生理学笔记01细胞的基本功能

合集下载

《生理学》第二章细胞的基本功能

《生理学》第二章细胞的基本功能

细胞膜在新陈代谢过程中所需的营养物质,以及细胞产生的代谢产物,都必须跨越细胞膜这 一屏障才能转到相应的部位,即物质转运。常见的细胞膜物质转运方式有以下几种。
第一节 细胞膜的物质转运功能
一、单纯扩散
第5 页
单纯扩散是指脂溶性小分子物质从高浓度一侧向低浓度一侧跨细胞膜转运的过程。单
纯扩散是一种简单的物理现象。一般来说,只有脂溶性的小分子物质才能通过脂质分子的间隙进
103~105个)。离子扩散速率的
大小除取决于膜两侧离子的浓度 差外,还受膜两侧电位差的影响。 浓度差和电位差合称为电化学梯 度。电化学梯度越大,驱动力就 越大。
每种通道只对一种或几种 离子有较大的通透性,其他离子 则不易或不能通过。根据离子选
择性,通道可分为Na+通道、K+ 通道、Ca2+通道和Cl-通道等。
哺乳动物细胞膜上普遍存在着钠-钾 泵,简称钠泵。钠泵是镶嵌在脂质双分 子层中的具有ATP酶活性的一种特殊蛋白 质,它能因细胞内Na+浓度升高和细胞外
K+浓度升高而激活,因此又称为Na+-K+依
赖式ATP酶。
第一节 细胞膜的物质转运功能
三、主动转运
第 12 页
(一)原发性主动转运
正常细胞膜外Na+浓度远高于细胞内, K+浓度远低于细胞内,当细胞受到有效刺激后,导致细胞 内Na+浓度升高(仍低于膜外)或细胞外K+浓度升高(仍低于膜内)时,钠泵被激活,分解ATP,释放 能量,将Na+从细胞内泵出,同时将细胞外的K+泵入。通常每分解1个ATP分子,可将3个Na+泵出膜外, 同时将2个K+泵入膜内(图2-3)。但这种化学定比关系在不同情况下可以改变。

医学培训执业医师生理笔记

医学培训执业医师生理笔记

医学培训执业医师生理笔记生理学(15分以内)第一节细胞的基本功能一、细胞的基本功能1、单纯扩散:脂溶性小分子物质高浓度向低浓度一侧移动,如氧、二氧化碳等。

2、易化扩散:(1)经载体扩散:葡萄糖、氨基酸等营养物质,具有高特异性、有饱和现象,竞争性抑制的特点。

(2)经通道扩散:Na/K/CL/Ca等离子,特异性不高,无饱和现象。

3、主动转运:分子等从低浓度一侧移向高浓度一侧,消耗ATP。

(1)原发性主动转运:钠泵激活,胞内Na增加和胞外K增加。

每分解一个ATP,移出3个Na,移入2个K。

钠泵(钠钾泵、Na-K依赖性ATP)的意义:(1)造成膜内外Na和K的浓度差;(2)维持细胞的正常形态、胞质渗透压、体积;(3)造成膜内高K,为细胞代谢的必需条件。

(4)钠泵活动造成的膜内外Na浓度势能差是其他物质继发性主动转运的动力。

(2)继发性主动转运:不直接利用ATP分解的能量,典型如葡萄糖、氨基酸在小肠黏膜上皮的主动吸收。

4、出胞入胞(也属于主动转运):大分子物质(细菌、病毒、异物、脂类物质等),耗能。

二、细胞的兴奋性和生物电现象(一)静息电位和动作电位及其产生机制1、静息电位产生机制:主要由K外流形成,接近K的电-化学平衡电位;细胞膜呈外正内负电位差。

2、动作电位产生机制:主要由Na内流形成,Na平衡电位根据Nernt公式计算的数值>实际测得的动作电位超射值。

①静息电位K+的外移停止(K+通道开放),几乎没有Na+的内移(Na+通道关闭)②阈电位造成细胞膜对Na+通透性突然增大的临界膜电位兴奋的标志动作电位或锋电位的出现③动作电位升支膜对Na+通透性增大,超过了对K+的通透性。

Na+向膜内易化扩散(Na+内移)④锋电位大多数被激活的Na+通道进入失活状态,不再开放。

是动作电位的主要组成部分绝对不应期Na+通道处于完全失活状态相对不应期一部分失活的Na+通道开始恢复,一部分Na+通道仍处于失活状态⑤动作电位降支Na+通道失活,K+通道开放(K+外流)⑥负后电位为后电位的前半部分,是膜电位小于静息电位的成分⑦正后电位为后电位的后半部分,是膜电位大于静息电位的成分极化是指静息状态下,细胞膜电位外正内负的状态(正常膜电位内负外正的状态)超极化是指细胞膜静息电位向膜内负值加大的方向变化。

生理学知识点整理

生理学知识点整理

生理学知识点整理生理学是研究生物体生命活动规律的科学,是医学、生物学等相关学科的重要基础。

下面为大家整理了一些重要的生理学知识点。

一、细胞的基本功能细胞是生物体的基本结构和功能单位。

细胞的跨膜物质转运是细胞维持正常生命活动的基础。

1、单纯扩散这是一种简单的物质转运方式,物质从高浓度一侧通过细胞膜向低浓度一侧移动,例如氧气、二氧化碳等气体的扩散。

2、易化扩散分为经载体的易化扩散和经通道的易化扩散。

经载体的易化扩散具有结构特异性、饱和现象和竞争性抑制等特点;经通道的易化扩散具有离子选择性和门控特性。

3、主动转运包括原发性主动转运和继发性主动转运。

原发性主动转运的代表是钠钾泵,它通过分解 ATP 来实现钠离子和钾离子的逆浓度梯度转运。

继发性主动转运依赖于原发性主动转运形成的离子浓度差。

4、出胞和入胞大分子物质或物质团块进出细胞的方式。

细胞的兴奋性和生物电现象也是重要的知识点。

静息电位是细胞在安静状态下存在于细胞膜两侧的电位差,主要由钾离子的平衡电位形成。

动作电位是细胞受到刺激时产生的快速、可逆的电位变化,具有“全或无”特性、不衰减传播和脉冲式发放等特点。

二、血液血液由血浆和血细胞组成。

1、血浆血浆的主要成分是水和溶质,溶质包括血浆蛋白、无机盐、营养物质、代谢产物等。

血浆蛋白具有维持血浆胶体渗透压、运输功能等。

2、血细胞包括红细胞、白细胞和血小板。

红细胞的主要功能是运输氧气和二氧化碳,其数量和血红蛋白含量对血液的携氧能力有重要影响。

白细胞具有免疫防御功能,可分为粒细胞、淋巴细胞和单核细胞等。

血小板在止血和凝血过程中发挥重要作用。

血液凝固是一系列复杂的酶促反应过程,分为内源性凝血途径和外源性凝血途径。

血型和输血也是需要了解的内容。

ABO 血型系统是最常见的血型系统,根据红细胞表面的抗原和血清中的抗体来划分血型。

输血时要遵循同型输血原则。

三、血液循环心脏的泵血功能是血液循环的核心。

心动周期是心脏一次收缩和舒张构成的一个机械活动周期。

细胞的基本功能生理知识

细胞的基本功能生理知识

第二章细胞的基本功能第二章细胞的基本功能学习目标掌握:细胞膜的跨膜物质转运形式及其特点,静息电位、动作电位和阈电位的概念,神经-肌接头处兴奋的传递过程,影响骨骼肌收缩的主要因素。

熟悉:静息电位和动作电位的产生机制,动作电位的传导,神经-肌接头处兴奋的传递特点,骨骼肌收缩的原理,骨骼肌收缩的外部表现。

了解:细胞膜的基本结构及其跨膜信号转导功能。

细胞是一切生命活动的基本单位。

因此,为了认识各器官、系统以及整个人体的功能,必须了解细胞的基本结构和功能。

本章主要介绍细胞共有的一些基本功能活动,包括细胞膜的跨膜物质转运功能、跨膜信号转导功能、细胞的生物电现象以及肌细胞的收缩功能。

第一节细胞膜的基本结构和功能一、细胞膜的基本结构细胞膜又称质膜,是细胞结构的边界。

它把细胞内容物和细胞外环境分隔开来,维持细胞内的微环境相对稳定;同时又在细胞与环境之间进行物质、能量的交换及在信息传递过程中起决定性作用。

(一)液态镶嵌模型学说细胞膜主要由脂质、蛋白质和少量糖类组成。

关于细胞膜的结构,现在比较公认的是液态镶嵌模型。

该学说认为,细胞膜的基本结构是液态的脂质双分子层,其间镶嵌着许多具有不同结构和功能的蛋白质(图2-1)。

1.脂质细胞膜脂质主要由磷脂、胆固醇和少量的糖脂构成。

磷脂是构成细胞膜脂质的基本成分,约占整个细胞膜脂质的70%以上;其次是胆固醇,一般低于30%。

磷脂分子具有一个极性头部和两个非极性的尾部,以疏水性非极性尾部相对,亲水性极性头部朝向水相,形成的脂质双分子层构成细胞膜的基本结构成分。

胆固醇主要参与调节细胞膜的流动性、增加细胞膜的稳定性以及降低水溶性物质的通透性等。

不同细胞所含糖脂种类不同,功能也不同,例如,人红细胞表面糖脂决定ABO血型。

图2-1细胞膜的液态镶嵌模型2.蛋白质细胞膜的很多功能需要通过膜蛋白来实现。

膜蛋白的种类繁多,根据其在细胞膜中存在的形式可分为表面蛋白和整合蛋白。

表面蛋白占膜蛋白的20%~30%,附着于细胞膜表面。

生理学细胞的基本功能(一)

生理学细胞的基本功能(一)

生理学细胞的基本功能(一)引言概述:细胞是生命的基本单位,而了解细胞的基本功能对于理解生理学至关重要。

本文将探讨生理学细胞的基本功能,包括细胞的结构、代谢、通信、增殖和分化。

通过深入了解细胞的这些基本功能,我们可以更好地理解生命的运行机制。

一、细胞的结构1. 细胞膜:细胞的外边界,控制物质的进出和细胞内外环境的平衡。

2. 细胞质:包括细胞器、细胞骨架和细胞液等组成,支持细胞的形态和运动。

3. 细胞核:细胞的控制中心,包含遗传物质DNA,指导细胞的生命活动。

二、细胞的代谢1. 能量转换:细胞通过代谢途径将化学能转化为细胞所需的能量。

2. 合成与降解:细胞利用代谢途径合成各种有机物质,并通过降解代谢废物来维持正常运作。

3. 细胞呼吸:细胞利用氧气和有机物质进行呼吸,产生ATP以供能量需求。

三、细胞的通信1. 细胞信号传导:细胞利用信号通路进行内外信息的传递和响应。

2. 细胞因子:细胞释放细胞因子来调节和调解细胞与细胞之间的相互作用。

3. 受体:细胞膜上的受体能够接收外界信号分子,触发细胞内信号传导。

四、细胞的增殖1. 有丝分裂:细胞通过有丝分裂产生两个完全相同的子细胞。

2. 减数分裂:生殖细胞通过减数分裂产生四个具有基因变异的细胞。

3. 细胞周期:细胞的生长和分裂过程按照细胞周期进行。

五、细胞的分化1. 多能细胞:多能细胞具有分化为不同类型细胞的潜能。

2. 分化:细胞通过基因的表达调控,逐渐转变为特定类型细胞。

3. 组织器官形成:细胞分化为不同类型细胞,最终形成特定的组织和器官。

总结:生理学细胞的基本功能包括细胞的结构、代谢、通信、增殖和分化。

细胞的结构决定了细胞的功能和特性,细胞的代谢保证了细胞的生命活动正常进行,细胞的通信实现了细胞之间的相互作用,细胞的增殖和分化维持了生物体的生长和发展。

通过深入了解细胞的基本功能,我们可以更好地理解生命的奥秘。

生理学 细胞的基本功能

生理学 细胞的基本功能

生理学细胞的基本功能●大纲●1. 跨细胞膜的物质转运:单纯扩散、易化扩散、主动转运和膜泡运输。

●2. 细胞的信号转导:离子通道型受体、G蛋白偶联受体、酶联型受体和核受体介导的信号转导。

●3. 细胞的电活动:静息电位,动作电位,兴奋性及其变化,局部电位。

●4. 肌细胞的收缩:骨骼肌神经-肌接头处的兴奋传递,横纹肌兴奋-收缩偶联及其收缩机制,影响横纹肌收缩效能的因素。

●细胞膜的化学组成及其分子排列形式●概述●概念●也称质膜,是分隔细胞质与细胞周围环境的一层膜结构,厚7~8nm●化学组成●细胞膜和细胞内各种细胞器的膜结构及其化学组成是基本相同的,主要由脂质和蛋白质组成,还有少量糖类物质其中,蛋白质和脂质的比例在不同种类的细胞可相差很大。

一般而言,在功能活跃的细胞,膜蛋白含量较高;而在功能简单的细胞,膜蛋白含量相对较低。

例如,膜蛋白与膜脂质在小肠黏膜上皮细胞膜中的重量比可高达4.6:1,而在构成神经纤维髓鞘的施万细胞膜中的重量比仅为0.25:1。

●液态镶嵌模型●液态脂质双层构成膜的基架,不同结构和功能的蛋白质镶嵌于其中,糖类分子与脂质、蛋白质结合后附在膜的外表面液态脂质分子亲水部分向胞外或胞内疏水部分在膜内部所以物质想要入胞或出胞必须亲脂亲脂越高穿膜速度越快●细胞膜的组成成分●(一)细胞膜的脂质在多数细胞中虽然膜蛋白总重量大于膜脂质但由于蛋白质的分子量远大于脂质所以膜脂质的分子数却远多于蛋白质。

因而,脂质成为细胞膜的基本构架,连续包被在整个细胞的表面。

●成分●磷脂(70%以上)●是一类含有磷酸的脂类●组成成分●含量最高的是磷脂酰胆碱●其次是磷脂酰丝氨酸和磷脂酰乙醇胺●含量最低的是磷脂酰肌醇●磷脂的分布●各种膜脂质在膜中的分布是不对称的●大部分磷脂酰胆碱和全部糖脂都分布在膜外层●含氨基酸的磷脂主要分布在膜的内层●磷脂酰丝氨酸●磷脂酰乙醇胺●磷脂酰肌醇●含量虽低,但可作为细胞内第二信使三磷酸肌醇(IP3)和二酰甘油(DG)的供体,因而在跨膜信号转导中有重要作用●胆固醇(不超过30%)●少量糖脂(不超过10%)●特性●脂质分子都是双嗜性分子●磷脂分子中含有磷酸和碱基的头端具有亲水性,含有较长脂肪酸的尾端具有疏水性●胆固醇分子中的羟基以及糖脂分子中的糖链具有亲水性,分子的另一端则具有疏水性●脂质分子的双嗜特性使之在质膜中以脂质双层的形式存在●两层脂质分子的亲水端分别朝向细胞外液或胞质,疏水的脂肪酸烃链则彼此相对,形成膜内部的疏水区疏水区是水以及水溶性物质如葡萄糖和各种带电离子的天然屏障,但脂溶性物质如氧气、二氧化碳以及乙醇等则很容易穿透。

医学基础知识:生理学名词解释-细胞的基本功能

医学基础知识:生理学名词解释-细胞的基本功能

医学基础知识:生理学名词解释-细胞的基本功能我们对医学基础知识里生理学各章节涉及到的重要名词解释进行整理,今天我们总结细胞的基本功能这一章节的名词解释,具体内容如下:继发性主动转运:依赖离子泵转运而储备的势能从而完成其他物质的逆浓度的跨膜转运,称为继发性主动转运,或简称联合转运。

出胞:某些大分子物质或物质团块以分泌囊泡的形式由细胞排出的过程,称为出胞。

如内分泌细胞分泌激素、神经细胞分泌递质等。

静息电位:指细胞未受到刺激时(安静状态)存在于细胞膜内外两侧的电位差。

静息电位现为膜内较膜外为负。

动作电位:指细胞受到一个阈或阈上刺激时,在膜的静息电位基础上发生的一次膜两侧电位的快速而可逆的倒转和复原。

局部兴奋:当细胞受到阈下刺激时,在受刺激的局部出现一个较小的膜的去极化,由于距阈电位近,因而再接受刺激时容易产生兴奋,其兴奋性升高,称为局部兴奋全或无现象:阈下刺激不能引起动作电位;刺激强度达到阈值后,动作电位的幅度不再随刺激强度的增加而增高,也不随传导距离的延长而衰减,称为全或无现象阈电位:在一段膜上能够诱发去极化和Na+通道开放之间出现再生性循环的膜内去极化的临界值,称为阈电位,这是用膜本身去极化的临界值来描述动作电位产生阈强度(阈值):指能引起组织兴奋所必需的最小刺激强度,称为阈值。

它能近似地反映组织奋性高低。

阈值愈小,该组织兴奋性愈高;反之,阈值愈大,则兴奋性愈低。

兴奋-收缩耦联:指在以膜的电变化为特征的兴奋过程和以肌丝的滑行为基础的收缩过程之间存在着某种中介性过程把二者联系起来,这一过程就叫做兴奋-•收缩耦联。

初长度:前负荷使肌肉在收缩前就处于某种被拉长的状态,使其具有一定的长度,称为初长度。

等长收缩:肌肉收缩时只有张力的增加而无长度的缩短,称为等长收缩。

等张收缩:肌肉收缩时只有长度的缩短而张力保持不变,称为等张收缩。

医学生理学期末重点笔记---第二章----细胞的基本功能

医学生理学期末重点笔记---第二章----细胞的基本功能

第二章细胞的基本功能第一节细胞膜的跨膜物质转运功能一、膜的化学组成和分子结构<一>磷脂的分子组成以液态的脂质双分子层为基架,具有流动性<二>细胞膜蛋白质镶嵌或贯穿于脂质双分子层分类:表面蛋白、整合蛋白<三>细胞膜糖类多为短糖链,以共价键的形式与膜脂质或蛋白质结合,形成糖脂或糖蛋白.二、细胞膜的跨膜物质转运功能被动转运〔passive transport〕:指物质顺浓度或电位梯度的转运过程.不消耗细胞提供的能量.主动转运〔active transport〕:指物质逆浓度或电位梯度的转运过程.需消耗细胞提供的能量.1.单纯扩散simple diffusion脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程.影响因素:浓度差通透性特点:①不依靠特殊膜蛋白质的"帮助"②不需另外消耗能量、顺浓度差转运物质:O2、CO2、N2、<NH3>2CO、乙醇、类固醇类激素等少数几种.2.易化扩散facilitated diffusion〔1〕概念:一些非脂溶性或脂溶性非常小的物质,在膜蛋白质的"帮助"下,顺电化学梯度进行跨膜转运的过程分类:原发性主动转运〔简称:泵转运〕、继发性主动转运〔简称:联合转运〕〔1〕原发性主动转运primary active transport概念:指物质在细胞膜"生物泵"的帮助下逆浓度梯度或电位梯度的转运过程.Na+-K+泵又称Na+-K+-ATP酶,简称钠泵.机制:当膜内[Na+]↑/胞外[K+]↑,钠泵激活↓ATP酶〔钠泵〕ATP------------------→ADP + 能量↓2K+泵至细胞内;3Na+泵至细胞外↓维持[Na+]膜外高、[K+]膜内高的不均匀分布状态生理意义•胞内低Na,维持细胞体积•胞内高K,酶活性----新陈代谢正常进行•势能储备钠、钾的易化扩散继发性主动转运,联合转运•生电效能〔2〕继发性主动转运secondary active transport概念:间接利用ATP能量的主动转运过程.分类:①同向转运:Na+-葡萄糖同向转运体,Na+-氨基酸同向转运体〔小肠粘膜上皮细胞,肾小管上皮细胞〕②逆向转运:钠钙交换体〔心肌细胞〕4. 入胞和胞吐①离子通道耦联受体介导的跨膜信号转导②G-蛋白耦联受体介导的跨膜信号转导③酶耦联受体介导的跨膜信号转导第三节细胞的生物电现象细胞的生物电现象〔跨膜电位〕:静息电位、动作电位一、静息电位resting potential、RP1.概念:静息时,细胞膜两侧存在的稳定的、外正内负的电位差.2.与RP相关的概念:••➢极化:RP存在时,细胞膜内负外正的状态称为极化.➢去极化:膜内外电位差向小于RP值的方向变化的过程.➢超极化:膜内外电位差向大于RP值的方向变化的过程.➢复极化:去极化后再向极化状态恢复的过程.➢反极化:细胞膜由内负外正的极化状态变为内正外负的极性反转过程.3.机制原理:带电离子跨膜转运条件:①静息状态下细胞膜内、外离子分布不均匀②静息状态下细胞膜对离子的通透性具有选择性,安静时,细胞膜主要对K+通透机制:K+顺浓度差向膜外扩散;A-不能向膜外扩散↓[K+]内↓、[A-]内↑→膜内电位↓<负电场>• [K+]外↑→膜外电位↑<正电场>↓膜外为正、膜内为负的极化状态↓当扩散动力与阻力达到动态平衡时=RP结论: RP是K+的平衡电位影响因素:•细胞膜两侧离子的浓度差•细胞膜对离子的通透性•钠泵的活动二、动作电位action potential、AP1.概念:细胞膜受到有效刺激时,在RP的基础上发生的一个快速的、可逆的、可远距离传播的电位变化.2.动作电位变化过程3.特征:①具有"全或无"的现象:即同一细胞上的AP大小不随刺激强度和传导距离而改变的现象.②是非衰减式传导的电位.③动作电位之间不融和4.动作电位的意义:AP的产生是细胞兴奋的标志,即AP=兴奋5.与AP有关的概念➢兴奋性:活组织或细胞对刺激发生反应的能力.➢刺激:能引起细胞或组织发生反应的所有内、外环境的变化.➢反应:细胞或组织对刺激产生的应答表现.有两种形式:兴奋:组织受刺激后由静息→活动或由活动弱→强的过程.抑制:组织受刺激后由活动→静息或由活动强→弱的过程.●可兴奋组织:神经、肌肉和腺体●兴奋性的指标————阈值〔threshold>阈强度〔阈值〕:刚能引起细胞或组织产生反应的最小刺激强度.阈值与兴奋性的高低呈反变关系.●刺激强度的表示方法1、阈刺激:刚好引起组织产生反应的最小刺激.〔此刺激的强度即称为阈强度〕2、阈上刺激:3、阈下刺激:6.形成机制原理:带电离子跨膜转运条件:⑴. 细胞膜两侧离子的浓度差——电化学驱动力•等于膜电位和该离子平衡电位之差•对Na+的驱动力:E m -E Na =-70-60 = -130mv•对K+的驱动力:E m -E k = -70+90 = 20mv⑵.细胞膜通透性的变化——膜在受到阈刺激而兴奋时,对Na+的通透性增加,继而对K+通透性增加.结论:①AP的上升支由Na+内流形成,下降支是K+外流形成的,后电位是Na+-K+泵活动引起的.②AP去极相末=Na+的平衡电位.7.相关实验和实验结论实验1:细胞膜通透性的变化——电压钳〔voltage clamp〕技术实验结论1•内向电流,形成AP上升支〔去极化〕;外向电流,形成AP下降支〔复极化〕.内向电流是Na+电流;外向电流是K+电流•时间依赖性——先产生内向电流〔Na+通透性↑〕,继而产生外向电流〔Na+通透性↓,K+通透性↑〕.实验结论2⑴细胞膜离子通透性的电压依赖性:如果刺激强度达到阈值,可使细胞膜去极化达到阈电位,则会产生膜去极化和钠电导之间存在正反馈〔图1〕,即再生性循环<regenerative cycle>,进一步去极化产生AP〔图2绿线示〕;〔如果刺激强度小于阈值,细胞膜去极化幅度低,没有达到阈电位,则不会产生这种再生性循环,无法产生AP〔图2黑和红线示〕图1 图2阈电位<threshold potential>:能触发动作电位的膜电位临界值因此动作电位的引起过程:阈刺激↓Na+内流,细胞膜去极化↓达阈电位↓Na+通道大量开放,Na+大量内流↓AP⑵.细胞膜离子通透性的时间依赖性:先Na+通透性↑,继而Na+通透性↓,K+通透性↑实验2:细胞膜通透性〔膜电导〕变化的实质——膜片钳技术<patch clamp technique>概念:指已兴奋与邻近未兴奋的心肌细胞之间形成电位差,出现电荷移动,称为局部电流电流方向:作用:使未兴奋部细胞膜去极化达到阈电位,产生AP.这样的过程在膜表面连续进行下去,就表现为兴奋在整个细胞的传导.有髓鞘N纤维AP的传导——跳跃式三、局部电位:local potential概念:阈下刺激引起的低于阈电位的去极化称局部电位.特点:①不具有"全或无"现象.其幅值可随刺激强度的增加而增大;②衰减式传导;③具有总和效应:时间性和空间性总和第四节肌细胞的收缩功能<一>收缩形式1.单收缩和强直收缩<1>.单收缩:肌肉受到一次刺激,引起一次收缩和舒张的过程称为单收缩.<2>.复合收缩①不完全强直收缩:新刺激落在前一次收缩的舒张期内②完全强直收缩:新刺激落在前一次收缩的缩短期内2.等长收缩与等张收缩• 等长收缩:肌肉收缩时,只有张力增加而长度不变的收缩,称为等长收缩.当负荷等于或大于肌张力时,出现等长收缩等张收缩:肌肉收缩时,只有长度缩短而张力不变的收缩,称为等张收缩.当负荷小于肌张力时,出现等张收缩<二>影响收缩因素外在因素:前负荷和后负荷内在因素:肌肉的收缩能力1.前负荷或肌肉初长度:前负荷<preload>:肌肉在收缩之前所承载的负荷肌肉初长度<initial length>:前负荷使肌肉被拉长到某一长度可以用肌肉初长度表示前负荷的大小在一定范围内,随着前负荷↑,粗细肌丝重叠↑,肌缩速度、幅度和张力↑.反之亦然2.后负荷<after load>:肌肉收缩时遇到的负荷和阻力后负荷过大,虽肌缩张力↑,但肌缩速度、幅度↓,不利作功;后负荷过小,虽肌缩速度、幅度↑,但肌缩张力↓,也不利作功.3.肌肉收缩能力:指与负荷无关、决定肌肉收缩效应的内在特性.肌缩能力↑→肌缩速度、幅度和张力↑肌缩能力↓→肌缩速度、幅度和张力↓第二章小结练习• 1. Na+-K+-ATP酶每分解1分子A TP可将__个Na+移出胞外,同时将__个K+移入胞内.• 2. 在肌肉兴奋-收缩偶联过程中,起关键作用的物质是____.• 3. 细胞内外正常Na+、K+浓度的形成和维持是由于_______的作用• 4. 有机磷农药中毒时,可使〔〕A、乙酰胆碱释放增加B、乙酰胆碱释放减少C、胆碱酯酶活性增加D、胆碱酯酶活性降低E、骨骼肌终板处的乙酰胆碱受体功能障碍案例Case 1.A 43-year-old man presents to the physician’s clinic with plaints of epigastric pai n. After a thorough workup, the patient is diagnosed with peptic ulcer disease. He is started on a medication that inhibits the "proton pump" of the stomach.QUESTIONS:•What is the "proton pump" that is referred to above?•What type of cell membrane transport would this medication be blocking?•What are four other types of transport across a cell membrane?ANSWERS TO CASE 1: MEMBRANE PHYSIOLOGY•◆Proton pump: H+-K+-ATPase <adenosine triphosphatase> pump.•◆Type of cell membrane transport: Primary active transport.•◆Other types of transport: Simple diffusion, facilitated diffusion, secondary active transport <cotransport and countertransport [exchange]>, endocytosis and exocytosis.Case 2.某男性患者,16岁,近来运动后感到极度无力,尤其是在进食大量淀粉类食物后加重.门诊检查血清钾正常〔4.5 mmol/L〕,但运动后血清钾明显降低〔2.2 mmol/L〕,经补钾治疗后症状缓解.1.为什么低血钾会引起极度肌肉无力?2.为什么在进食大量淀粉后症状加重?3.血钾增高时对肌肉收缩有何影响?为什么?。

生理学常考重点笔记

生理学常考重点笔记

生理学常考重点笔记•绪论•细胞的基本功能目录•血液•循环系统•呼吸•消化和吸收01绪论生理学的定义与任务定义生理学是研究生物体正常生命活动规律的科学,是生物学的一个重要分支。

任务揭示生物体正常生命活动的现象、过程、机制及其调节,阐明生物体对内外环境变化所作出的适应性反应。

生理学是医学的基础学科之一,为医学提供理论基础和实验依据。

医学以人体为研究对象,而人体正常生命活动的规律是医学研究的重要内容之一,因此生理学与医学密切相关。

生理学的研究成果可以为医学提供新的治疗思路和方法,推动医学的发展。

010203生理学与医学的关系通过对动物的观察和实验,揭示生物体正常生命活动的规律。

动物实验人体观察与实验细胞与分子水平研究数学建模与计算机模拟通过对人体的观察和实验,了解人体正常生命活动的现象和过程。

运用细胞生物学和分子生物学技术,研究细胞和分子水平上的生理活动及其调节机制。

运用数学方法和计算机技术,建立生理活动的数学模型,进行计算机模拟和分析。

生理学的研究方法02细胞的基本功能膜泡运输大分子和颗粒物质被运输时并不直接穿过细胞膜,都是由膜包围形成膜泡,通过一系列膜囊泡的形成和融合来完成转运的过程。

单纯扩散脂溶性物质顺浓度差转运的方式。

易化扩散非脂溶性物质或带电离子顺浓度差或电位差转运的方式,包括经通道易化扩散和经载体易化扩散两种类型。

主动转运细胞通过本身某种耗能过程,将某种物质的分子或离子逆浓度差或逆电位差的跨膜转运过程,包括原发性主动转运和继发性主动转运。

细胞膜的物质转运功能细胞的跨膜信号转导功能G蛋白耦联受体介导的信号转导01细胞外信号与细胞质膜上的G蛋白耦联受体结合后,激活质膜上的腺苷酸环化酶,产生的第二信使通过激活细胞内相应的靶酶,引起级联反应,放大信号,最终引起细胞反应。

酶联型受体介导的信号转导02细胞外信号与细胞表面的酶联型受体结合,导致受体构象改变,激活受体的酶活性,进一步激活细胞内信号通路,引起细胞反应。

医学综合知识重点笔记

医学综合知识重点笔记

医学综合知识重点笔记一、生理学。

1. 细胞的基本功能。

- 细胞膜的物质转运功能。

- 单纯扩散:如O₂、CO₂等脂溶性物质顺浓度差的跨膜转运,不需要载体和能量。

- 易化扩散。

- 经载体易化扩散:如葡萄糖、氨基酸等在载体蛋白的帮助下顺浓度差的跨膜转运,具有结构特异性、饱和现象和竞争性抑制等特点。

- 经通道易化扩散:如Na⁺、K⁺、Ca²⁺等离子借助通道蛋白顺浓度差或电位差的跨膜转运,有离子选择性、门控特性(电压门控、化学门控、机械门控)。

- 主动转运。

- 原发性主动转运:如钠 - 钾泵,每分解1分子ATP,可将3个Na⁺泵出细胞,同时将2个K⁺泵入细胞,维持细胞内外的离子浓度差。

- 继发性主动转运:如小肠黏膜上皮细胞对葡萄糖、氨基酸的吸收,依赖于钠泵活动形成的Na⁺浓度势能差。

- 细胞的兴奋性和生物电现象。

- 静息电位:细胞在安静状态下,存在于细胞膜两侧的电位差,表现为内负外正,主要由K⁺外流形成。

- 动作电位。

- 概念:可兴奋细胞受到刺激时,在静息电位的基础上产生的一次迅速、可逆、可传播的电位变化。

- 产生机制:上升支(去极化和反极化)主要由Na⁺内流形成;下降支(复极化)主要由K⁺外流形成。

动作电位具有“全或无”特性和不衰减传播的特点。

- 兴奋性的周期性变化:绝对不应期(对任何刺激都无反应)、相对不应期(阈上刺激可引起反应)、超常期(阈下刺激可引起反应)、低常期。

2. 血液。

- 血液的组成和理化特性。

- 血液由血浆和血细胞组成。

血浆的主要成分有水、血浆蛋白(白蛋白、球蛋白、纤维蛋白原等)、电解质等。

- 血液的理化特性。

- 比重:全血比重主要取决于红细胞数量;血浆比重主要取决于血浆蛋白含量。

- 粘滞性:全血粘滞性较大,主要取决于血细胞比容;血浆粘滞性主要取决于血浆蛋白含量。

- 血浆渗透压。

- 晶体渗透压:主要由NaCl等晶体物质形成,对维持细胞内外水平衡、保持细胞正常形态和功能有重要作用。

(完整版)生理学笔记

(完整版)生理学笔记

生理学笔记第一章绪论Internal environment:指细胞在机体内直接所处的环境,即细胞外液。

Homeostasis:指机体内环境和各种物理化学性质的相对稳定。

Positive feedback:指反馈调节使受控部分继续加强向和原先活动方向相同的活动。

Negative feedback:指反馈调节是受控部分活动向和原先活动相反的方向改变。

1.人体生理功能的调节方式和特点?负反馈和正反馈的生理意义?神经调节:快速、准确、短暂体液调节:缓慢、广泛、持续自身调节:强度较弱,范围较小,灵敏度较低负反馈:维持机体内环境和各项生理活动的稳态。

正反馈:使受控部分更加加强,破坏原有的平衡,使某个生理活动更快到达高潮,并发挥最大效应。

第二章细胞的基本功能Facilitated diffusion via carrier:指借助载体蛋白将物质顺浓度梯度或电子梯度的跨膜转运。

Facilitated diffusion via ion channel:指借助通道蛋白将物质顺浓度梯度或电子梯度的跨膜转运。

Primary active transport:指细胞直接应用代谢反应所产生的能量,将物质逆浓度梯度或电子梯度的跨膜转运。

Secondary active transport:指细胞间接应用代谢反应所产生的能量,将物质逆浓度梯度或电子梯度的跨膜转运。

Resting potential:指细胞在不受刺激的情况下膜两侧存在的电位差。

Action potential:指细胞在静息状态下,如果收到一个合适的刺激,膜两侧电位迅速发生一次快速而可逆的倒转和反复的波动。

Excitation-contraction coupling:指将电兴奋和机械收缩联系起来的中介机制。

1.物质跨膜转运的方式有哪些?哪些属于被动转运?简单扩散、经载体易化扩散、经通道易化扩散、原发性主动转运、继发性主动转运、胞吞和胞吐。

经载体易化扩散、经通道易化扩散为被动转运。

生理学细胞的基本功能(二)2024

生理学细胞的基本功能(二)2024

生理学细胞的基本功能(二)引言:细胞是生物体的基本组成单位,其中的生理过程驱动了整个有机体的功能。

在前文中,我们已经了解了细胞的基本功能。

本文将继续探讨细胞的更多基本功能,包括细胞的运动能力、细胞的分化和增殖、细胞的分泌功能、细胞的自我修复和细胞的感知能力。

正文:一、细胞的运动能力:1. 胞吞作用:细胞通过细胞膜将外界物质更有效地吸收进来。

2. 泳动作用:某些细胞具有自主运动能力,如鞭毛细胞和纤毛细胞。

3. 胞质流动:胞内的液体和细胞器可以在细胞质中流动,使得物质和信息能够在细胞内部快速传递。

二、细胞的分化和增殖:1. 细胞分化:一部分细胞在特定环境刺激下改变形态和功能,形成不同的细胞类型。

2. 细胞增殖:细胞通过细胞分裂来复制自身,保持有机体的正常发育和生长。

三、细胞的分泌功能:1. 内分泌:某些细胞通过分泌激素来调节整个有机体的生理过程。

2. 外分泌:细胞可以分泌物质到细胞外,参与体内外的物质交换。

四、细胞的自我修复:1. 细胞膜修复:细胞膜受到损伤时,细胞可以通过膜修复机制来恢复完整性。

2. DNA修复:细胞通过DNA修复机制修复受损的基因组,保证基因的完整性。

五、细胞的感知能力:1. 感知外界信号:细胞通过受体蛋白感知外界的化学、物理和生物信号。

2. 细胞信号转导:细胞对外界信号做出反应,通过信号转导通路调控内部的生理过程。

总结:细胞的基本功能是体现生物体规则运作的基础,其中包括运动能力、分化和增殖、分泌功能、自我修复和感知能力。

细胞的这些功能相互作用,共同维持了有机体的正常生理活动。

进一步研究细胞的基本功能对于理解生物体的结构和功能具有重要意义。

生理学:细胞的基本功能(名词解释)

生理学:细胞的基本功能(名词解释)

1液态镶嵌模型(fluid mosaic model)是关于膜的分子结构的假说,其基本内容是:以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构、因而也具有不同生理功能的蛋白质。

2单纯扩散(simple diffusion)脂溶性物质通过脂质双分子层由高浓度一侧向低浓度一侧转运的过程,称为单纯扩散。

3经通道易化扩散(facilitated diffusion via ion channel)溶液中的带电离子,借助于通道蛋白的介导,顺浓度梯度或电位梯度的跨膜扩散,称为经通道易化扩散。

4原发性主动转运(primary active transport) 细胞直接利用代谢产生的能量将物质(通常是带电离子)逆浓度梯度或电位梯度进行跨膜转运的过程,称为原发性主动转运,是人体最重要的物质转运形式。

5继发性主动转运(secondary active transport)许多物质在进行逆浓度梯度或电位梯度的跨膜转运时,所需的能量并不直接来自ATP分解,而是来自Na+在膜两侧的浓度势能差,后者是钠泵利用分解ATP释放的能量建立的。

这种间接利用ATP能量的主动转运过程,称为继发性主动转运。

6出胞(exocytosis)胞质内的大分子物质以分泌囊泡的形式排出细胞的过程,称为出胞,如内分泌细胞分泌激素、神经细胞分泌递质等。

7入胞(endocytosis)大分子物质或物质的团块(细菌、细胞碎片等)借助于与细胞膜形成吞噬泡或吞饮泡的方式进入细胞的过程,称为入胞,如上皮细胞、免疫细胞吞噬异物等。

8兴奋性(excitability)细胞受到刺激时产生动作电位的能力,称为兴奋性。

9静息电位(resting potential)细胞处于安静状态(未受刺激)时存在于细胞膜内外两侧的电位差,称为跨膜静息电位,简称静息电位。

10动作电位(action potential)在静息电位的基础上,如果细胞受到一个适当的刺激,其膜电位会发生迅速的一过性的波动,这种膜电位的波动称为动作电位。

生理学 细胞的基本功能

生理学 细胞的基本功能

[Na+]o > [Na+]i
[K+]i >[K+]o
转运的物质:各种带电离子
(2)经载体的易化扩散
转运的物质:葡萄糖(GL)、氨基酸(AA)等小分子亲水物质
(3)特点:
①需依靠特殊膜蛋白质的“帮助” ②不需另外消耗能量 ③选择性(∵特殊膜蛋白质本身有结构特异性) ④饱和性(∵结合位点是有限的) ⑤竟争性(∵经同一特殊膜蛋白质转运) ⑥浓度和电压依从性(∵特殊膜蛋白质的变构是有条件的, 如化学门控通道、电压门控通道)
二、主动转运
概念:指物质逆浓度梯度或电位梯度的转运过程。
特点:①需要消耗能量,能量由分解ATP来提供; ②依靠特殊膜蛋白质(泵)的“帮助”; ③是逆电-化学梯度进行的。
分类:
①原发性主动转运(简称:泵转运); 如:Na+-K+泵、Ca2+-Mg2+泵、H+-K+泵等
②继发性主动转运(简称:联合转运);
一、被动转运(passive transport)
概念:物质顺电位或化学梯度的转运过程。 特点:
①不耗能(转运动力依赖物质的电-化学梯度所贮 存的势能)
②依靠或不依靠特殊膜蛋白质的“帮助” ③顺电-化学梯度进行 分类: ①单纯扩散 ②易化扩散
(一)单纯扩散
(1)概念:一些脂溶性物质由膜的高浓度一侧向低浓度一侧 移动的过程。
活动进行的,亦可属于主动转运过程。 出胞:指细胞把成块的内容物由细胞内排出的过程。 主要见于细胞的分泌过程:如激素、神经递质、消化液
的分泌。 入胞:指细胞外的大分子物质或团块进入细胞的过程。 分 为:吞噬=转运物质为固体; 吞饮=转运物质为液体。
出胞:
粗面内质网合成蛋白性分泌物 高尔基复合体

生理学笔记细胞的基本功能

生理学笔记细胞的基本功能

生理学笔记细胞的基本功能细胞的基本功能要点:1.细胞膜的物质转运。

2.细胞的生物电现象以及细胞兴奋的产生和传导的原理。

3.神经-骨骼肌接头的兴奋传递。

一、细胞膜的基本结构基本内容:以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质分子,并连有一些寡糖和多糖链。

特点:(1)脂质膜不是静止的,而是动态的、流动的。

(2)细胞膜两侧是不对称的,因为两侧膜蛋白存在差异,同时两侧的脂类分子也不完全相同。

(3)细胞膜上相连的糖链主要发挥细胞间“识别”的作用。

(4)膜蛋白有多种不同的功能,如发挥转动物质作用的载体蛋白、通道蛋白、离子泵等,这些膜蛋白主要以螺旋或球形蛋白质的形式存在,并且以多种不同形式镶嵌在脂质双分子层中,如靠近膜的内侧面、外侧面、贯穿整个脂质双层三种形式均有。

(5)细胞膜糖类多数裸露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋白质的特异性标志。

二、细胞膜物质转运功能物质进出细胞必须通过细胞膜,细胞膜的特殊结构决定了不同物质通过细胞的难易。

例如,细胞膜的基架是双层脂质分子,其间不存在大的空隙,因此,仅有能溶于脂类的小分子物质可以自由通过细胞膜,而细胞膜对物质团块的吞吐作用则是细胞膜具有流动性决定的。

不溶于脂类的物质,进出细胞必须依赖细胞膜上特殊膜蛋白的帮助。

物质通过细胞膜的转运有以下几种形式:(一)被动转运:包括单纯扩散和易化扩散两种形式。

1.是指小分子脂溶性物质由高浓度的一侧通过细胞膜向低浓度的一侧转运的过程。

跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该物质的通透性。

单纯扩散在物质转运的当时是不耗能的,其能量来自高浓度本身包含的势能。

2.易化扩散:指非脂溶性小分子物质在特殊膜蛋白的协助下,由高浓度的一侧通过细胞膜向低浓度的一侧移动的过程。

参与易化扩散的膜蛋白有载体蛋白质和通道蛋白质。

以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。

以通道为中介的易化扩散特点如下:(1)相对特异性;(2)无饱和现象;(3)通道有“开放”和“关闭”两种不同的机能状态。

生理学基础知识重点笔记

生理学基础知识重点笔记

生理学基础知识重点笔记一、绪论1. 生理学的定义:生理学是研究生物体正常生命活动规律的科学。

2. 生理学的研究方法:实验和观察。

3. 生理学的研究对象:整体、器官、组织和细胞。

二、细胞的基本功能1. 细胞膜的物质转运功能:包括被动转运和主动转运。

2. 细胞的跨膜信号转导:通过受体、酶联型和通道型等机制实现。

3. 细胞的生物电现象:包括静息电位和动作电位。

三、骨骼肌的功能1. 骨骼肌的收缩机制:包括肌丝滑行理论和肌丝滑行-横桥循环理论。

2. 骨骼肌的收缩形式:包括缩短、伸长和等长收缩。

3. 骨骼肌的疲劳与恢复:疲劳产生的原因和恢复的方式。

四、循环系统的功能1. 心脏的功能:包括泵血功能和内分泌功能。

2. 血管的功能:包括运输、调节和防御功能。

3. 血液循环的基本概念:包括体循环和肺循环。

五、呼吸系统的功能1. 呼吸系统的组成:包括鼻腔、咽、喉、气管、支气管和肺。

2. 呼吸运动的过程:包括吸气和呼气。

3. 气体交换的原理和方式:包括单纯扩散、滤过-弥散和物理溶解等。

六、消化系统的功能1. 消化系统的组成:包括口腔、食管、胃、小肠和大肠等部分。

2. 食物的消化过程:包括物理消化和化学消化。

3. 营养物质的吸收:包括小肠和大肠的吸收功能。

七、泌尿系统的功能1. 泌尿系统的组成:包括肾、输尿管、膀胱和尿道。

2. 尿的生成过程:包括肾小球滤过、肾小管重吸收和分泌等过程。

3. 尿的排出过程:通过输尿管、膀胱和尿道排出体外。

八、内分泌系统的功能1. 内分泌腺的种类和功能:包括下丘脑、垂体、甲状腺、肾上腺等。

2. 激素的作用机制:通过与靶细胞受体结合,产生生物效应。

3. 内分泌调节网络:下丘脑-垂体-靶腺轴和神经-内分泌网络等调节机制。

【生理学笔记】细胞的基本功能

【生理学笔记】细胞的基本功能

【生理学笔记】细胞的基本功能细胞膜的基本结构-液体镶嵌模型.基本内容:①基架:液态脂质双分子层;②蛋白质:具有不同生理功能;③寡糖和多链糖.膜蛋白的分类:细胞骨架蛋白,识别蛋白质,酶,受体蛋白,跨膜转运物质的功能蛋白细胞膜的物质转运被动转运非脂溶性小分子物质从浓度高向浓度低处转运时不需消耗能量,属于被动转运(1)单纯扩散小分子脂溶性物质可以自由通过脂质双分子层,因此,可以在细胞两侧自由扩散,扩散的方向决定于两侧的浓度,它总是从浓度高一侧向浓度低一侧扩散,这种转运方式称单纯扩散。

举例:O2,N2,CO2,NH3,尿素,乙醚,乙醇,类固醇(2)易化扩散举例:A经载体介导:葡萄糖,氨基酸特点:饱和现象,结构特异性,竞争性抑制B 经通道介导:Na+,K+,Ca2+,Cl-等特点:A顺浓度或电位梯度的高速度跨膜扩散B门控体制包括电压门控通道和化学门控通道C 对通过的离子有明显的选择性主动转运。

非脂溶性小分子物质从浓度低向浓度高处转运时需要消耗能量,称为主动转运。

举例:A原发性主动转运——直接利用ATP:钠-钾泵B继发性主动转运——间接利用ATP:葡萄糖,氨基酸在小肠和肾小管的重吸收出胞和入胞出胞和入胞作用是大分子物质或物质团块出入细胞的方式。

内分泌细胞分泌激素、神经细胞分泌递质属于出胞作用;上皮细胞、免疫细胞吞噬异物属于入胞作用。

神经和骨骼肌细胞的生物电现象:细胞的静息电位概念:指细胞处于安静状态下(未受刺激时)膜内外的电位差。

静息电位表现为膜外相对为正,膜内相对为负。

形成条件:①安静时细胞膜两侧存在离子浓度差(离子不均匀分布);②安静时细胞膜主要对K+通透。

产生机制:K+外流的平衡电位即静息电位,静息电位形成过程不消耗能量。

极化:静息时膜的内负外正的状态去极化:静息电位的减少超极化:静息电位的增大复极化:细胞膜由去极化后向静息电位方向恢复的过程特征:静息电位是K+外流形成的膜两侧稳定的电位差。

细胞的动作电位:概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。

生理学:细胞的基本功能

生理学:细胞的基本功能

生理学:细胞的基本功能生理学第一节细胞的基本功能细胞膜的结构和物质转运动能膜结构的液态镶嵌模型,单纯扩散、膜蛋白介导的跨膜转运和主动转运的定义和基本原理细胞的跨膜信号转导G-蛋白耦联受体、离子受体和酶耦联受体介导的信号转导的主要途径细胞的兴奋性与生物电现象静息电位和动作电位的定义、波形和产生机制肌细胞的收缩神经-骨骼肌接头处兴奋的传递过程、骨骼肌收缩的机制和兴奋-收缩耦联基本过程一、细胞膜的结构和物质转运动能细胞膜结构液态镶嵌模型结构学说细胞膜的物质转运功能单纯扩散:概念:脂溶性物质由膜的高浓度区一侧向膜的低浓度区一侧顺浓度差跨膜的移动过程。

特点:①顺浓度差,不耗能;②无需膜蛋白帮助;③最终使转运物质在膜两侧的浓度差消失。

易化扩散:概念:非脂溶性或脂溶性较小的物质在膜蛋白质的帮助下,由膜的高浓度一侧向低浓度一侧转运的过程。

(1)载体转运——小分子亲水物质特点:蛋白质有结构特异性;饱和现象;竞争性抑制。

(2)通道转运/门控转运①化学门控②电压门控特点:相对特异性;饱和性;有开放、失活、关闭不同状态。

主动转运/泵转运:概念:由离子泵和转运体膜蛋白介导的消耗能量、逆浓度梯度或点位梯度的跨膜转运。

分为原发性转运和继发性转运主动转运与被动转运的区别主动转运被动转运(单纯/易化)需由细胞提供能量不需外部能量逆电-化学势差顺电-化学势差使膜两侧浓度差更大使膜两侧浓度差更小二、细胞的跨膜信号转导(膜受体功能)概念:不同形式的外界信号作用于细胞时,通常并不需要进入细胞内的过程,而是作用于细胞膜表面,通过引起膜结构中一种或数种特殊蛋白质分子的变构作用,将外界环境变化的信息以新的信号形式传递到膜内,引发被作用细胞即靶细胞相应的功能改变,包括细胞内出现电反应或其它功能改变。

外界信号:激素、神经递质、细胞因子、某些药物等。

三、细胞的兴奋性与生物电现象1.兴奋性与兴奋概念:兴奋性:指生物体能够感受刺激并发生反应的能力或特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细胞的基本功能考纲要求1.细胞膜的物质转运。

2.细胞的生物电现象以及细胞兴奋的产生和传导的原理。

3.神经-骨骼肌接头的兴奋传递。

考纲精要一、细胞膜的基本结构——液态镶嵌模型该模型的基本内容:以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质分子,并连有一些寡糖和多糖链。

特点:(1)脂质膜不是静止的,而是动态的、流动的。

(2)细胞膜两侧是不对称的,因为两侧膜蛋白存在差异,同时两侧的脂类分子也不完全相同。

(3)细胞膜上相连的糖链主要发挥细胞间“识别”的作用。

(4)膜蛋白有多种不同的功能,如发挥转动物质作用的载体蛋白、通道蛋白、离子泵等,这些膜蛋白主要以螺旋或球形蛋白质的形式存在,并且以多种不同形式镶嵌在脂质双分子层中,如靠近膜的内侧面、外侧面、贯穿整个脂质双层三种形式均有。

(5)细胞膜糖类多数裸露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋白质的特异性标志。

二、细胞膜物质转运功能物质进出细胞必须通过细胞膜,细胞膜的特殊结构决定了不同物质通过细胞的难易。

例如,细胞膜的基架是双层脂质分子,其间不存在大的空隙,因此,仅有能溶于脂类的小分子物质可以自由通过细胞膜,而细胞膜对物质团块的吞吐作用则是细胞膜具有流动性决定的。

不溶于脂类的物质,进出细胞必须依赖细胞膜上特殊膜蛋白的帮助。

物质通过细胞膜的转运有以下几种形式:(一)被动转运:包括单纯扩散和易化扩散两种形式。

1.是指小分子脂溶性物质由高浓度的一侧通过细胞膜向低浓度的一侧转运的过程。

跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该物质的通透性。

单纯扩散在物质转运的当时是不耗能的,其能量来自高浓度本身包含的势能。

2.易化扩散:指非脂溶性小分子物质在特殊膜蛋白的协助下,由高浓度的一侧通过细胞膜向低浓度的一侧移动的过程。

参与易化扩散的膜蛋白有载体蛋白质和通道蛋白质。

以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。

以通道为中介的易化扩散特点如下:(1)相对特异性;(2)无饱和现象;(3)通道有“开放”和“关闭”两种不同的机能状态。

(二)主动转运,包括原发性主动转运和继发性主动转运。

主动转运是指细胞消耗能量将物质由膜的低浓度一侧向高浓度的一侧转运的过程。

主动转运的特点是:(1)在物质转运过程中,细胞要消耗能量;(2)物质转运是逆电-化学梯度进行;(3)转运的为小分子物质;(4)原发性主动转运主要是通过离子泵转运离子,继发性主动转运是指依赖离子泵转运而储备的势能从而完成其他物质的逆浓度的跨膜转运。

最常见的离子泵转运为细胞膜上的钠泵(Na+-K+泵),其生理作用和特点如下:(1)钠泵是由一个催化亚单位和一个调节亚单位构成的细胞膜内在蛋白,催化亚单位有与Na+、ATP结合点,具有A TP酶的活性。

(2)其作用是逆浓度差将细胞内的Na+移出膜外,同时将细胞外的K+移入膜内。

(3)与静息电位的维持有关。

(4)建立离子势能贮备:分解的一个A TP将3个Na+移出膜外,同时将2个K+移入膜内,这样建立起离子势能贮备,参与多种生理功能和维持细胞电位稳定。

(5)可使神经、肌肉组织具有兴奋性的离子基础。

(三)出胞和入胞作用。

(均为耗能过程)出胞是指某些大分子物质或物质团块由细胞排出的过程,主要见于细胞的分泌活动。

入胞则指细胞外的某些物质团块进入细胞的过程。

因特异性分子与细胞膜外的受体结合并在该处引起的入胞作用称为受体介导式入胞。

记忆要点:(1)小分子脂溶性物质可以自由通过脂质双分子层,因此,可以在细胞两侧自由扩散,扩散的方向决定于两侧的浓度,它总是从浓度高一侧向浓度低一侧扩散,这种转运方式称单纯扩散。

正常体液因子中仅有O2、CO2、NH3以这种方式跨膜转运,另外,某些小分子药物可以通过单纯扩散转运。

(2)非脂溶性小分子物质从浓度高向浓度低处转运时不需消耗能量,属于被动转运,但转运依赖细胞膜上特殊结构的“帮助”,因此,可以把易化扩散理解成“帮助扩散”。

什么结构发挥“帮助”作用呢?——细胞膜蛋白,它既可以作为载体将物质从浓度高处“背”向浓度低处,也可以作为通道,它开放时允许物质通过,它关闭时不允许物质通过。

体液中的离子物质是通过通道转运的,而一些有机小分子物质,例如葡萄糖、氨基酸等则依赖载体转运。

至于载体与通道转运各有何特点,只需掌握载体转运的特异性较高,存在竞争性抑制现象。

(3)非脂溶性小分子物质从浓度低向浓度高处转运时需要消耗能量,称为主动转运。

体液中的一些离子,如Na+、K+、Ca2+、H+的主动转运依靠细胞膜上相应的离子泵完成。

离子泵是一类特殊的膜蛋白,它有相应离子的结合位点,又具有ATP酶的活性,可分解ATP释放能量,并利用能量供自身转运离子,所以离子泵完成的转运称为原发性主动转运。

体液中某些小分子有机物,如葡萄糖、氨基酸的主动转运属于继发性主动转运,它依赖离子泵转运相应离子后形成细胞内外的离子浓度差,这时离子从高浓度向低浓度一侧易化扩散的同时将有机小分子从低浓度一侧耦联到高浓度一侧。

肠上皮细胞、肾小管上皮细胞吸收葡萄糖属于这种继发性主动转运。

(4)出胞和入胞作用是大分子物质或物质团块出入细胞的方式。

内分泌细胞分泌激素、神经细胞分泌递质属于出胞作用;上皮细胞、免疫细胞吞噬异物属于入胞作用。

三、细胞膜的受体功能1.膜受体是镶嵌在细胞膜上的蛋白质,多为糖蛋白,也有脂蛋白或糖脂蛋白。

不同受体的结构不完全相同。

2.膜受体结合的特征:①特异性;②饱和性;③可逆性。

四、细胞的生物电现象生物电的表现形式:静息电位——所有细胞在安静时均存在,不同的细胞其静息电位值不同。

动作电位——可兴奋细胞受到阈或阈上刺激时产生。

局部电位——所有细胞受到阈下刺激时产生。

1.静息电位:细胞处于安静状态下(未受刺激时)膜内外的电位差。

静息电位表现为膜个相对为正而膜内相对为负。

(1)形成条件:①安静时细胞膜两侧存在离子浓度差(离子不均匀分布)。

②安静时细胞膜主要对K+通透。

也就是说,细胞未受刺激时,膜上离子通道中主要是K+通道开放,允许K+由细胞内流向细胞外,而不允许Na+、Ca2+由细胞外流入细胞内。

(2)形成机制:K+外流的平衡电位即静息电位,静息电位形成过程不消耗能量。

(3)特征:静息电位是K+外流形成的膜两侧稳定的电位差。

只要细胞未受刺激、生理条件不变,这种电位差持续存在,而动作电位则是一种变化电位。

细胞处于静息电位时,膜内电位较膜外电位为负,这种膜内为负,膜外为正的状态称为极化状态。

而膜内负电位减少或增大,分别称为去极化和超级化。

细胞先发生去极化,再向安静时的极化状态恢复称为复极化。

2.动作电位:(1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。

动作电位的主要成份是峰电位。

(2)形成条件:①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。

(主要是Na+-K+泵的转运)。

②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。

③可兴奋组织或细胞受阈上刺激。

(3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支。

膜去极化达一定电位水平→Na+内流停止、K+迅速外流→形成动作电位下降支。

(4)形成机制:动作电位上升支——Na+内流所致。

动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。

动作电位下降支——K+外流所致。

(5)动作电位特征:①产生和传播都是“全或无”式的。

②传播的方式为局部电流,传播速度与细胞直径成正比。

③动作电位是一种快速,可逆的电变化,产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期——相对不应期——超常期——低常期,它们与动作电位各时期的对应关系是:峰电位——绝对不应期;负后电位——相对不应期和超常期;正后电位——低常期。

④动作电位期间Na+、K+离子的跨膜转运是通过通道蛋白进行的,通道有开放、关闭、备用三种状态,由当时的膜电位决定,故这种离子通道称为电压门控的离子通道,而形成静息电位的K+通道是非门控的离子通道。

当膜的某一离子通道处于失活(关闭)状态时,膜对该离子的通透性为零,同时膜电导就为零(电导与通透性一致),而且不会受刺激而开放,只有通道恢复到备用状态时才可以在特定刺激作用下开放。

3.局部电位:(1)概念:细胞受到阈下刺激时,细胞膜两侧产生的微弱电变化(较小的膜去极化或超极化反应)。

或者说是细胞受刺激后去极化未达到阈电位的电位变化。

(2)形成机制:阈下刺激使膜通道部分开放,产生少量去极化或超极化,故局部电位可以是去极化电位,也可以是超极化电位。

局部电位在不同细胞上由不同离子流动形成,而且离子是顺着浓度差流动,不消耗能量。

(3)特点:①等级性。

指局部电位的幅度与刺激强度正相关,而与膜两侧离子浓度差无关,因为离子通道仅部分开放无法达到该离子的电平衡电位,因而不是“全或无”式的。

②可以总和。

局部电位没有不应期,一次阈下刺激引起一个局部反应虽然不能引发动作电位,但多个阈下刺激引起的多个局部反应如果在时间上(多个刺激在同一部位连续给予)或空间上(多个刺激在相邻部位同时给予)叠加起来(分别称为时间总和或空间总和),就有可能导致膜去极化到阈电位,从而爆发动作电位。

③电紧张扩布。

局部电位不能像动作电位向远处传播,只能以电紧张的方式,影响附近膜的电位。

电紧张扩布随扩布距离增加而衰减。

4.兴奋的传播:(1)兴奋在同一细胞上的传导:可兴奋细胞兴奋的标志是产生动作电位,因此兴奋的传导实质上是动作电位向周围的传播。

动作电位以局部电流的方式传导,直径大的细胞电阻较小传导的速度快。

有髓鞘的神经纤维动作电位以跳跃式传导,因而比无髓纤维传导快。

动作电位在同一细胞上的传导是“全或无”式的,动作电位的幅度不因传导距离增加而减小。

(2)兴奋在细胞间的传递:细胞间信息传递的主要方式是化学性传递,包括突触传递和非突触传递,某些组织细胞间存在着电传递(缝隙连接)。

神经肌肉接头处的信息传递过程如下:神经末梢兴奋(接头前膜)发生去极化→膜对Ca2+通透性增加→Ca2+内流→神经末梢释放递质ACh→ACh通过接头间隙扩散到接头后膜(终板膜)并与N型受体结合→终板膜对Na+、K+(以Na+为主)通透性增高→Na+内流→终板电位→总和达阈电位→肌细胞产生动作电位。

特点:①单向传递;②传递延搁;③易受环境因素影响。

相关文档
最新文档