 2012的值为()A .2B .C .D .6【考点】反比例函数的定义.【分析】分别计算出y 1,y 2,y 3,y 4,可得到每三个一循环,而2012=670…2,即可得到y 2012=y 2.【解答】解:y 1=﹣=﹣,把x =﹣+1=﹣代入y =﹣中得y 2=﹣=2,把x =2+1=3代入反比例函数y =﹣中得y 3=﹣,把x =﹣+1=代入反比例函数y=﹣得y 4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y 2012=2.故选:A .2.(3分)反比例函数y =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为()A .B .C .D .【考点】反比例函数的图象;一次函数的图象.【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象;一次函数的图象.【分析】由函数图象经过y轴正半轴可知c>0,利用排除法即可得出正确答案.【解答】解:对称轴位于y轴左侧,a、b同号,即b<0.图象经过y轴正半可知c>0,根据对称轴和一个交点坐标用a表示出b,c,b=2a=﹣,c=,由一次函数y=﹣x﹣2b与反比例函数y=得到:=﹣x﹣2b,即x2﹣4x+3=0.则Δ=16﹣12=4>0,所以,可以确定一次函数和反比例函数有2个交点,由b<0可知,直线y=﹣x﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定【考点】反比例函数图象的对称性;轴对称图形.【分析】根据反比例函数图象为轴对称图形,并且有两条对称轴进行解答.【解答】解:反比例函数的图象是双曲线,且其为轴对称图形,关于直线y=x和y=﹣x 对称.故选:C.5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.10【考点】反比例函数图象的对称性.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.6.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、∵(﹣1)×(﹣3)=3,∴图象必经过点(﹣1,﹣3),故本选项不符合题意;B、∵k=3>0,∴函数图象的两个分支分布在第一、三象限,故本选项不符合题意;C、∵x=1时,y=3且y随x的增大而增大,∴x>1时,0<y<3,故本选项不符合题意;D、函数图象的两个分支分布在第一、三象限,在每一象限内,y随x的增大而减小,故本选项符合题意.故选:D.7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质;反比例函数的图象.【分析】根据k值确定函数图象经过的象限即可.【解答】解:因为k=﹣2020,所以反比例函数y=﹣的图象在第二、四象限,故选:C.8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.5【考点】反比例函数系数k的几何意义;中心对称.【分析】设A点的坐标为()则根据矩形的性质得出矩形中心的坐标为:(),即(),进而可得出BC的长度.然后将坐标代入函数解析式即可求出k的值.【解答】解:设A(),∴AB=,∵矩形的面积为10,∴BC=,∴矩形对称中心的坐标为:(),即()∵对称中心在的图象上,∴,∴mk﹣5m=0,∴m(k﹣5)=0,∴m=0(不符合题意,舍去)或k=5,故选:D.法二:解:连接BE,作EH⊥AB于H.设A(),∴AB=,∴E(2m,),∵矩形ABCD的面积为10,∴△ABE的面积为=,∴=,即××(2m﹣m)=,∴k=5.故选:D.9.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数图象上点的坐标特征以及三角形的面积公式进行计算得出答案.【解答】解:设点A的坐标为(a,),∵AB∥x轴,AC∥y轴,∴点B的纵坐标为,点C的横坐标为a,将y=代入反比例函数y=得,x=,∴B(,),∴AB=a﹣,将x=a代入反比例函数y=得,y=,∴C(a,),∴AC=,=AB•AC=(a﹣)×==,∵S△ABC即(m﹣n)2=9m,当m=,n=﹣时,不满足(m﹣n)2=9m,因此选项A符合题意;当m=,n=﹣时,当m=1,n=﹣2时,当m=4,n=﹣2时,均满足(m﹣n)2=9m,因此选项B、C、D均不符合题意;故选:A.10.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)【考点】反比例函数图象上点的坐标特征.【分析】将(3,﹣4)代入y=求出k的值,再根据k=xy解答即可.【解答】解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为﹣2.【考点】反比例函数的定义.【分析】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【解答】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y==﹣2,故答案为:﹣2.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=3.【考点】反比例函数的定义.【分析】根据反比例函数的一般形式得到m2﹣2m﹣4=﹣1且m+1≠0,由此来求m的值即可.【解答】解:∵函数y=(m+1)是y关于x的反比例函数,∴m2﹣2m﹣4=﹣1且m+1≠0,解得m=3.故答案为:3.13.(3分)反比例函数经过(﹣3,2),则图象在二四象限.【考点】反比例函数的图象.【分析】易得反比例函数的比例系数,若为正数,在一三象限,若为负数在二四象限.【解答】解:∵反比例函数经过(﹣3,2),∴k=﹣3×2=﹣6,∴图象在二四象限,故答案为二四.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有2个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是0<m<2.【考点】反比例函数的图象;二次函数的图象.【分析】在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,根据函数图象即可得到直线y=3与图象E的交点个数以及常数m的取值范围.【解答】解:在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,由图可得,直线y=3与图象E的交点有2个,∵直线y=m(m为常数)与图象E有三个不同的交点,∴直线y=m在直线y=2的下方,且在x轴的上方,∴常数m的取值范围是0<m<2,故答案为:2,0<m<2.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=12.【考点】反比例函数图象的对称性.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【解答】解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π(a)2=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.故答案为:12.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【考点】反比例函数的定义.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数改为不是反比例函数.(3)由路程与时间的关系,得t=,即t=是反比例函数.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠3;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质当x>3时y随x的增大而减小(答案不唯一);(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为y1<y3<y2;【考点】反比例函数的图象;反比例函数的性质.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.【考点】反比例函数的图象;反比例函数的性质.【分析】(1)把x=﹣2代入函数解析式可得y的值;(2)(3)根据函数图象可直接得到答案.【解答】解:(1)当x=﹣2时,y==﹣3;(2)当2<y<4时:<x<3;(3)由图象可得当﹣1<x<2且x≠0时,y<﹣6或y>3.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.【考点】反比例函数的图象;二次函数图象与几何变换;一次函数的图象;正比例函数的图象;一次函数图象与几何变换.【分析】(1)利用反比例函数图象的左右平移规律是左加右减;(2)利用一次函数图象的左右平移规律是左加右减;(3)利用二次函数图象的平移规律,再对应比较.【解答】解:(1)利用反比例函数图象的左右平移规律是左加右减,函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到.故答案为:右.(2)利用一次函数图象的上下平移规律是上加下减,函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到.故答案为:左,2.(3)利用二次函数图象的平移规律,y=﹣x2向右平移a个单位,再向上平移2a个单位后可得:y=﹣(x﹣a)2+2a与y=﹣x2+mx﹣15对应后可得:∵a>0,∴故答案为:m=10.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是C.(2)写出该函数两条不同类型的性质:①在第三象限内,y随x的增大而增小;②图象的两个分支分别位于第三、四象限;(3)写出不等式﹣+4>0的解集.【考点】反比例函数的性质;二次函数的图象;二次函数的性质;反比例函数的图象.【分析】(1)对于函数y=﹣的图象,无论x取非零实数时,y的值总小于零,可得图象;(2)可以从函数的增减性方面进行说明,也可以从函数图象位于的象限说明;函数图象关于y轴成轴对称图形;(3)先求出y=﹣4时x的值,再根据图形确定不等式﹣+4>0的解集.【解答】解:(1)∵函数y =﹣<0,∴函数y =﹣的图象是:C故答案为:C.(2)该函数的性质:①在第三象限内,y随x的增大而增小,②图象的两个分支分别位于第三、四象限;故答案为:在第三象限内,y随x的增大而增小,图象的两个分支分别位于第三、四象限;(3)当y=﹣4时,﹣=﹣4,解得:x =,根据函数的图象和性质得,不等式﹣+4>0的解集是:x <﹣或x >.第21页(共21页)。

人教版九年级数学下第26章 反比例函数单元测试题及答案

人教版九年级数学下第26章 反比例函数单元测试题及答案

人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

4、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,则( )A 、S 1>S 2;B 、S 1<S 2;C 、S 1 =S 2;D 、S 1和S 2的大小关系不能确定6、在反比例函数1k y x -=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .27、如图,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( ) A 、1 B 、 C 、2 D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 9、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 10、若反比例函数xy 4-=的图象经过点(a ,-a ),则a 的值为( ) A 、2; B 、±2; C 、-2; D 、±4二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若时,,则的取值范围是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、 y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .17、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=.18、点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是___________.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________三、解答题(共50分)21、(8分)已知 21y y y += 若1y 与2x 成正比例关系 ,2y 与x 成反比例关系 ,且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式?22、(10分)如图所示:已知直线y=x 21与双曲线y=)0(>k xk交于A B两点,且点A的横坐标为4⑴ 求k的值 ⑵ 若双曲线y=)0(>k xk上的一点C 的纵坐标为8,求△AOC 的面积23、(8分)在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值24、(24分)如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由. (4)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.参考答案1、B2、D3、B4、C5、C6、D7、C8、D9、D 10、B 11、(2,1)12、-1 , 13、-5 14、-3 , 15、K <-116、y=x 5, 17、418、y=x6, 19、420、4 , 21、y=-x 2- x422、k=8, △AOC 的面积=15 23、k=6,24、(1) y=x 4, y=2x-2(2) =3, (3)在, (4)、x <-1 或 0< x <2人教版九年级下册第二十六章《反比例函数》单元测试及答案一、选择题1、已知反比例函数(≠0)的图象,在每一象限内,的值随值的增大而减少,则一次函数的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限2、函数自变量x的取值范围是()A. 全体实数B.C.x<1D.x≠13、若反比例函数的图象过点(2,1),则这个函数的图象一定过点 ( )A.(2,—1) B.(1,—2) C.(—2,1) D.(—2,—1)4、反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥25、如图,过双曲线(k是常数,k>0,x>0)的图象上两点A,B分别作AC⊥x轴于C,BD⊥x轴于D,则△AOC的面积S1和△BOD的面积S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.S1与S2无法确定6、已知, , 是反比例函数的图象上的三点,且,则、、的大小关系是( )A .B .C .D .7、当m ,n 是实数且满足m ﹣n=mn 时,就称点Q (m ,)为“奇异点”,已知点A 、点B 是“奇异点”且都在反比例函数y=的图象上,点O 是平面直角坐标系原点,则△OAB 的面积为( )A .1B .C .2D .8、如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y=的图象经过A ,B 两点,则菱形ABCD 的面积为( )A .2B .4C .2D .49、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC边在直线l 上滑动,使A ,B 在函数y=的图象上.那么k 的值是( )A.3 B.6 C.12 D.10、物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为.当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为()11、将一定浓度的溶液加水稀释,能正确表示加入水的质量与溶液酸碱度关系的是()12、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应().A .不小于m 3B .小于m 3C .不小于m 3D .小于m 313、如图,平面直角坐标系中,矩形ABCO 与双曲线y=(x >0)交于D 、E 两点,将△OCD沿OD 翻折,点C 的对称点C ′恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .3C .D .二、填空题14、.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .15、如图所示,直线y=x+a ﹣2与双曲线y=交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为 .16、某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是(填“相离”、“相切”或“相交”).18、如图,已知点A在反比例函数(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .19、直线与双曲线交于、两点,则的值是.20、在双曲线上有三点,已知,则的大小关系是 .(用“<”连接)21、.如图,已知反比例函数的图象上有一组点B1,B2,…,B n,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为,S1+S2+…+S n= (用含n的式子表示).22、如图,双曲线y=在第一象限内的图象与等腰直角三角形OAB相交于C点和D点,∠A=90°,OA=1,OC=2BD,则k的值是____.23、如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为 .24、如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是.25、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米。

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案满分120分一、单选题1. ( 3分) 如图,正比例函数y1=k1x和反比例函数y2=k2的图象交于A(﹣1,2)、B(1,﹣2)两点,x若y1<y2,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】由图象可得,﹣1<x<0或x>1时y1<y2.故D符合题意.【分析】因为y1<y2,所以正比例函数的图象低于反比例函数的图象,而两图像交于A(﹣1,2)、B (1,﹣2)两点,两交点和原点将图形分成四部分,则x的取值范围是﹣1<x<0或x>1。

的图像上,则k的值是()2. ( 3分) 若点A(-1,6)在反比例函数y=kxA.-6B.-3C.3D.6【答案】A【考点】反比例函数图象上点的坐标特征的图象上【解析】【解答】因为A(-1,6)在反比例函数y=kx所以6= k1解得:k=-6.故答案为:A.的图象上,则点的坐标一定满足解析式,代入就得到k的值.【分析】点A(-1,6)在反比例函数y=kx3. ( 3分) 下列函数的图象,一定经过原点的是()A.y=2B.y=5x2﹣3xC.y=x2﹣1D.y=﹣3x+7x【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】A、x≠0,所以不经过原点,故错误;B、若x=0,则y=5×0﹣3×0=0.所以经过原点.故正确;C、若x=0,则y=﹣1.所以不经过原点.故错误;D、若x=0,则y=7.所以不经过原点.故错误.故答案为:B.【分析】反比例函数中由于自变量的取值范围是不能为零的故图像不可能经过坐标原点;二次函数的图像与y轴的交点取决于常数项C,只有C等于零的时候,图像才会经过坐标原点;一次函数的图像与y轴的交点取决于常数b,只有b=0的时候直线才经过坐标原点。

第26章 反比例函数 数学人教版九年级下册单元练习(含答案)

第26章 反比例函数 数学人教版九年级下册单元练习(含答案)

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列函数中,y是x的反比例函数的是( ).A. y=3xB. y=1+1x C. 3xy=2 D. y=1x―22.已知反比例函数y=3k+1x的图象的两分支分别在第二、四象限内,则k的取值范围是( )A. k>―13B. k>13C. k<―13D. k<133.在四个密闭容器中分别装有甲、乙、丙、丁四种气体,如图,用四个点分别描述这四种气体的密度ρ(kg/ m3)与体积V(m3)的情况,其中描述乙、丁两种气体情况的点恰好在同一个反比例函数的图象上,则这四种气体的质量最小的是( )A. 甲B. 乙C. 丙D. 丁4.某品牌的饮水机接通电就进入自动程序:开机加热到水温为100℃时,停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.当水温为30℃时,接通电后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )A. 27分钟B. 20分钟C. 13分钟D. 7分钟5.如图,在平面直角坐标系中,函数y =4x (x >0)与y =x ―1的图象交于点P(a,b),则代数式1a ―1b的值为( )A. ―12B. 12C. ―14D. 146.如图,点P 是反比例函数y =k x图象上的一点,PF ⊥x 轴于F 点,且Rt △POF 面积为4.若点B(―2,m)也是该图象上的一点,则m 的值为( )A. ―2B. ―4C. 2D. 47.已知点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)都在反比例函数y =kx (k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 2>y 1>y 3B. y 3>y 2>y 1C. y 1>y 2>y 3D. y 3>y 1>y 28.如图,矩形OABC的面积为36,它的对角线OB与双曲线y=k相交于点D,x且OD:OB=2:3,则k的值为( )A. 12B. ―12C. 16D. ―169.若函数y=k与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为( )xA. B. C. D.10.方程x2+2x―1=0的根可视为直线y=x+2与双曲线y=1交点的横坐标,根据此法可推断方程x3x+3x―2=0的实数根x0所在的范围是( )A. 0<x0<1B. 1<x0<2C. 2<x0<3D. 3<x0<4二、填空题:本题共6小题,每小题3分,共18分。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

人教版九年级下册《第二十六章 反比例函数》单元测试卷及答案

人教版九年级下册《第二十六章 反比例函数》单元测试卷及答案

人教版九年级下册《第26章反比例函数》单元测试卷(1)一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1 3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.56.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣69.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.2010.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为.13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.人教版九年级下册《第26章反比例函数》单元测试卷(1)参考答案与试题解析一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3,则y1,y2,y3的大小关系.【解答】解:∵反比例函数中k=﹣4<0,∴此函数的图象在二、四象限,且在每一各象限内y随x的增大而增大,∵x1<0<x2<x3,∴(x1,y1)在第二象限,(x2,y2),(x3,y3)在第四象限,∴y1>0,y2<y3<0,即y1>y3>y2.故选:C.2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】直接把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=3,y2=﹣=6,y3=﹣=﹣6.∵6>3>﹣6,∴y2>y1>y3.故选:C.3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)【考点】反比例函数图象上点的坐标特征.【分析】将(2,﹣1)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣1),∴k=2×(﹣1)=﹣2,A、﹣1×1=﹣1≠﹣2;B、4×=2≠﹣2;C、﹣1×(﹣2)=2≠﹣2,D、﹣×4=﹣2.故选:D.4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米【考点】反比例函数的应用.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,把点(0.5,200)代入求得k的值,得到反比例函数解析式,根据题意列出不等式,解不等式即可求出焦距x的取值范围.【解答】解:根据题意,近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,∵点(0.5,200)在此函数的图象上,∴k=0.5×200=100,∴y=(x>0),∵y<400,∴<400,∵x>0,∴400x>100,∴x>0.25,即镜片焦距x的取值范围是x>0.25米,故选:B.5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.5【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】连接OC.证明BC=OB=OC,利用轴对称的性质和勾股定理解决问题即可.【解答】解:连接OC.∵反比例函数y=(k>0)图象是中心对称图形,∴OB=OA,∵△ABC为直角三角形,且∠A=30°,∠ACB=90°,∴OC=OB=BC,∵反比例函数关于直线y=x对称,OC=OB,∴B、C关于直线y=x对称,∴点C的纵坐标与点B的横坐标相同,∴B(a,b),则C(b,a),∵BC=OB,∴2(a﹣b)2=a2+b2,整理得2ab=(a﹣b)2,∵B点的纵坐标比横坐标少3个单位长,∴a﹣b=3,∴ab=,∵点B在双曲线y=(k>0)上,∴k=ab=.故选:B.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元【考点】反比例函数的应用.【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【解答】解:A、设反比例函数的解析式为y=,把(1,180)代入得,k=180,∴反比例函数的解析式为:y=,当x=4时,y=45,∴4月份的利润为45万元,故此选项正确,不合题意;B、治污改造完成后,从4月到5月,利润从45万到75万,故每月利润比前一个月增加30万元,故此选项正确,不合题意;C、当y=135时,则135=,解得:x=,设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,当x=6时,y=105,当x=7时,y=135,则只有2月,3月,4月,5月,6月共5个月的利润低于135万元,故此选项正确,不符合题意.D、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,故y=205时,205=30x﹣75,解得:x=,则9月份之后该厂利润达到205万元,故此选项不正确,符合题意.故选:D.7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象;相似三角形的判定与性质.【分析】根据两角可得△ECH∽△CAB,再利用对应边成比例可得y与x的关系式,进而可得对应图象.【解答】解:∵四边形ABCD是矩形,∴DC∥AB,∠B=90°,∴∠ECH=∠CAB.∵AC的垂直平分线EH交CD于点E,交AC于点H,∴∠EHC=90°,CH=AC=2,∴△ECH∽△CAB,∴,即,∴y=(0<x<4).故选:A.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣6【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.=S△POD=|k|,再证【分析】连接OP,作PD⊥OB于点D,AE⊥OB于E,求得S△AOE=S△POB=6.明BD=DE=OE,得S△POD【解答】解:连接OP,作PD⊥OB于点D,AE⊥OB于E,∵P为AB的中点,∴BD=DE,PD=AE,∵反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,=S△POD=|k|,∴S△AOE∴,∴OD=2OE,∴BD=DE=OE,=S△POB,∴S△POD∵△AOB的面积为18,∵P为AB的中点,=S△AOB=9,∴S△POB=S△POB=6,∴S△POD∴|k|=6,∵k<0,∴k=﹣12.故选:B.9.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.20【考点】反比例函数图象上点的坐标特征;正方形的性质;一次函数图象上点的坐标特征.【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可.【解答】解:∵当x=0时,y=×0+3=3,∴A(0,3),∴OA=3;∵当y=0时,0=x+3,∴x=﹣2,∴B(﹣2,0),∴OB=2;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=2,∴OE=3+2=5,∴C点坐标为(﹣5,2),∵点C在反比例函数y=(x<0)的图象上,∴k=﹣5×2=﹣10.故选:A.10.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可判断.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥x轴,BE,CF垂直y轴于点E、F,=S△COF=S△AOD=k,∴S△BOE﹣S△GOF=S△COF﹣S△GOF,∴S△BOE∴S1=S2<S3,∴S1﹣S2=0,故A、B、D错误,C正确;故选:C.二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为﹣2.【考点】反比例函数系数k的几何意义.【分析】连接OA,作AC⊥y轴于C点,由于AB⊥x轴,则AB∥OP,根据同底等高的=S△P AB=1,则有S矩形ABOC=2S△OAB=2,根据k的几何意义三角形面积相等得到S△OAB得到|k|=2,即k=2或k=﹣2,然后根据反比例函数性质即可得到k=﹣2.【解答】解:连接OA,作AC⊥y轴于C点,如图∵AB⊥x轴,∴AB∥OP,=S△P AB=1,∴S△OAB=2S△OAB=2,∴S矩形ABOC∴|k|=2,即k=2或k=﹣2,∵反比例函数图象过第二象限,∴k=﹣2.故答案为﹣2.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为(4,3).【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】根据矩形的性质和A点的坐标,即可得出C的纵坐标为3,设C(x,3),根据反比例函数图象上点的坐标特征得出k=3x=2×6,解得x=4,从而得出C的坐标为(3,4).【解答】解:∵点A的坐标为(2,6),AB=3,∴B(2,3),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为3,设C(x,3),∵矩形ABCD的顶点A,C在反比例函数的图象上,∴k=3x=2×6,∴x=4,∴C(4,3),故答案为(4,3).13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为2.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等边三角形的性质;菱形的性质.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得=S△AOD,推出S△AOB=S△ABD=2,过B作BH⊥OA于H,到OD∥AB,求得S△BDO=,于是得到结论.由等边三角形的性质得到OH=AH,求得S△OBH【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,=S△AOD,∴S△BDO=S△ADO+S△ABD=S△BDO+S△AOB,∵S四边形ABDO=S△ABD=2,∴S△AOB过B作BH⊥OA于H,∴OH=AH,=,∴S△OBH∵反比例函数y=(x>0)的图象经过点B,∴k的值为2,故答案为:.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征,设B(t,),则可表示出A(2t,),由三角形中位线定理,EM=OD=t,EN=OC=,然后根据三角形面积公式得到关于k的方程,解此方程即可.【解答】解:设B(t,),∵AC⊥y轴于点C,BD⊥x轴于点D,B点的横坐标是A点横坐标的一半,∴A(2t,),根据三角形中位线定理,EM=OD=t,EN=OC=,∴阴影部分的面积=EM•BE+=+=k﹣2,∴•+•t=k﹣2.解得,k=,故答案为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为4;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为4或.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质.【分析】(1)设矩形OAPB的两边为m、n,利用反比例函数k的几何意义得到mn=6,再根据勾股定理得到m2+n2=102,根据完全平方公式变形得到(m+n)2﹣2mn=100,则可计算出m+n=2,从而得到矩形OAPB的周长;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,利=4,再根据对称轴的性质得AB垂直平分EF,EQ=FQ,用三角形面积公式得到S△ABE=S△ABE=2,则S△AEF=2S△AQE 接着证明FQ垂直平分AB得到BQ=AQ,所以S△AQE=4;当E关于直线AB的对称点F恰好落在y轴上,如图3,证明四边形OAPB为正方=,而S△AOE=S△APE=2,于是得到S△AEF 形得到P(2,2),则可计算出S△BEF=.【解答】解:(1)设矩形OAPB的两边为m、n,则mn=12,∵矩形的对角线AB=10,∴m2+n2=102,∴(m+n)2﹣2mn=100,∴(m+n)2=100+2×12,∴m+n=2,∴矩形OAPB的周长为4,故答案为4;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,∵矩形OAPB的面积=12,而BE=2PE,=4,∴S△ABE∵点E与点F关于AB对称,∴AB垂直平分EF,EQ=FQ,∴AE=AF,∴∠AEF=∠AFE,∵PB∥OA,∴∠AFE=∠BEF,∴∠BEF=∠AEF,∴FQ垂直平分AB,∴BQ=AQ,=S△ABE=2,∴S△AQE=2S△AQE=4;∴S△AEF当E关于直线AB的对称点F恰好落在y轴上,如图3,∵点E与点F关于AB对称,∴BE=BF,AB⊥EF,∴△BEF为等腰直角三角形,∴AB平分∠OBP,∴四边形OAPB为正方形,∴P(2,2),∴BE=BF=,=××=,∴S△BEF=S△APE=2,而S△AOF=12﹣﹣2﹣2=,∴S△AEF综上所述,△AEF的面积为4或,故答案为4或.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A(a,﹣2a)、B(﹣2,a),代入反比例函数y=,即可求出a、m的值;可得A、B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数解析;(2)求得C的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;【解答】解:(1)∵A(a,﹣2a)、B(﹣2,a)两点在反比例函数y=的图象上,∴m=﹣2a•a=﹣2a,解得a=1,m=﹣2,∴A(1,﹣2),B(﹣2,1),反比例函数的解析式为y=﹣.将点A(1,﹣2)、点B(﹣2,1)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)在直线y=﹣x﹣1中,令y=0,则﹣x﹣1=0,解得x=﹣1,∴C(﹣1,0),=S△AOC+S△BOC=×1×2+×1=;∴S△AOB(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的下方,∴不等式kx+b﹣>0的解集为x<﹣2或0<x<1.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的性质得出OA=AB,即可得出∠ABO=∠AOB,由∠OBD=90°得出∠ADB =∠ABD,即可得出AD=AB=5,则OD=10,得到D(﹣10,0),然后根据待定系数法即可求得直线BD的解析式.【解答】解:(1)如图,延长BC交y轴于点E,∵C(﹣4,3),∴CE=4,OE=3,∴OC==5,∴BC=5,∴B(﹣9,3),∵顶点B在反比例函数y=的图象上,∴k=﹣9×3=﹣27;(2)∵OA=AB,∴∠ABO=∠AOB,又∵∠DBO=90°,∴∠ADB=∠ABD,∴AD=AB=5,∴OD=10,∴D(﹣10,0),设直线BD的解析式为y=ax+b,∵过D(﹣10,0),B(﹣9,3),∴,解得,直线BD解析式为:y=3x+30.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法即可求得反比例函数的解析式,然后把P(1,m)代入到求得的解析式,即可求得m的值;(2)根据函数的对称性求得A的坐标,即可根据待定系数法求得直线AP的解析式,从=S△AOC+S△POC求得即可.而求得直线AP与y轴的交点C的坐标,然后根据S△AOP【解答】解.(1)把点B(4,1)代入y=,得k=4,∴反比例函数的表达式为y=,∵把P(1,m)代入y=得:m==4,∴点P坐标为(1,4);(2)∵点A与点B关于原点对称,点B(4,1),∴点A(﹣4,﹣1),设AP与y轴交于点C,直线AP的函数关系式为y=ax+b,把点A(﹣4,﹣1)、P(1,4)分别代入得,,解得,∴直线AP的函数关系式为y=x+3,∴点C的坐标(0,3),=S△AOC+S△POC=+=.∴S△AOP19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.【考点】反比例函数与一次函数的交点问题.=S四【分析】(1)作AF⊥y轴于F,证得△CAF≌△DAE(AAS),即可得出S正方形AFOE=1,从而求得k=S正方形AFOE=1;边形ACOD(2)两解析式联立,组成方程组,解方程组即可求得.【解答】解:(1)作AF⊥y轴于F,∵点A在直线y=x上,∴AF=AE,∵∠CAF+∠DAF=∠DAE+∠DAF=90°,∴∠CAF=∠DAE,在△CAF和△DAE中,,∴△CAF≌△DAE(AAS),=S四边形ACOD=1,∴S正方形AFOE=1,∴k=S正方形AFOE∴双曲线的解析式为;(2)解得或,∴A(1,1),B(﹣1,﹣1).20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.【考点】反比例函数与一次函数的交点问题.【分析】根据反比例系数k的几何意义求得k,得到反比例函数的解析式,代入x=4,即可求得P的坐标,作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小,根据待定系数法求得直线CD的解析式,进而即可求得M、N的坐标.【解答】解:∵点A是反比例函数的图象上一点,过点A作AB⊥x轴于点B,△AOB 的面积为2.=|k|=2,∴S△AOB∴|k|=2×2=4,∵图象在第一象限,∴k=4,∴反比例函数y=(x>0),把x=4代入得y=1,∴P(4,1),作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小.最小值为CD,设直线CD的解析式y=mx+n,则,解得,∴直线CD的解析式为y=﹣x+,令y=0,则﹣x+=0,解得x=,∴N(,0),令x=﹣x+,解得x=,∴M(,).21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.【考点】反比例函数综合题.【分析】(1)由旋转的性质可知AO=AF,且∠AOF=∠BAO,可证得△AOF为等边三角形,由题意可知A、D关于原点对称,则可求得OA的长,设AH交x轴于点K,则可中求得OK和AK的长,可求得A点坐标,代入反比例函数解析式可求得k的值;(2)设G(x,0),由A、C的坐标可分别表示出AG、CG和AC的长,分AG=CG、AG=AC和CG=AC三种情况分别得到关于x的方程,可求得x的值,则可求得G点坐标;(3)把P、Q的坐标代入反比例函数解析式可用x1、x2分别表示出a、b,则可比较m、n的大小关系,利用反比例函数的性质可求得y1,y2的大小.【解答】解:(1)由旋转的性质可得AO=AF=DE=BC,∠BAO=∠OAF,∵AB∥OC,∴∠BAO=∠AOF,∴∠AOF=∠OAF,∴AF=OF,∴AF=OF=OA,∴△AOF为等边三角形,∵点A,D在反比例函数y=的图象上,∴A、D关于原点对称,∴AO=OD=AD=OC=2,如图1,设AH交x轴于点K,在Rt△AOK中,可得∠OAK=30°,∴OK=OA=1,AK=OA=,∴A(1,),∴k=1×=;(2)设G(x,0),且A(1,),C(﹣4,0),∴AG==,CG=|x+4|,AC==2,∵△ACG是等腰三角形,∴有AG=CG、AG=AC和CG=AC三种情况,①当AG=CG时,则=|x+4|,解得x=﹣,此时G点坐标为(﹣,0);②当AG=AC时,则=2,解得x=﹣4(与C点重合,舍去)或x=6,此时G点坐标为(6,0);③当CG=AC时,则|x+4|=2,解得x=﹣4+2或x=﹣4﹣2,此时G点坐标为(﹣4+2,0)或(﹣4﹣2,0);综上可知G点坐标为(﹣,0)或(6,0)或(﹣4+2,0)或(﹣4﹣2,0);(3)y1<y2.理由如下:由(1)可知反比例函数解析式为y=,∵P(x1,a),Q(x2,b)(x2>x1>0)在反比例函数图象上,∴a=,b=,∴m===,∴m2﹣n2=﹣==,∵x2>x1>0,∴>0,即m2﹣n2>0,∴m2>n2,又由题意可知m>0,n>0,∴m>n,∵M(m,y1),N(n,y2)在反比例函数y=的图象上,且在第一象限,∴y1<y2.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.【考点】反比例函数综合题.【分析】(1)先求出点P坐标代入解析式可求解;(2)先求出点N坐标代入解析式,可求m的值,与题意相矛盾;(3)求出点A坐标,判断出点A在双曲线的上方,即可求解.【解答】解:(1)∵一次函数y=2x的图象过点P(1,p),∴p=2,∴点P(1,2),∵反比例函数过点P(1,2),∴k=2;(2)不存在,理由如下:由(1)可知:反比例函数的解析式为y=,∴点M(m,),若△MNP是以MN为底的等腰三角形,∴点P在MN的垂直平分线上,∴点N(2﹣m,),∵点N在直线y=2x上,∴=2(2﹣m),∴m=1,∵0<m<1,∴m=1不合题意舍去,∴不存在点M,使△MNP是以MN为底的等腰三角形;(3)没有交点,理由如下:∵点M(m,),MN∥x轴,∴点N(,),∴MN=﹣m,∵四边形MNAB是正方形,∴MN=AN=﹣m,AN⊥MN,∴点A(,+m),当x=时,y=2m,∵0<m<1,∴2m<+m,∴点A在双曲线的上方,∴NA与反比例函数图象没有交点.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD 的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x 轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.。

人教版九年级数学下册《第26章反比例函数》测试卷-含参考答案

人教版九年级数学下册《第26章反比例函数》测试卷-含参考答案

人教版九年级数学下册《第26章反比例函数》测试卷-含参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.已知点()()()1232,,3,,2,y y y --在函数0.8y x=-的图象上,则( ) A .123y y y << B .213y y y << C .312y y y << D .321y y y <<【答案】D【详解】解:∵反比例函数解析式为0.8y x =-,0.80k =-<∵反比例函数图象经过第二、四象限,在每个象限内y 随x 增大而增大 ∵点()()()1232,,3,,2,y y y --在函数0.8y x =-的图象上,3202-<-<<∵3210y y y <<<故选D .2.若反比例函数3ky x-=的图像分布在第二、四象限,则k 的取值范围是( ) A .3k <- B .3k <C .3k >D .3k >-【答案】C【详解】解:∵反比例函数3ky x -=的图像分布在第二、四象限∵30k -< 解得:3k > 故选:C . 3.反比例函数ky x=经过点(2,1),则下列说法错误的是( ) A .函数图象经过点(1,2)-- B .函数图象分布在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 【答案】C【详解】解:∵反比例函数ky x =经过点(2,1)∵2120k =⨯=>∵函数图象分布在第一、三象限,当0x >时,y 随x 的增大而减小∵1(2)2k -⨯-== ∵函数图象经过点(1,2)-- ∵选项C 错误 故选:C .4.如图,已知双曲线()0ky k x=<经过Rt OAB △斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为6,4,则AOC 的面积为( )A .92B .6C .9D .10【答案】C【详解】解:∵OA 的中点是D ,点A 的坐标为6,4∵()3,2D - ∵双曲线()0ky k x=<经过点D ∵326k =-⨯=- ∵BOC 的面积132k =. 又∵AOB 的面积164122=⨯⨯=∵AOC 的面积AOB =△的面积BOC -△的面积1239=-=. 故选C .5.如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y x =上,点A 的横坐标为2,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线()0ky k x=≠与正方形ABCD 有两个公共点,则k 的取值范围为( )A .25k <<B .116k ≤≤C .425k ≤≤D .425k <<【答案】D【详解】解:把2x =代入y x = 解得∵2y = ∵A 的坐标是()2,2∵正方形ABCD 位于第一象限,边长为3 ∵C 点的坐标是()5,5 ∵当双曲线()0ky k x=≠经过点()2,2时,4k =; 当双曲线()0ky k x=≠经过点()5,5时,25k = ∵双曲线()0ky k x=≠与正方形ABCD 有两个公共点 ∵425k <<. 故选D .6.如图,已知双曲线(0)k y x x=>与矩形OABC 的对角线OB 相交于点D ,若53OB OD =,矩形OABC 的面积为1003,则k 等于( )A .6B .12C .24D .36【答案】B【详解】解:设D 的坐标是(3,3)m n ,则B 的坐标是(5,5)m n . ∵矩形OABC 的面积为1003∵100553m n = ∵43=mn . 把D 的坐标代入函数解析式得:33k n m= ∵499123k mn ==⨯=. 故选:B .7.二次函数2y ax bx c ++=的图象如图所示,则一次函数y ax b =-+与反比例函数c y x=在同一坐标系内的大致图象是( )A .B .C .D .【答案】A【详解】解:∵二次函数图象开口方向向上 ∵a >0,即-a <0又∵对称轴为直线x =-2ba <0∵b >0∵与y 轴的负半轴相交 ∵c <0∵y =-ax +b 的图象经过第一、二、四象限,反比例函数cy x =图象在第二、四象限只有A 选项图象符合. 故选:A .8.如图,A 、B 两点在反比例函数1k y x=的图像上,C 、D 两点在反比例函数2ky x =的图像上,AC ∵y 轴于点E ,BD ∵y 轴于点F ,AC =2,BD =1,EF =3 则12k k -的值是( )A .6B .4C .3D .2【答案】D【详解】解:由题意 设点A 的坐标为1,k A a a ⎛⎫ ⎪⎝⎭ 点B 的坐标为1,B b k b ⎛⎫ ⎪⎝⎭ 则12,C a a k ⎛⎫- ⎪⎝⎭ 11,D b b k ⎛⎫+ ⎪⎝⎭ 10,E k a ⎛⎫ ⎪⎝⎭ 10,F k b ⎛⎫⎪⎝⎭ 将点12,C a a k ⎛⎫- ⎪⎝⎭ 11,D b b k ⎛⎫+ ⎪⎝⎭代入2k y x =得:21121k a k k a b b -+==解得2a b =-3EF =113k k a b ∴-= 即1132b b k k--=解得12k b=-2111222b b k b b b b k ++===⋅-∴--()122222k k b b --∴---==故选:D .9.如图 在平面直角坐标系xoy 中 点A C 分别在坐标轴上 且四边形OABC 是边长为3的正方形 反比例函数()0ky x x=>的图像与BC AB ,边分别交于E D ,两点 DOE 的面积为4 点P 为y 轴上一点 则PD PE +的最小值为( )A .3B .C .D .5【答案】B【详解】正方形OABC 的边长是3 ∴点D 的横坐标和点E 的纵坐标为3(3,)3kD ∴ (3kE 3) 33k BE ∴=-33kBD =-ODE △的面积为421113333(3)4232323k k k∴⨯-⨯⨯-⨯⨯-⨯-=3k ∴=或3-(舍去)(3,1)D ∴ ()1,3E作E 关于y 轴的对称点E ' 连接DE '交y 轴于P 则DE '的长PD PE =+的最小值1CE CE AD ='==4BE ∴'= 2BD ='DE ∴=即PD PE +的最小值为故选:B . 10.函数 4y x =和1y x =在第一象限内的图象如图 点P 是4y x=的图象上一动点PC x ⊥轴于点C 交1y x=的图象于点A PD y ⊥轴于点D 交1y x=的图象于点B .给出如下结论: ∵ODB △与OCA 的面积相等; ∵PA 与PB 始终相等;∵四边形PAOB 的面积大小不会发生变化; ∵13CA AP =. 其中所有正确结论有( )个.A .1个B .2个C .3个D .4个【答案】C【详解】解:∵AB 、是反比函数1y x=上的点 12OBD OAC S S ==△△ 故∵正确; ∵由图的直观性可知 P 点至上而下运动时 PB 在逐渐增大 而PA 在逐渐减小 只有当P 的横纵坐标相等时PA PB = 故∵错误; ∵P 是4y x=的图像上一动点 ∵矩形PDOC 的面积为4 ∵114322ODBOACPDOC PAOB S S SS=----=矩形四边形= 故∵正确;连接OP∵2412POC OAC S PC S AC ===△△∵1344AC PC PA PC ==, ∵3PAAC= ∵13AC AP =故∵正确; 综上所述 正确的结论有∵∵∵. 故选:C .二、填空题:(本大题共6小题 每小题3分 满分18分) 11.已知反比例函数ky x=的图象经过()4,2- 求y 关于x 的函数解析式_______.【答案】8y x=-【详解】解:∵反比例函数ky x=的图象经过()4,2- ∵24k-=解得8k =-. ∵y 关于x 的函数解析式为8y x=-. 故答案为:8y x=-. 12.已知一次函数12y k x =+的图象经过点()3A m ,()21B m +-, 反比例函数2k y x=的图象位于一、三象限 则1k ______2k .(填> <或=) 【答案】<【详解】解:∵一次函数12y k x =+的图象经过点()3A m ,()21B m +-, ∵1123(2)21k m k m +=⎧⎨++=-⎩ 得1212k m =-⎧⎪⎨=-⎪⎩∵反比例函数2k y x=的图象位于一、三象限 ∵20k > ∵12k k < 故答案为:<.13.如图 点A 、B 分别是双曲线4y x=和1y x =第一象限分支上的点 且AB y ∥轴 BC y⊥轴于点C 则AB BC ⋅的值是_____________.【答案】3【详解】解:延长AB 交x 轴于点D 过点A 作AE y ⊥轴于点E∵AB y ∥轴 BC y ⊥轴∵四边形ADOE ABCE BDOC 、、都是矩形 ∵点A 、B 分别是双曲线4y x =和1y x =第一象限分支上的点∵矩形ADOE 的面积为4 矩形BDOC 的面积为1 ∵矩形ABCE 的面积为413-= ∵3AB BC ⋅= 故答案为:3.14.如图 点A 、B 是反比例4y x=图像上任意两点 过点A 、B 分别作x 轴、y 轴的垂线 2S =阴影 则12S S =+ ________.【答案】4【详解】解:∵点A 、B 是反比例4y x=图像上任意两点 过点A 、B 分别作x 轴、y 轴的垂线∵124S S S S +=+=阴影阴影 ∵2S 阴影= ∵122S S == ∵124S S +=. 故答案为:4.15.如图 已知一次函数26y x =+的图象与反比例函数ky x=的图象交于A B 两点 点B 的横坐标是1 过点A 作AC y ⊥轴于点C 连接BC 则ABC 的面积是________.【答案】20【详解】解:∵一次函数26y x =+的图象与反比例函数ky x=的图象交于A B 两点 点B 的横坐标是1∵把1x =代入26y x =+ 得:2168y =⨯+= ∵(18)B ,. 将(18)B ,代入ky x = 得:81k = 解得:8k∵反比例函数解析式为8y x=. 联立268y x y x =+⎧⎪⎨=⎪⎩ 解得:18x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩ ∵(42)A --,. ∵AC y ⊥轴于点C ∵4AC = ∵()()114822022ABCB A SAC y y =⨯-=⨯⨯+=. 故答案为:20.16.瑞泰工程组安排甲、乙、丙、丁四辆货车用于一批建筑材料运输 已知这四辆货车每一次的运货量都保持不变且为整数(单位:吨) 乙车每次运货量比甲车高50% 丙车每次运货量比甲车多12吨 甲、丙两车运输2次的货物总量与丁车独自运输3次的货物量相等、当甲、乙、丙、丁四辆货车运输次数之比为5:2:3:1恰好运完这一批建筑材料 此时甲车共运输了120吨 则这批建筑材料最多有 ___________吨. 【答案】376【详解】解:设甲车每次运x 吨乙车每次运货量比甲车高50% 丙车每次运货量比甲车多12吨 ∴乙车每次运3(150%)2x x+=(吨) 丙车每次运(12)x +吨甲、丙两车运输2次的货物总量与丁车独自运输3次的货物量相等∴丁车每次运22(12)4(8)33x x x ++=+吨x 32x 12x + 483x +都是整数x ∴是6的倍数 x 最小为6设这一批建筑材料共W 吨 运完这一批建筑材料 丁车运输k 次 则甲车运输5k 次 乙车运输2k 次 丙车运输3k 次 甲车共运输了120吨5120kx ∴= 24k x ∴=根据题意得:34523(12)(8)23W kx k x k x k x =+⋅+⋅++⋅+37203kx k =+ 3724203k =⨯+ 29620k =+480296x =+∴当x 最小时 W 取最大值6x ∴=时 W 最大为4802963766+=(吨)∴这批建筑材料最多有376吨故答案为:376.三、解答题(本大题共6题 满分52分) 17.(7分)已知反比例函数1ky x=的图象与一次函数2y ax b =+的图象交于点(1,4)A 和点(),2B m -.(1)求这两个函数的关系式;(2)观察图象 直接写出使得12y y >成立的自变量x 的取值范围; (3)如果点C 与点A 关于x 轴对称 求ABC 的面积. 【答案】(1)14y x=222y x =+ (2)<2x -或01x << (3)12【详解】(1)解:将(1,4)A 代入1k y x=得 41k=解得4k =∴反比例函数的解析式为14y x=又点(),2B m -在14y x=上 42m∴-=解得2m =-∴点B 的坐标为()2,2--点A 和点B 在一次函数2y ax b =+上422a b a b +=⎧∴⎨-+=-⎩ 解得22a b =⎧⎨=⎩∴一次函数的解析式为222y x =+综上可得14y x=222y x =+. (2)解:12y y >时 反比例函数图象在一次函数图象上方 观察图象可知 当<2x -或01x <<时 12y y >.(3)解:如图 作点A 关于x 轴的对称点C 连接AC 作BD AC ⊥于点D点A 的坐标为()1,4∴点C 的坐标为()1,4-又点B 的坐标为()2,2--448AC ∴=+-= 213BD =-+=∴ABC 的面积11831222S AC BD =⋅=⨯⨯=. 18.(7分)王叔叔计划购买一套商品房 首付30万元后 剩余部分用贷款并按“等额本金”的形式偿还 即贷款金额按月分期还款 每月所还贷款本金数相同.设王叔叔每月偿还贷款本金y 万元 x 个月还清 且y 是x 的反比例函数 其图象如图所示.(1)求y 与x 的函数关系式; (2)求王叔叔购买的商品房的总价;(3)若王叔叔计划每月偿还贷款本金不超过2000元 则至少需要多少个月还清? 【答案】(1)60y x=(2)90万元 (3)300个月【详解】(1)解:设()0ky k x=≠ 由图象可知:()120,0.5在函数图象上 ∵1200.560k =⨯= ∵60y x=;(2)解:∵60y x=∵王叔叔贷款总额为:60万元 ∵房子总价为:306090+=万元; (3)解:20000.2=万 由题意得: 当0.2y ≤时 即:600.2x ≥解得300x ≥∵至少需要300个月还清.19.(9分)如图 一次函数25y x =-的图象与反比例函数ky x=的图象交于A 、B 两点 其中(3,1)A .(1)求该反比例函数的解析式及点B 的坐标; (2)根据所给条件 直接写出不等式25kx x-≤的解集. (3)C 是第三象限内反比例函数图象上的点 是否存在点C 使得OC OA =?若存在请直接写出C 的坐标;若不存在 请说明理由.【答案】(1)反比例函数的解析式为3y x =;1(6)2B --,; (2)12x ≤-或03x <≤;(3)存在 点C 的坐标为()31--,或()13,--. 【详解】(1)解:∵反比例函数ky x=的图象经过点(31)A , ∵313k =⨯=∵反比例函数的解析式为3y x=; 解方程325x x =-得:3x =或12x =- 经检验 3x =或12x =-都是方程的解当12x =-时3612y ==-- ∵1(6)2B --,; (2)解:∵(31)A , 1(6)2B --, ∵不等式25k x x -≤的解集为:12x ≤-或03x <≤; (3)解:存在设点C 的坐标为3m m ⎛⎫⎪⎝⎭,且0m <∵OA OC = 即22OA OC =∵2222331m m ⎛⎫+=+ ⎪⎝⎭整理得421090m m -+=解得29m =或21m = ∵3m =-或1m =-∵点C 的坐标为()31--,或()13,--. 20.(9分)已知一次函数1(0)y kx b k =+≠的图象与反比例函数2(0)my m x=≠的图象交于A 、B 两点 已知点(1,4)A -- 点B 的横坐标为2.(1)求一次函数与反比例函数的表达式 并在图中画出一次函数的图象; (2)根据函数图象 直接写出不等式12y y >的解集;(3)若点C 是点B 关于x 轴的对称点 连接AC 、BC 求ABC 的面积. 【答案】(1)一次函数122y x =- 反比例函数为:24y x= 画图见解析; (2)10x -<<或>2x . (3)6ABCS=.【详解】(1)解:∵反比例函数2(0)my m x =≠的图象过点(1,4)A --∵()144m =-⨯-= ∵反比例函数为:24y x =∵B 在反比例函数图象上 且2B x =∵2B y = 即()2,2B∵一次函数1(0)y kx b k =+≠的图象过A B∵224k b k b +=⎧⎨-+=-⎩ 解得:22k b =⎧⎨=-⎩∵一次函数122y x =-描点 画图如下:(2)由函数图象可得:当12y y >时 x 的取值范围为:10x -<<或>2x .(3)如图 点C 是点B 关于x 轴的对称点∵()2,2C - 可得4BC =∵()1,4A -- 可得A 到BC 的距离为()213--=∵14362ABC S =⨯⨯=△.21.(10分)如图 已知一次函数y ax b =+与反比例函数(0)my x x=<的图象交于(2)A -,3 (32)B -,两点 且与x 轴和y 轴分别交于点C 、点D .(1)根据图象直接写出不等式max b x<+的解集; (2)求反比例函数与一次函数的解析式; (3)点P 在y 轴上 且2AOPAOBS S= 请求出点P 的坐标.【答案】(1)31x -<<- (2)6(0)y x x =-< 5y x =+(3)(05)P ,或(05)-, 【详解】(1)∵当my x =的图象在y ax b =+图象的下方时 m ax b x<+成立 又∵由图象可知当31x -<<-时 my x=的图象在y ax b =+图象的下方 ∵不等式max b x<+的解集为31x -<<-. (2)将(2)A -,3代入m y x= 得:32m =-解得:6m =-∵反比例函数为:6(0)y x x=-<;将(2)A -,3 (32)B -,代入y ax b =+ 得:3223a ba b =-+⎧⎨=-+⎩解得:15a b =-⎧⎨=⎩ ∵一次函数的表达式为:5y x =+; (3)对于5y x =+ 当0y =时 5x =- ∵(50)C -,. ∵()11512225ABOAOC BOCA B S SSOC y y =-=⨯-=⨯⨯= ∵5AOPS=.∵P 在y 轴上 ∵112522AOPA SOP x OP =⨯=⨯= 解得:5OP =. ∵(05)P ,或(05)-,. 22.(10分)已知平面直角坐标系中 直线AB 与反比例函数(0)ky x x=>的图象交于点()3,4A 和点()6,B t 与x 轴交于点C 与y 轴交于点D .(1)求反比例函数的表达式和直线AB 的表达式;(2)若在x 轴上有一异于原点的点P 使PAB 为等腰三角形 求点P 的坐标;(3)若将线段AB 沿直线()0y mx n m =+≠进行对折得到线段11A B 且点1A 始终在直线OA 上 当线段11A B 与x 轴有交点时 求n 的取值的最大值. 【答案】(1)反比例函数的表达式为12y x=直线AB 的解析式为263y x =-+(2)PAB 为等腰三角形时 点P 的坐标为5,02⎛⎫⎪⎝⎭或()3,0或()9,0(3)当线段11A B 与x 轴有交点时 n 的取值的最大值为7916【详解】(1)反比例函数(0)k y x x=>的图象经过点()3,4A 和点()6,B t346k t ∴=⨯=12k ∴= 2t =∴反比例函数的表达式为12y x=设直线AB 的解析式为y cx d =+()3,4A ()6,2B 3462c d c d +=⎧∴⎨+=⎩ 解得:236c d ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为263y x =-+;(2)设(),0P t则2222(3)(04)625PA t t t =-+-=-+ 2222(6)(02)1240PB t t t =-+-=-+ 222(36)(42)13AB =-+-=PAB △为等腰三角形PA PB ∴=或PA AB =或PB AB =当PA PB =时 22PA PB =226251240t t t t ∴-+=-+解得:52t =5,02P ⎛⎫∴ ⎪⎝⎭;当PA AB =时 22PA AB = 262513t t ∴-+=2(6)4112120∆=--⨯⨯=-<∴此方程无解;当PB AB =时 22PB AB = 2124013t t ∴-+=解得:13t = 29t =()3,0P ∴或()9,0;综上所述 PAB 为等腰三角形时 点P 的坐标为5,02⎛⎫⎪⎝⎭或()3,0或()9,0;(3)当点1B 落到x 轴上时 n 的取值的最大 如图设直线OA 的解析式为y ax = 点A 的坐标为()3,434a ∴= 即43a =. ∴直线OA 的解析式为4.3y x =点1A 始终在直线OA 上∴直线y mx n =+与直线OA 垂直.413m ∴=-. 34m ∴=-.34y x n ∴=-+由于1//BB OA 因此直线1BB 可设为43y x e =+.点B 的坐标为()6,2 4623e ∴⨯+= 即6e =-. ∴直线1BB 解析式为463y x =-. 当0y =时460.3x -=则有92x =.∴点1B 的坐标为902,⎛⎫⎪⎝⎭.1BB 的中点坐标为96202,22⎛⎫+ ⎪+ ⎪ ⎪⎝⎭即21,14⎛⎫ ⎪⎝⎭ 点21,14⎛⎫⎪⎝⎭在直线34y x n =-+上321144n ∴-⨯+=.解得:7916n =. 故当线段11A B与x 轴有交点时 n 的取值的最大值为7916.。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

人教版数学九年级下《第26章反比例函数》单元检测题含答案

人教版数学九年级下《第26章反比例函数》单元检测题含答案

第 5 页,共 8 页
19.
在双曲线
??=
1 -??的任一支上,
??
y 都随 x 的增大而增大,则
k 的取值范围.
20. 已知 ??= ??1 - ?2?,?1?与 ??2成正比,??2 与 ??+ 2成反比,当 ??= 1时,??= 3 ;当??= - 1时, ??= 7; (1) 求 y 与 x 之间的函数关系式; (2) 当??= 2时,求 y 的值.
第二十六章《反比例函数》单元检测题
一、选择题 1. 已知函数 ??( ??) = ( ??- ??)( ??- ??)( 其中 ??> ??) 的图象如图所示, 则函数 ??( ??) = ????+ ??
的大致图象是 ( )
A. A
B. B
C. C
D. D
2. 函数 ??( ??) = ??| ??- 2| 的单调减区间是 ( )
20.
解: (1) 根据题意,
??1 =
???2?,?2? =
??
??+2 ,
又 ??=
?1? -
??2,则 ??= ???2?-
?? ,
??+2
又当 ??= 1时, ??= 3 ;当 ??= - 1时, ??= 7 ;.
??
得 ??- 3 = 3 , ??- ??= 7
A. [1,2]
B. [ - 1,0]
C. [0,2]
D. [2, + ∞)
3. 某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压
P( kPa) 是气
体体积 V( m3) 的反比例函数,其图象如图所示 .当气球内的气压大于 120kPa 时,气

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。

(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案

(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案

人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。

人教版九年级下数学《第26章反比例函数》单元培优检测题含答案

人教版九年级下数学《第26章反比例函数》单元培优检测题含答案

《反比例函数》单元培优检测题一.选择题1.已知点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,那么()A.y2<y1<y3B.y3<y1<y2C.y1<y3<y2D.y2<y3<y12.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)3.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个4.如图,点M、N都在反比例函数的图象上,则△OMN的面积为()A.1 B.C.2 D.35.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()体积x(mL)100 80 60 40 20压强y(kPa)60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x 轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B.当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③④B.①②③C.②③④D.①③④7.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y =的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论是()A.①②B.①③C.②③D.①②③8.如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S=2,则k的值为()△ABCA.4 B.﹣4 C.7 D.﹣79.函数y=ax2﹣a与y=﹣(a≠0)在同一直坐标系中的图象可能是()A.B.C.D.10.如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个二.填空题11.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA 的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.13.请写出一个图象与直线y=x无交点的反比例函数的表达式:.14.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.15.在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是.16.如图,点P在反比例函数y=的图象上.若矩形PMON的面积为4,则k=.三.解答题17.如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.18.如图,在平面直角坐标系中,点A(2,4)在反比例函数y=的图象上,点C的坐标是(3,0),连接OA,过C作OA的平行线,过A作x轴的平行线,交于点B,BC与双曲线y=的图象交于D,连接AD.(1)求D点的坐标;(2)四边形AOCD的面积.19.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.20.如图,点A在反比例函数的图象在第二象限内的分支上,AB⊥x轴于点B,O是原点,且△AOB的面积为1.试解答下列问题:(1)比例系数k=;(2)在给定直角坐标系中,画出这个函数图象的另一个分支;(3)当x>1时,写出y的取值范围.21.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求m,n的值;(2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.22.如图,四边形ABCD放在在平面直角坐标系中,已知AB∥CD,AD=BC,A(﹣2,0)、B (6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)将四边形ABCD向上平移2个单位后,问点B是否落在该反比例函数的图象上?23.如图,反比例函数的图象在第一象限内经过点A,过点A分别向x轴、y轴作垂线,垂足分别P、Q,若AP=3,AQ=1,求这个反比例函数的解析式.24.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.参考答案一.选择题1.解:∵点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,∴y1=2,y2=﹣3,y3=6,∴y2<y1<y3,故选:A.2.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.3.解:∵反比例函数y=的图象经过点T(3,8),∴k=3×8=24,将P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)分别代入反比例函数y=,可得Q(3,﹣8),M(2,﹣12)不满足反比例函数y=,∴在该函数图象上的点有2个,故选:C.4.解:过M、N分别作MA⊥x轴,NB⊥x轴,S四边形OMNB =S△OMA+S四边形MABN=S△OMN+S△ONB,∵M(1,2),N(2,1),∴MA=OB=2,OA=NB=1,则S△OMN=×1×2+×(1+2)×(2﹣1)﹣×2×1=,故选:B.5.解:由表格数据可得:此函数是反比例函数,设解析式为:y =, 则xy =k =6000,故y 与x 之间的关系的式子是y =,故选:D .6.解:①∵点A 、B 均在反比例函数y =的图象上,且BD ⊥y 轴,AC ⊥x 轴, ∴S △ODB =,S △OCA =,∴S △ODB =S △OCA ,结论①正确;②设点P 的坐标为(m ,),则点B 的坐标(,),点A (m ,), ∴PA =﹣=,PB =m ﹣=, ∴PA 与PB 的关系无法确定,结论②错误;③∵点P 在反比例函数y =的图象上,且PC ⊥x 轴,PD ⊥y 轴,∴S 矩形OCPD =k ,∴S 四边形PAOB =S 矩形OCPD ﹣S △ODB ﹣S △OCA =k ﹣1,结论③正确;④设点P 的坐标为(m ,),则点B 的坐标(,),点A (m ,), ∵点A 是PC 的中点,∴k =2,∴P (m ,),B (,),∴点B 是PD 的中点,结论④正确.故选:D .7.解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.8.解:∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)=(a﹣1)×3=2∵S△ABC∴a=∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7故选:C.9.解:A、二次y=ax2﹣a的图象开口方向向上,与y轴交于负半轴,则a>0,则反比例函数y=﹣的图象应该经过第二、四象限,故本选项正确.B、二次y=ax2﹣a的图象开口方向向上,与y轴交于负半轴,则a>0,则反比例函数y=﹣的图象应该经过第二、四象限,故本选项错误.C、二次y=ax2﹣a的图象开口方向向下,则a<0.与y轴交于负半轴,则﹣a<0,即a>0,相矛盾,故本选项错误.D、二次y=ax2﹣a的图象开口方向向下,与y轴交于正半轴,则a<0,则反比例函数y=﹣的图象应该经过第一、三象限,故本选项错误.故选:A.10.解:①y=的图象在一、三象限,故在每个象限内,y随x的增大而减小,故①正确;②点B的横坐标为﹣3,则B(﹣3,1),由4BD=3CD,可得CD=,故C(﹣3,﹣),故②错误;③设点B的横坐标为a,则B(a,﹣),由4BD=3CD,可得CD=﹣,故C(a,),由C(a,)可得:k=a×=4,故③正确;==﹣×(﹣a)×=,故④错误;④BC=﹣﹣=﹣,S△ABC所以本题正确的有两个:①③;故选:B.二.填空题(共6小题)11.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.故答案为﹣3212.解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;13.解:∵直线y=x经过第一、三象限,∴与直线y=x无交点的反比例函数的图象在第二、四象限,∴与直线y=x无交点的反比例函数表达式为:y=﹣故答案为:y=﹣(答案不唯一).14.解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.15.解:∵反比例函数y =(x <0)中,函数值y 随着x 的增大而减小,∴m ﹣1>0,∴m >1,故答案为m >1.16.解:设PN =a ,PM =b ,则ab =6,∵P 点在第二象限,∴P (﹣a ,b ),代入y =中,得 k =﹣ab =﹣4,故答案为:﹣4.三.解答题(共8小题)17.解:(1)∵反比例函数y 2=(k 2≠0)的图象过点A (4,1),∴k 2=4×1=4,∴反比例函数的解析式为y 2=.∵点B (n ,﹣2)在反比例函数y 2=的图象上,∴n =4÷(﹣2)=﹣2,∴点B 的坐标为(﹣2,﹣2).将A (4,1)、B (﹣2,﹣2)代入y 1=k 1x +b , ,解得:, ∴一次函数的解析式为y =x ﹣1.(2)观察函数图象,可知:当x <﹣2和0<x <4时,一次函数图象在反比例函数图象下方, ∴y 1<y 2时x 的取值范围为x <﹣2或0<x <4.18.解:(1)∵点A (2,4)在反比例函数y =的图象上,∴k =2×4=8,∴反比例函数解析式为y =;设OA 解析式为y =k 'x ,则4=k '×2,∴k '=2,∵BC ∥AO ,∴可设BC 的解析式为y =2x +b ,把(3,0)代入,可得0=2×3+b ,解得b =﹣6,∴BC 的解析式为y =2x ﹣6,令2x ﹣6=,可得x =4或﹣1,∵点D 在第一象限,∴D (4,2);(2)∵AB ∥OC ,AO ∥BC ,∴四边形ABCO 是平行四边形,∴AB =OC =3,∴S 四边形AOCD =S 四边形ABCO ﹣S △ABD=3×4﹣×3×(4﹣2)=12﹣3=9.19.解:(1)把A (1,4)代入y =,得:m =4,∴反比例函数的解析式为y =;把B (4,n )代入y =,得:n =1,∴B (4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;∴当x>0时,kx+b<的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).20.(1)解:由于△AOB的面积为1,则|k|=2,又函数图象位于第一象限,k>0,则k=2,反比例函数关系式为y=﹣.故答案为:﹣2;(2)如图所示:;(3)利用图象可得出:当x>1时:﹣2<y<0.21.解:(1)把A(﹣2,1)代入反比例函数y=得,m=﹣2×1=﹣2,∴反比例函数解析式为y=﹣;把B(1,n)代入得,1×n=﹣2,解得n=﹣2;(2)由图象可知:x<﹣2或0<x<1.22.解:(1)过C作CE⊥AB,∵DC∥AB,AD=BC,∴四边形ABCD为等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=2,∵AB=8,∴OE=AB﹣OA﹣BE=8﹣4=4,∴C(4,3),把C(4,3)代入反比例解析式得:k=12,则反比例解析式为y=;(2)由平移得:平移后B的坐标为(6,2),把x=6代入反比例得:y=2,则平移后点B落在该反比例函数的图象上.23.解:由题意得:S=|k|=3×1=3;四边形APOQ又由于函数图象位于第一象限,k>0,则k=3.所以这个反比例函数的解析式为y=.24.解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB =S△AOC+S△BOC=.。

人教版九年级数学下册第26章:反比例函数 测试卷含答案

人教版九年级数学下册第26章:反比例函数   测试卷含答案

人教版九年级数学下册第26章:反比例函数 测试卷含答案一、选择题1、反比例函数与直线相交于点A ,A 点的横坐标为-1,则此反比例函数ky x=2y x =-的解析式为()A .B .C .D .2y x =12y x =2y x =-12y x =-2、如图所示的函数图象的关系式可能是( ).(A )y = x (B )y =(C )y = x 2 (D) y = x 11x3、若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点( 221m m y x+-=).(A )(2,6) (B )(2,-6)(C )(4,-3) (D )(3,-4)4、在同一平面直角坐标系中,函数y=k(x -1)与y=的大致图象是( ))0(<k xk5、已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是( )6、函数y =与函数y =x 的图象在同一平面直角坐标系内的交点的个数是( )x1A 、一个 B 、二个 C 、三个 D 、零个7、已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数的图象上( 4y x=)(A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 38、如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的垂线,得到三个三角形P 1A 10、P 2A 20、P 3A 30,设它们的面积分别是S 1、S 2、S 3,则( ). A . S 1<S 2<S 3 B . S 2<S 1<S 3C .S 1<S 3<S 2D .S 1=S 2=S 39.正比例函数y=x 与反比例函数y=的图象相交于A 、C 两点.AB ⊥x 轴于B,CD ⊥x 轴于1xD(如图),则四边形ABCD 的面积为( )A.1B.C.2D.325210 .如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是【 】(A )x <-1 (B )x >2 (C )-1<x <0,或x >2 (D )x <-1,或0<x <2二、填空题:11、若反比例函数在每一个象限内,随的增大而增大,则722)5(---=m m xm y y x =。

人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)

人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)

人教版九年级下册数学第26章反比例函数单元测试卷一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=23.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.45.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y17.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣1010.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x 成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:日销售单价x3456(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个【分析】利用反比例函数定义可得答案.【解答】解:①y=﹣2x是正比例函数;②y=是反比例函数;③y=x﹣1是反比例函数;④y=2x2+1是二次函数,反比例函数共6个,故选:C.2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=2【分析】利用反比例函数的性质以及反比例函数图象上点的坐标特点可得答案.【解答】解:A、图象关于原点对称;B、在每一象限内y随x的增大而减小;C、图象分别位于第一,故原题说法正确;D、若点M(a,则ab=2;故选:B.3.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)【分析】根据反比例函数图象上点的坐标特征对各选项进行逐一判断即可.【解答】解:A、∵2×4=3≠﹣8;B、∵2×(﹣5)=﹣8;C、∵﹣4×(﹣4)=8≠﹣8;D、∵2×2=8≠﹣7.故选:B.4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.4【分析】根据反比例函数k的几何意义可得|k|=2,再根据图象所在的象限,得出k的值.【解答】解:由反比例函数k的几何意义可得,|k|=3,∴k=±4,又∵图象在第二象限,即k<0,∴k=﹣2,故选:A.5.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.【分析】直接利用反比例函数以及一次函数图象分析得出答案.【解答】解:∵一次函数y=x+a(a≠0),∴一次函数图象y随x增大而增大,故A,D不符合题意;在B中,反比例函数过一,故a>0、三、四象限,不合题意;在C中,反比例函数过一,故a>7、二、四象限,符合题意;故选:C.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y1【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵在反比例函数y=中,k=1>6,∴此函数图象在一、三象限,∵﹣2<﹣1<6,∴点A(﹣1,y1),B(﹣2,y2)在第三象限,∴y1<y4<0,∵3>7,∴C(3,y3)点在第一象限,∴y5>0,∴y1,y7,y3的大小关系为y3>y7>y1.故选:D.7.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】依据反比例函数,可得函数图象在第一、三象限,在每个象限内,y随着x 的增大而减小,进而得到y1,y2,y3的大小关系.【解答】解:∵反比例函数,∴函数图象在第一、三象限,y随着x的增大而减小,又∵x1<x7<0<x3,∴y7<0,y2<8,y3>0,且y3>y2,∴y2<y8<y3,故选:B.8.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.【分析】根据A、B的坐标分别是(0,3)、(3、0)可知OA=OB=3,进而可求出AB2,通过作垂线构造等腰直角三角形,求得BC2=2CD2,设CD=BD=m,则C(3+m,m),代入y=,求得m的值,即可求得BC2,根据勾股定理即可求出AC的长.【解答】解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0、(3,∴OA=OB=4,在Rt△AOB中,AB2=OA2+OB6=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,设CD=BD=m,∴C(3+m,m),∵函数y=(x>4)的图象经过点C,∴m(3+m)=4,解得m=3或﹣4(负数舍去),∴CD=BD=1,∴BC5=2,在Rt△ABC中,AB2+BC5=AC2,∴AC==4故选:B.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣10【分析】根据题意m=,n=,然后根据勾股定理得到32+()2=22+()2,解得k=﹣6.【解答】解:∵点E、F都在反比例函数y=,E(﹣3、F(﹣2,∴m=,n=,∵OE=OF,∴38+()2=82+()8,整理得k2=36,∵k<0,∴k=﹣7,故选:B.10.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN得到DM=AN=2,AM=BN=2,则D(﹣3,2),根据待定系数法即可求得m 的值.【解答】解:作DM⊥x轴于M,BN⊥x轴于N,∵点A的坐标为(﹣1,0),∴OA=3,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为2,把x=1代入y=,得y=4,∴B(1,2),∴BN=4,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=8+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×6=﹣6,故选:C.二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.【分析】首先设y=,然后求出反比例函数解析式,再代入x的值,进而可得y的值.【解答】解:设y=,∵当x=3时,y=﹣4,∴﹣7=,解得:k=﹣12,∴反比例函数关系式为:y=﹣,∵x=﹣2,∴y=﹣=6,故答案为:6.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是k1>k2>k3.【分析】根据题意和反比例函数的图象,可以得到k1,k2,k3的大小关系,从而可以解答本题.【解答】解:由图象可得,k1>0,k6<0,k3<8,∵点(﹣1,﹣)在y2=的图象上,)在y3=的图象上,∴﹣<,∴k6>k3,由上可得,k1>k5>k3,故答案为:k1>k5>k3.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.【分析】利用反比例函数的性质可得m﹣2>0,再解即可.【解答】解:∵当x>0时,y随x的增大而减小,∴m﹣2>6,解得:m>2,∴m可以是4,故答案为:7.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式y=﹣.【分析】根据反比例函数y=中k=xy,得到n=3(n+6),解方程求得n的值,即可求得反比例函数的解析式.【解答】解:设反比例函数解析式为y=,由题意得,k=n=3(n+6),解得n=﹣6,k=﹣9,∴反比例函数的解析式为y=﹣,故答案为y=﹣.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.【分析】证明△BOC的面积=△AOC的面积,而△AOC的面积=|k|=×6=3,即可求解.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,∴△AOC的面积=|k|=,则△ABC的面积为7,故答案为6.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.【分析】根据反比例函数k的几何意义得,S△OAE=S△OCD=|k|,根据OABC是矩形,求出S△OEB=S△ODB=S四边形ODBE=2,再根据BD=2CD,进而S△OAE=S△OEB=1=|k|,求出k的值即可.【解答】解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=6CD,∴S△OAE=S△OEB=7=|k|,∴k=2或k=﹣2(舍去),故答案为2.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.【分析】(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数图象上的情况,进而求出概率.【解答】解:(1)共有四个数,其中两个负数=;故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x图象上的有4种,因此点(x,y)在反比例函数y==.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.【分析】(1)将点A坐标代入直线解析式可求m的值,再将点A坐标代入反比例函数解析式可求k的值;(2)解析式联立成方程组,解方程组求得B的坐标,然后根据函数的图象即可求得不等式2x+2>的解集.(3)由直线解析式求得直线与x轴的交点坐标,然后设出Q的坐标,根据三角形面积公式得到•|a+1|•(2+1)=6,解得a的值,即可求得点Q的坐标.【解答】解:(1)∵点A(1,m)在直线y=2x+8上,∴m=2×1+2=4,∴点A的坐标为(1,7),代入函数y=(k≠0)中,∴k=4.(2)解得或,∴B(﹣2,﹣3),∴关于x的不等式2x+2>的解集是﹣5<x<0或x>1.(3)在y=7x+2中令y=0,解得x=﹣4,0).设点Q的坐标是(a,0).∵△ABQ的面积是6,∴•|a+5|•(2+4)=8,则|a+1|=2,解得a=8或﹣3.则点Q的坐标是(﹣3,3)或(1.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?【分析】(1)先把点A的坐标代入y=,求出m的值得到反比例函数解析式,再求点B 的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积﹣三角形BOC的面积即可求解;(3)观察函数图象即可求得.【解答】解:(1)把A(2,﹣4)的坐标代入y=,∴反比例函数的解析式是y=﹣;把B(a,﹣1)的坐标代入y=﹣,解得:a=8,∴B点坐标为(8,﹣6),把A(2,﹣4),﹣4)的坐标代入y=kx+b,解得:,∴一次函数解析式为y=x﹣5;(2)设直线AB交x轴于C.∵y=x﹣5,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×10×4﹣=15;(3)由图象知,当0<x<7或x>8时.20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.【分析】由正方形OABC的边长是4,得到点M的横坐标和点N的纵坐标为4,求得M(4,),N(,4),根据三角形的面积列方程得到M,N的坐标,然后利用待定系数法确定函数关系式.【解答】解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(2,),N(,∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣﹣(4﹣)4=6,解得k=8.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)把y=3分别代入正比例函数和反比例函数解析式求出自变量的值,进而得出答案.【解答】解:(1)有图象知,a=3;又由题意可知:当3≤x≤4时,y与x成反比,设.由图象可知,当x=3时,∴m=3×5=18;∴y=(3≤x≤8);(2)把y=7分别代入y=2x和y =得,x=1.5和x=6,∵6﹣2.5=4.6>4,∴抗菌新药可以作为有效药物投入生产.22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?【分析】(1)由表知xy=60,据此可得y =(x>0),画出函数图象可得;(2)根据总利润=每个口罩的利润×口罩的日销售数量可得函数解析式;(3)根据反比例函数的性质求解可得.【解答】解:(1)由表可知,xy=6000,∴y =&nbsp;(x>0);(2)根据题意,得:W=(x﹣2)•y=(x﹣5)•=6000﹣;(3)∵x≤10,∴6000﹣≤4800,即当x=10时,W取得最大值,答:当日销售单价x定为10元/个时,才能获得最大日销售利润.。

人教版初三数学9年级下册 第26章(反比例函数)测试题(含答案)

人教版初三数学9年级下册 第26章(反比例函数)测试题(含答案)

人教版九年级下册数学第26章反比例函数单元试题一、单选题(8题,共24分)1.若反比例函数y =k x (k ≠0)的图象经过点P (2,5),则下列各点在这个函数图象上的是( )A .(﹣5,﹣2)B .(5,﹣2)C .(2,﹣5)D .(﹣2,5)2.若函数(0)k y k x =≠的图象过点41,3⎛⎫ ⎪⎝⎭,则此函数图象位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.在反比例函数1k y x +=的图象上的每一条曲线上y 都是随x 增大而减小,则k 的取值范围是( )A .1k >-B .0k >C .1k ≥-D .1k <-4.若反比例函数y =k x 的图象经过点(-1,4),则这个函数的图像一定经过点( )A .(-4,-1)B .(-12,4)C .(4,-1)D .(12,4)5.若1(3,)A y -、2(2,)B y -、3(1,)C y 三点都在函数1y x=-的图像上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .123y y y <<C .312y y y <<D .132y y y <<6.如图,点A 在反比例函数()0k y x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC △的面积为2,则k =( )A .4B .8C .12D .167.反比例函数k y x =中,k 值满足方程2230k k --=,且当0x >时,y 随x 的增大而减小,则k 的值为( )A .3k =B .1k =-C .1k =-或3D .3k =-或18.函数y 211=+2x的图象如图所示,若点P 1(x 1,y 1),P (x 2,y 2)是该函数图象上的任意两点,下列结论中错误的是( )A .x 1≠0,x 2≠0B .y 112>,y 212>C .若y 1=y 2,则|x 1|=|x 2|D .若y 1<y 2,则x 1<x 2二、填空题(8题,共24分)9.若反比例函数y m x=的图象落在第一、三象限内,则m 满足的条件是 ___.10.已知变量y 与x 成反比例,当3x =时,7y =-,则该反比例函数的解析式为_______.11.下列函数中,图象位于第一、三象限的有________;在图象所在象限内,y 的值随x 值的增大而增大的有_______.(1)23y x =;(2)0.1y x =;(3)5y x=;(4)275y x -=.12.如图,正比例函数y x =与反比例函数4y x =的图象交于A 、B 两点,其中()2,2A ,则不等式4x x >的解集为______.13.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC ,若△ABC 的面积为3,则k 的值是________.14.若直线1y k x =与双曲线2k y x=相交于点P 、Q ,若点P 的坐标为()3,4-,则点Q 的坐标为____.15.如图,反比函数8yx的图像经过直角 OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为__________.16.如图,一次函数为y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0)图象交于A(1,t+1),B(t﹣5,﹣1)两点,当y1>y2时,自变量x的取值范围为_____.三、解答题(8题,共72分)17.已知函数y=kx的图象经过点(-2,3).(1)求k的值,并在正方形网格中画出这个函数的图象;(2)当x取什么值时,函数的值小于0?18.已知y=y1+y2,y1与x﹣2成反比例,y2与2x+3成正比例,当x=1时,y=5;当x=3时,y=35,求y与x的函数关系式.19.如图,一次函数y1=ax+b与反比例函数2kyx=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当45PAC AOBS S=△△时,请求出点P的坐标.20.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(-1,n)、B(2,-1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)请直接写出不等式kx+b>mx的解集;(3)若点D与点C关于x轴对称,求△ABD的面积.21.如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)双曲线上是否存在点C 和点D ,使得四边形ABCD 是平行四边形?若存在,直接写出B ,C ,D 三点的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象分别交x 轴,y 轴于A ,B 两点,与反比例函数y =k x(k ≠0)的图象交于C ,D 两点,DE ⊥轴于点E ,点C 的坐标为(6,﹣1),DE =3(1)求反比例函数与一次函数的表达式;(2)求△COD 的面积.23.如图,在平面直角坐标系xOy 中,一次函数1y ax b =+(a ,b 为常数,且a ≠0)与反比例函数2m y x(m 为常数,且m ≠0)的图象交于点A (﹣4,2),B (2,n ).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)在x 轴上是否存在点P ,使△PAO 为等腰三角形,若存在,求出所有符合条件的P 点的坐标:若不存在,请写出理由24.用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.某天,小金、小东放学回家后各自洗一件完全相同的衣服,漂洗时,小金每次用水约6升,小东每次用水约5升,他们都用了5克洗衣粉,第一次漂洗后,小金的衣服残留的洗衣粉还有1.5克,小东的衣服残留的洗衣粉还有2克.(1)分别求出小金、小东衣服漂洗后洗衣粉残留量y关于次数x的函数解析式.(2)已知洗衣粉的残留量降至0.35克时,便视为衣服漂洗干净,若以把衣服洗干净为前提,节约用水为目标,判断小金和小东两种漂洗方法用水量的大小,并说明理由.答案第1页,共1页参考答案1.A2.B3.A4.C5.C6.B7.A8.D9.0m >10.21y x=-11.(1)(2)(3)(4) 12.﹣13.6-14.()3,4-15.2y x=16.x >1或-3<x <017.(1)6y x=-,见解析;(2)x >0时,函数的值小于018.y =32x --+4655x +19.(1)110y x =-+, 216y x =;(2)当y 1<y 2,时,自变量x 的取值范围为x >8或0<x <2;(3)点P 的坐标为(3,0)或(-3,0).20.(1)2y x=-;y =-x +1;(2)0<x <2或x <-1;(3)3.21.(1)4y x=-,22y x =-+;(2)存在,(2,2),(1,4),(2,2)B C D ---.22.(1)y =6-x;y =1-2x +2;(2)823.(1)y 1=-x -2,28y x -=;(2)6;(3)(±,0)或(-8,0)或(-2.5,0).24.(1)小金:3,2y x= 小东:2y x =;(2)小金的用水量与小东的用水量一样多。

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个2、反比例函数的图象如图所示,则K的值可能是()A. B.1 C.2 D.-13、如图,反比例函数的图象与矩形ABCO的边AB、BC相交于E、F两点,点A、C 在坐标轴上.若,则四边形OEBF的面积为()A.1B.2C.3D.44、设P是函数在第一象限的图象上的任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()A.随P点的变化而变化B.等于1C.等于2D.等于45、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3,y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y36、已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x7、关于函数,下列说法中错误的是()A.函数的图象在第二、四象限B. 的值随值的增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称8、已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)9、已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω10、已知双曲线y=过点A(1,1),那么过点A的直线y=kx+b经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限11、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.612、反比例函数是y= 的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.14、如图,A、B两点在双曲线上,分别经过点A、B两点向x、y轴作垂线段,已知,则( )A.6B.5C.4D.315、已知y=2x,z=,那么z与x之间的关系是()A.成正比例B.成反比例C.有可能成正比例有可能成反比例D.无法确定二、填空题(共10题,共计30分)16、如图,点A是反比例函数(x>0)图象上一点,过点A作x轴的平行线,交反比例函数(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.18、某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .19、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y =的图象交于A,B两点,则四边形MAOB的面积为________.20、为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室.21、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.22、若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________23、司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为________ .24、已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级下册数学《第26章反比例函数》单元测试题含答案一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣12.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4 B.4.2 C.4.6 D.55.下列各点中,在函数y =﹣图象上的是( )A .(﹣3,﹣2)B .(﹣2,3)C .(3,2)D .(﹣3,3)6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =B .y =C .y =D .y =7.如图,正比例函数y =x 与反比例函数y =的图象交于A 、B 两点,其中A (2,2),当y =x的函数值大于y =的函数值时,x 的取值范围( )A .x >2B .x <﹣2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v (千米/时)与时间t (小时)的函数关系为( )A .v =B .v +t =480C .v =D .v =9.对于反比例函数y =(k ≠0),下列所给的四个结论中,正确的是( )A .若点(2,4)在其图象上,则(﹣2,4)也在其图象上B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的垂线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y =x 和y =﹣x 成轴对称10.已知反比例函数y =(k ≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是( )A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S△POM=4,则k=.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S△AOB.22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k ≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点评】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.2.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)【分析】分k>0和k<0两种情况分类讨论即可确定正确的选项.【解答】解:当k>0时,函数y=kx的图象位于一、三象限,y=的图象位于一、三象限,(1)符合;当k<0时,函数y=kx的图象位于二、四象限,y=的图象位于二、四象限,(4)符合;故选:B.【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4 B.4.2 C.4.6 D.5【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,可求S1+S2的值.【解答】解:如图,∵A、B两点在双曲线y=上,∴S四边形AEOF=4,S四边形BDOC=4,∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故选:C.【点评】本题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B选项符合.故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=(k≠0),把(1,﹣2)代入得:k=﹣2,则反比例函数解析式为y=﹣,故选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2 B.x<﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480 C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.已知反比例函数y =(k ≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是( )A .(1,8)B .(3,)C .(,6)D .(﹣2,﹣4)【分析】根据反比例函数y =(k ≠0)的图象经过(﹣4,2),可以得到k 的值,从而可以判断各个选项是否符合题意,本题得以解决.【解答】解:∵反比例函数y =(k ≠0)的图象经过(﹣4,2),∴k =xy =(﹣4)×2=﹣8,∵1×8=8≠﹣8,故选项A 不符合题意,∵3×(﹣)=﹣8,故选项B 符合题意,∵×6=3≠﹣8,故选项C 不符合题意,∵(﹣2)×(﹣4)=8≠﹣8,故选项D 不符合题意,故选:B .【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x >0时,y 随x 的增大而增大”,则此函数的表达式可以为 y = .【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:∵当x >0时,y 随x 的增大而增大,∴此函数的解析式可以为y =,故答案为:y =.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,写出相应的函数解析式,注意本题答案不唯一.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为 2 .【分析】根据反比例函数比例系数k的几何意义可得S△OAC=S△OBD=×2=1,再相加即可.【解答】解:∵函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,∴S△OAC=S△OBD=×2=1,∴S△OAC+S△OBD=1+1=2.故答案为2.【点评】本题考查了反比例函数比例系数k的几何意义:过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k|.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2 y1y2【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,∴y1=,y2=,∵x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是y=.【分析】把点P(m,12)代入正比例函数y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P(m,12)代入正比例函数y=6x得:12=6m,解得:m=2,把点P(2,12)代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】本题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S△POM=4,则k=﹣8 .【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.【解答】解:由题意知:S△PMO=|k|=4,所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为 3 .【分析】由于点A的坐标为(6,4),而点D为OA的中点,则D点坐标为(3,2),利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;【点评】本题考查了反比例y=(k≠0)数k的几何意义:过反比例函数图象上任意一点分别作x 轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3231【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.【分析】根据反比例函数的定义知m2+2m=﹣1,且m2+2m≠0,据此可以求得m的值,进而得出反比例函数的解析式.【解答】解:∵y=(m2+2m)x是反比例函数,∴m2+2m=﹣1,且m2+2m≠0,∴(m+1)(m+1)=0,∴m+1=0,即m=﹣1;∴反比例函数的解析式y=﹣x﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.【分析】(1)根据反比例函数的定义与性质,得出,进而求解即可;(2)根据反比例函数的定义与性质,得出,进而求解即可.【解答】解:(1)由题意,可得,解得m=3;(2)由题意,可得,解得m=﹣2.【点评】本题考查了反比例函数的性质;用到的知识点为:反比例函数y=kx(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.也考查了反比例函数的定义.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S△AOB.【分析】根据点A、B两点在反比例函数图象上得其坐标,再根据S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE可得答案.【解答】解:将点A(﹣1,m)、B(n,2)代入y=,得:m=6、n=﹣3,如图,过点A作x轴的平行线,交y轴于点C,过点B作y轴的平行线,交x轴于点D,交CA于点E,则DE=OC=6、BD=2、BE=4、OD=3,AC=1、AE=2,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=3×6﹣×1×6﹣×3×2﹣×2×4=8.【点评】本题主要考查反比例函数系数k的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.【分析】根据勾股定理可求AC=3,则可求点A(4,0),可得点B(4,4),根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标(1,0)∴OC=1∴OA=OC+AC=4∴点A坐标(4,0)∴点B(4,4)∵点C(1,0),点B(4,4)∴BC的中点D(,2)∵反比例函数y=(x>0)的图象经过BC的中点D∴2=∴k=5【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k ≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=﹣3 ,n= 1 .(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)﹣3≤x≤﹣1 .【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB=S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)∵S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=4(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【分析】(1)将点A(3,1)代入y=,利用待定系数法求得反比例函数的解析式,再将点A(3,1)和B(0,﹣2)代入y=kx+b,利用待定系数法求得一次函数的解析式;(2)首先求得AB与x轴的交点C的坐标,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标;(3)分两种情况进行讨论:①点P在x轴上;②点P在y轴上.根据PA=OA,利用等腰三角形的对称性求解.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=,解得m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得:,∴一次函数的表达式为y=x﹣2;(2)如图,设一次函数y=x﹣2的图象与x轴的交点为C.令y=0,则x﹣2=0,x=2,∴点C的坐标为(2,0).∵S△ABP=S△ACP+S△BCP=3,∴PC×1+PC×2=3,∴PC=2,∴点P的坐标为(0,0)、(4,0);(3)若P是坐标轴上一点,且满足PA=OA,则P点的位置可分两种情况:①如果点P在x轴上,那么O与P关于直线x=3对称,所以点P的坐标为(6,0);②如果点P在y轴上,那么O与P关于直线y=1对称,所以点P的坐标为(0,2).综上可知,点P的坐标为(6,0)或(0,2).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。

相关文档
最新文档