18.抛物线与圆的综合

合集下载

二次函数与圆的综合题(中考数学必考压轴题)

二次函数与圆的综合题(中考数学必考压轴题)

二次函数与圆的综合题(中考数学压轴题必考)例1.如图,已知抛物线与x轴交于A,B两点(A在左边),抛物线经过点D以AB为直径画⊙P,试判定点D与⊙P的位置关系,并证明.练习1.如图,二次函数y=ax2﹣(a+1)x(a为常数,且0<a<1)的图象过原点O并与x轴交于点P;过点A(1,﹣1)的直线l垂直y轴于点B,并与二次函数的图象交于点Q,以OA为直径的⊙C交x轴于点D,连接DQ.(1)点B与⊙C的位置关系是;(2)点A是否在二次函数的图象上;(填“是”或“否”)(3)若DQ恰好为⊙C的切线,①猜想:四边形OAQD的形状是,证明你的猜想;②求二次函数的表达式.例2.如图示已知点M的坐标为(4,0),以M为圆心,以2为半径的圆交x轴于A、B,抛物线过A、B两点且与y轴交于点C.过C点作⊙M 的切线CE,求直线OE的解析式.练习2.平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴,设平行于x轴的直线交抛物线y=﹣x2﹣x+2于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.练习3.如图,抛物线y=﹣x2﹣x+2与x轴交于A(﹣4,0),B(2,0),与y 轴交于点C(0,2).以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.练习4.如图,抛物线y=﹣x2+x+2.经过A、B、C三点,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C,M为抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论.练习5.如图,抛物线与x轴交于A、B两点,与y轴交于C点.以AB为直径作⊙M.(1)求出M的坐标并证明点C在⊙M上;(2)若P为抛物线上一动点,求出当CP与⊙M相切时P的坐标;练习6.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的析式;(2)求点D的坐标:(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.练习7.如图,在平面直角坐标系中,已知OA=n,OC=m,⊙M与y轴相切于点C,与x轴交于A,B两点,∠ACD=90°,抛物线y=ax2+bx+c经过A,B,C三点.(1)求证:∠OCA=∠OBC;(2)若A(x1,0),B(x2,0),且x1,x2满足x1+x2=5,x1•x2=4,求点C 的坐标和抛物线的解析式;(3)若△ACD≌△ABD,在四边形ABDC内有一点P,且点P到四边形四个顶点的距离之和P A+PB+PC+PD最小,求此时距离之和的最小值及P点的坐标(用含n的式子表示).练习8.已知二次函数y=mx2+(m﹣3)x﹣3(m>0)(1)求证:它的图象与x轴必有两个交点;(2)这条抛物线与x轴交于两点A、B(A在B左),与y轴交于点C,顶点为D,sin∠ABD=,⊙M过A、B、C三点,求⊙M的面积;(3)在(2)的条件下,抛物线上是否存在点P,使P A是⊙M的切线?若存在,求出P点的坐标,若不存在,说明理由.例3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P的纵坐标.练习9.已知:如图,抛物线y=ax2+bx+1的图象关于y轴对称,且抛物线过点(2,2),点P为抛物线上的动点,以点P为圆心的⊙P与x轴相切,当点P运动对,⊙P始终经过y轴上的一个定点E.(1)求抛物线的解析式;(2)当⊙P的半径为时,⊙P与y轴交于M、N两点,求MN的长;(3)求定点E到直线y=kx﹣8k的距离的最大值.练习10.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,抛物线y=ax2+bx (a>0)经过A、O两点,且顶点B的纵坐标为﹣2(1)判断点B是否在直线AC上,并求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙D的优弧AO上一动点(不与A、O重合),连接AE、OE,问在抛物线上是否存在点P,使∠POA:∠AEO=2:3?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.练习11.已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G,抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O、E、F、A,①求证:DE=m﹣;②直接写出FC2的值(用a,m的代数式表示)练习13.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A.B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),求出抛物线的解析式;(4)在该抛物线上是否存在一点D点,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.例4.如图1,抛物线y=ax2+3ax(a为常数,a<0)与x轴交于O,A两点,点B 为抛物线的顶点,点D是线段OA上的一个动点,连接BD并延长与过O,A,B三点的⊙P相交于点C,过点C作⊙P的切线交x轴于点E.(1)①求点A的坐标;②求证:CE=DE;(2)如图2,连接AB,AC,BE,BO,当,∠CAE=∠OBE时,①求证:AB2=AC•BE;②求的值.练习14.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E 四点,B为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.练习15.如图,二次函数与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB⊥AC.过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N.(1)求该二次函数的关系式;(2)经过点B作直线BD,在A点右侧与x轴交于点D,与二次函数的图象交于点E,使得∠ADB=∠ABM,连接AE,求证:AE=AD;(3)若直线y=kx+1与圆A相切,请求出k的值.例5.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y 轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.练习16.如图1,已知抛物线y=﹣x2+bx+c经过点A(1,0),B(﹣5,0)两点,且与y轴交于点C.(1)求b,c的值.(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O 三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.练习17.如图1,抛物线y=+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)如图2,以AB为直径在x轴上方画半圆交y轴于点E,圆心为G,P为半圆上一动点,连接DP,点Q为PD的中点.①判断点C、D与⊙G的位置关系,并说明原因;②当点P沿半圆从点B运动到点A时,求线段AQ的最小值.练习18.如图1,二次函数y=ax2﹣3ax+b(a、b为参数,其中a<0)的图象与x 轴交于A、B两点,与y轴交于点C,顶点为D.(1)若b=﹣10a,求tan∠CBA的值(结果用含a的式子表示);(2)若△ABC是等腰三角形,直线AD与y轴交于点P,且AP:DP=2:3.求抛物线的解析式;(3)如图2,已知b=﹣4a,E、F分别是CA和CB上的动点,且EF=AB,若以EF为直径的圆经过点C,并交x轴于M、N两点,求MN的最大值.课后练习1.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是介于B、C之间的抛物线上的动点(包括B、C两点),点E是△ABP 的外接圆圆心.(1)求抛物线的解析式;(2)如图1,当P为抛物线的顶点时,求圆心E的坐标;(3)如图2,作PH⊥x轴于点H,延长PH交⊙E于点Q,当P从C点出发,沿该抛物线运动到B点,求点Q在这个运动过程中的路径长.2.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)求证:∠BDE=90°;(2)如图1,若抛物线恰好经过点B,求此时点D的坐标;(3)如图2,AC与BE交于点F.①请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;②若,求点E坐标及a的值.。

抛物线与圆的关系

抛物线与圆的关系

抛物线与圆的关系
抛物线与圆是数学中常见的几何形状,它们之间存在一些有趣的关系。

1. 抛物线与圆的相交
首先,抛物线和圆可以相交或不相交,这取决于它们的位置和形状。

当抛物线与圆相交时,它们在某个点上有公共的切线。

这个切线的切点就是抛物线和圆的交点。

2. 切线与法线
对于一个给定的抛物线和圆的交点,我们可以通过构造切线和法线来研究它们的关系。

切线是通过交点且与抛物线或圆的曲线相切的直线,而法线是与切线垂直的线。

3. 切线数量
抛物线和圆的交点数量取决于它们的位置和形状。

当抛物线完
全包含在圆内部时,抛物线与圆有两个交点,且有两条切线。

当抛
物线与圆相切于一点时,有一条切线。

而当抛物线与圆不相交时,
没有交点和切线。

4. 交点的对称性
当抛物线与圆的交点存在时,它们通常具有一种对称性。

具体
来说,对于某个交点,如果我们将其关于圆心镜像,得到的点也是
交点。

这是由于抛物线和圆具有对称性的特点。

5. 曲率
最后,我们可以比较抛物线和圆的曲率。

曲率是曲线在某一点
上的弯曲程度。

在抛物线的顶点处,曲率比在其他地方更大。

而在
圆的任意一点,曲率都相等且始终为其半径的倒数。

综上所述,抛物线和圆之间存在一些有趣的关系。

它们的位置、形状、切线和交点数量都会影响它们之间的关系。

通过研究这些关系,我们可以更深入地理解这两个几何形状的性质和相互关系。

专题62 二次函数与圆综合性问题(解析版)

专题62 二次函数与圆综合性问题(解析版)

例题精讲【例1】.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.解:(1)∵抛物线的顶点为A(0,2),∴可设抛物线的解析式为:y=ax2+2,∵抛物线经过点B(2,0),∴4a+2=0,解得:a=﹣,∴抛物线的解析式为:y=﹣x2+2;(2)证明:∵A(0,2),B(2,0),∴OA=OB=2,∴AB=2,∵OC⊥AB,∴•OA•OB=•AB•OC,∴×2×2=×2•OC,解得:OC=,∵⊙O的半径r=,∴OC是⊙O的半径,∴直线AB与⊙O相切;(3)∵点P在抛物线y=﹣x2+2上,∴可设P(x,﹣x2+2),以M,O,A,C为顶点的四边形是平行四边形时,可得:AC=OM=,CM=OA=2,∵点C是AB的中点,∴C(1,1),M(1,﹣1),设直线OM的解析式为y=kx,将点M(1,﹣1)代入,得:k=﹣1,∴直线OM的解析式为y=﹣x,∵点P在OM上,∴﹣x2+2=﹣x,解得:x1=1+,x2=1﹣,∴y1=﹣1﹣,y2=﹣1+,∴P1(1+,﹣1﹣),P2(1﹣,﹣1+),如图,当点P位于P1位置时,OP1===(1+)=+,∴P1M=OP1﹣OM=+﹣=,当点P位于P2位置时,同理可得:OP2=﹣,∴P2M=OP2﹣OM=﹣﹣=﹣2;综上所述,PM的长是或﹣2.变式训练【变1-1】.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.【例2】.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.变式训练【变2-1】.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,当△ACP是以AC为直角边的直角三角形时,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D.交OM于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.解:(1)把A(﹣2,0),B(4,0)代入y=x2+bx+c得:,解得,∴二次函数的解析式为y=x2﹣x﹣4;(2)如图:由y=x2﹣x﹣4可得C(0,﹣4),设P(x,x2﹣x﹣4),∴AC2=(﹣2﹣0)2+(0+4)2=20,CP2=x2+(x2﹣x)2,AP2=(x+2)2+(x2﹣x ﹣4)2,∵△ACP是以AC为直角边的直角三角形,∴AC2+CP2=AP2,即20+x2+(x2﹣x)2=(x+2)2+(x2﹣x﹣4)2,∴20+x2+(x2﹣x)2=x2+4x+4+(x2﹣x)2﹣8(x2﹣x)+16,解得x=0(与C重合,舍去)或x=3,∴P(3,﹣);(3)点P在运动过程中线段DE的长不变,理由如下:连接AP、BE,如图:∵=,=,∴∠APD=∠DBE,∠DAP=∠DEB,∴△ADP∽△EDB,∴=,∴DE=,设P(m,m2﹣m﹣4),则D(m,0),∵A(﹣2,0),B(4,0),C(0,﹣4),∴AD=m+2,BD=4﹣m,PD=﹣(m2﹣m﹣4)=﹣m2+m+4,∴DE===2,∴DE是定值2,∴点P在运动过程中线段DE的长不变,是定值2.1.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与坐标轴相切时,圆心P的坐标可以是(,2)或(﹣,2)或(2,1)或(﹣2,1).解:分两种情况:(1)当⊙P与x轴相切时,依题意,可设P(x,2)或P(x,﹣2).①当P的坐标是(x,2)时,将其代入y=x2﹣1,得2=x2﹣1,解得x=±,此时P(,2)或(﹣,2);②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得﹣2=x2﹣1,无解.(2)当⊙P与y轴相切时,∵⊙P的半径为2,∴当⊙P与y轴相切时,点P到y轴的距离为2,∴P点的横坐标为2或﹣2,当x=2时,代入y=x2﹣1可得y=1,当x=﹣2时,代入y=x2﹣1可得y=1,∴点P的坐标为(2,1)或(﹣2,1),综上所述,符合条件的点P的坐标是(,2)或(﹣,2)或(2,1)或(﹣2,1);故答案为:(,2)或(﹣,2)或(2,1)或(﹣2,1).2.如图1,抛物线与x轴交于O、A两点,点B为抛物线的顶点,连接OB.(1)求∠AOB的度数;(2)如图2,以点A为圆心,4为半径作⊙A,点M在⊙A上.连接OM、BM,①当△OBM是以OB为底的等腰三角形时,求点M的坐标;②如图3,取OM的中点N,连接BN,当点M在⊙A上运动时,求线段BN长度的取值范围.解:(1)令y=0,则﹣2x=0,解得:x=0或8.∴A(8,0).∴OA=8.∵y=﹣2x=﹣4,∴B(4,﹣4).过点B作BD⊥OA于点D,如图,则OD=4,BD=4,∴OD=BD,∴∠AOB=∠OBD=45°;(2)①设⊙A与x轴交于点C,则C(4,0).连接BC,如图,∵B(4,﹣4),∴BC⊥OA.∵CO=CB=4,∴△CBO是以OB为底的等腰三角形.∴点M与点C重合时,△MBO是以OB为底的等腰三角形.此时点M(4,0);过点A作AM⊥x轴,交⊙A于点M,延长MA交⊙A于点E,连接BE,过点M作MF⊥y轴于点F,如图,则M(8,4),E(8,﹣4),F(,4).∴MF=ME=8.∵B(4,﹣4),∴BE∥x轴.∴BE⊥ME,BE=4.∴∠BEM=∠MFO=90°,BE=OF=4.在△MOF和△MBE中,,∴△MOF≌△MBE(SAS).∴MO=MB.∴△MBO是以OB为底的等腰三角形.此时点M(8,4);综上,当△OBM是以OB为底的等腰三角形时,点M的坐标为(4,0)或(8,4);②设⊙A与x轴交于点C,则C(4,0).连接BC,CN,AM,如图,∵A(8,0),∴点C是OA的中点.∵N为OM的中点,∴CN是△OMA的中位线.∴CN=AM=2.当点M在⊙A上运动时,由三角形的三边的关系定理可知:BC﹣CN≤BN≤BC+CN.∵BC=4,∴4﹣2≤BN≤4+2.∴线段BN长度的取值范围为:2≤BN≤6.3.如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图1,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;(3)如图2,若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<3,△BEF的内心为I,连接CI,直接写出CI的最小值.解:(1)在y=ax2﹣2ax﹣3a(a>0)中,令y=0,得:ax2﹣2ax﹣3a=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴﹣3a=﹣3,∴a=1,∴抛物线解析式为:y=x2﹣2x﹣3.(2)设直线BC解析式为y=kx+b,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为:y=x﹣3,设M点坐标为(m,m2﹣2m﹣3),∵PM⊥x轴,∴P(m,m﹣3),∴PM=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∵OB=OC,∠BOC=90°,∴CB=OB,∴CP=m,∵△PCM沿CM对折,点P的对应点N恰好落在y轴上,∴∠PCM=∠NCM,∵PM∥y轴,∴∠NCM=∠PMC,∴∠PCM=∠PMC,∴PC=PM,∴m=﹣m2+3m,整理得:m2+(﹣3)m=0,解得:m1=0(舍去),m2=3﹣,∴当m=3﹣时,m﹣3=﹣,∴P(3﹣,﹣).(3)如图2,连接BI,OI,EI,作△OBI的外接圆⊙M,连接OM,BM,MI,CM,过M作MH⊥y轴于H,∵EF⊥x轴,∴∠BFE=90°,∴∠FBE+∠FEB=90°,∵△BEF的内心为I,∴BI,EI分别平分∠FBE,∠FEB,∴∠IBE=∠FBE,∠IEB=∠FEB,∴∠IBE+∠IEB=(∠FBE+∠FEB)=45°,∴∠BIE=135°,在△BIO和△BIE中,,∴△BIO≌△BIE(SAS),∴∠BIO=∠BIE=135°,∵⊙M是△OBI的外接圆,∴∠OMB=2×(180°﹣∠BIO)=90°,∴OM=BM=OB=,∴MI=OM=,∴∠MOB=∠MOH=45°,∵MH⊥y轴,∴∠HOM=∠HMO=45°,∴OH=HM=OM=,∴CH=OH+OC=+3=,∴CM==,∵CI≥CM﹣MI,当且仅当C、M、I三点共线时,CI取得最小值,∴CI的最小值为﹣.4.已知抛物线y=x2﹣(2m﹣1)x+4m﹣6.(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.解:(1)由题意可知:y=(x﹣2)(x﹣2m+3),因此抛物线与x轴的两个交点坐标为:(2,0)(2m﹣3,0),因此无论m取何值,抛物线总与x轴交于(2,0)点;(2)令y=0,有:x2﹣(2m﹣1)x+4m﹣6=0,则:x1+x2=2m﹣1,x1x2=4m﹣6;∵AB<6∴x2﹣x1<6,即(x2﹣x1)2<36,(x1+x2)2﹣4x1x2<36,即(2m﹣1)2﹣4(4m﹣6)<36,解得﹣<x<.①根据A、B分别在原点两侧可知:x1x2<0,即4m﹣6<0,m<.②综合①②可得﹣<m<;(3)假设存在这样的m,设圆M与y轴的切点为D,过M作x轴的垂线设垂足为E.①当C点在x轴正半轴时,x=>0,因此<m<,∵弧BC=弧CD,因此BC=CD.OC=,CD=BC=OB﹣OC=2﹣=,EC=BC=,OE=MD=OC+CE=+=.易知:OD=ME,即OD2=ME2∴CD2﹣OC2=CM2﹣CE2,()2﹣()2=()2﹣()2;解得m=,符合m的取值范围.②当C点在x轴负半轴时,x=<0,因此﹣<m<,同①可求得OC=,CD=AC=,CE=,MD=OE=.同理有:CD2﹣OC2=MC2﹣CE2()2﹣()2=()2﹣()2化简得:m2=,∴m=±,均不符合m的取值范围,因此这种情况不成立.综上所述,存在符合条件的m,且m=.5.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.解:(1)令y=0,∴x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴Δ>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,∴x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,∴y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB===,在Rt△AOF中,tan∠OAF===,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1),∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∵⊙P是△ABC的外接圆,∴点P在抛物线的对称轴上,∴点E在⊙P上,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan∠BED=,设BD=n,在Rt△BDE中,tan∠BED===,∴BE=2n,根据勾股定理得,DE==n,∴l=BD+BE+DE=(3+)n,r=DE=n,∴==.6.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M (4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S△QAB,(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN 且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).7.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,故二次函数表达式为:y=x2;(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2;∵点F(0,1),∴点P的坐标为(0,1+2)或(0,1﹣2);(3)假设二次函数的图象上存在一点E满足条件,设点Q是FN的中点,则点Q(1,1),故点E在FN的中垂线上.∴点E是FN的中垂线与y=x2图象的交点,∴y=×12=,则点E(1,),EN==,同理EF==,点E到直线y=﹣1的距离为|﹣(﹣1)|=,故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.8.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.9.已知抛物线y=ax2+bx+c过点A(0,2).若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC 有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:①当x1<x2<0时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)>0,∴y1﹣y2<0,∴当x<0时,y随x的增大而增大,当0<x1<x2时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)<0,∴y1﹣y2>0,∴当x>0时,y随x的增大而减小.∴抛物线关于y轴对称,∴b=0,∵抛物线y=ax2+bx+c过点A(0,2),∴c=2,如图,连接OB、OC,设BC y轴于点D.由对称性可知,△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC是等边三角形,∴OD=OA=1,CD=OD=,∴B(﹣,﹣1),C(,﹣1),将C点坐标代入y=ax2+2可求得a=﹣1,∴抛物线的解析式为y=﹣x2+2.②设直线OM的解析式为y=k1x,∵O、M、N三点共线,∴x1≠0,x2≠0,且=,化为x1﹣x2=,∵x1≠x2,∴x1x2=﹣2,∴,∴,设点N关于y轴的对称点为N',则N'的坐标为,∵点P是点O关于点A的对称点,∴OP﹣2OA=4,即点P的坐标为(0,4),设直线PM的解析式为y=k2x+4,∵点M的坐标为,∴,∴,∴直线PM的解析式为x+4.∵,即N'在直线PM上,∴PA平分∠MPN.10.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),△ABO 的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在(2)的条件下,在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF =4时,求点P的坐标.解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)应该是圆M与直线AD相切,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO===tanα,则sinα=,cosα=,AC=,则CD==10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=,故抛物线的表达式为:y=x2﹣3x+4,过点P作PH⊥EF,则EH=EF=2,cos∠PEH=,解得:PE=5,设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,解得x=或2,则点P(,)或(2,1).11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB,延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BDM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDM=∠CDE,∴∠ECD=∠CDE,∴CE=DE.②解:设OE=m,点D的坐标为(t,0),∵∠CAE=∠CBO,∠CAE=∠OBE,∴∠CBO=∠EBO,由角平分线成比例定理可得:,即:,∴,∴,∴,=,=.12.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点B,D的坐标分别为(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处,当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,点Q是“M”形新图象上一动点.①直接写出“M”形图象AB段的函数关系式;②是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)令y=0,则﹣x2+x﹣1=0,解得x=3或x=,∴B(3,0),A(,0),令x=0,则y=﹣1,∴C(0,﹣1),∵y=﹣x2+x﹣1=﹣(x﹣)2+,∴顶点D(,),故答案为:(3,0),(,);(2)∵E与D关于直线y=t对称,∴E(,2t﹣),设直线BC的解析式为y=kx+b,将B(3,0),C(0,﹣1)代入,得,∴,∴y=x﹣1,当x=时,y=﹣,∵E点在△ABC内(含边界),∴2t﹣≥﹣,∴t≥,∵2t﹣≤0,∴t≤,∵t<,∴t的取值范围是≤t≤;(3)①当t=0时,y=﹣x2+x﹣1关于x轴对称的函数为y=x2﹣x+1,∴“M”形图象AB段的函数关系式为y=x2﹣x+1(≤x≤3);②存在点P,理由如下:设Q点的横坐标为m,∵以CQ为直径的圆与x轴相切于点P,∴P点的横坐标为m,当m>3或m<时,Q(m,﹣m2+m﹣1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,解得m=或m=,∴P(,0)或P(,0);当≤m≤3时,Q(m,m2﹣m+1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,解得m=2或m=,∴P(,0)或P(1,0);综上所述:存在以CQ为直径的圆与x轴相切于点P,P点坐标为(,0)或(,0)或(,0)或P(1,0).13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与抛物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x1,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣x+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.14.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y 轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠DAB=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.15.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式y=x2;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.解:(1)把点(2,2)坐标代入y=ax2,解得:a=,∴抛物线的解析式为y=x2;(2)把y=x+b和y=x2得:x2﹣2x﹣2b=0,设A、C两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b,点D坐标为(,),即;D(1,1+b),B坐标为(1,),AC2=[(x2﹣x1)]2=16b+8BD=+b,∴=16;(3)设点Q坐标为(a,a2),点P的坐标为(0,2),由P、Q坐标得点M的坐标为(,a2+1),设圆的半径为r,由P(0,2)、M两点坐标可以求出r2=+(a2﹣1)2=a4﹣a2+1,设点M到直线y=t的距离为d,则d2=(a2+1﹣t)2=a4+a2+1+t2﹣2t﹣a2t,则HK=2=2,当t﹣=0时,HK为常数,t=,HK=.16.定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)如图1,已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,求△POA 周长的最小值;(3)如图2,已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD.若∠CPD=120°,求a的值.解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴PA=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+PA+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,PA,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则PA=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△PAF中,PA2=PF2+AF2,∴,即,化简,得,解得,∴.17.如图,在平面直角坐标系中,抛物线y=x2﹣bx﹣c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,∴抛物线的解析式为y=x2﹣x﹣2;(2)当x=5时,y=x2﹣x﹣2=3,故D的坐标为(5,3),令y=0,则x=4(舍去)或﹣1,故点A(﹣1,0),如图,连接BD,作BN⊥AD于N,∵A(﹣1,0),B(4,0),C(0,﹣2),∴AD=3,BD=,AB=5,==,∵S△ABD∴BN=,∴sin∠BDN===,∴∠BDN=45°,∴∠ADB=∠BDN=45°;(3)不变.如图,连接MQ,MB,∵过点B作⊙M的切线交1于点P,∴∠MBP=90°,∵∠MBO=45°,∴∠PBH=45°,∴PH=HB=2.5,∵==,==,∵∠HMQ=∠QMP,∴△HMQ∽△QMP,∴==,∴在点Q运动过程中的值不变,其值为.18.如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=,故抛物线的表达式为:y=(x﹣2)2﹣2=x2﹣2x①;(2)①点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2(舍去4﹣2);故m=2或4+2;②存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=EM=,而BD==,在△BND中,BD﹣BN≤ND≤BD+BN,即﹣0.5≤ND≤+0.5,故线段DN的长度最小值和最大值分别为﹣0.5和+0.5.19.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得,解得,,∴抛物线的解析式为:y =x 2﹣4x +3;(2)1°设直线BC 的解析式为y =mx +n (m ≠0),则,解得,,∴直线BC 的解析式为:y =﹣x +3,设M (t ,﹣t +3)(0<t <3),则N (t ,t 2﹣4t +3),∴MN =﹣t 2+3t =﹣,∴当t =时,MN 的值最大,其最大值为;2°∵△PMN 的外接圆圆心Q 在△PMN 的边上,∴△PMN 为直角三角形,由1°知,当MN 取最大值时,M (),N (),①当∠PMN =90°时,PM ∥x 轴,则P 点与M 点的纵坐标相等,∴P 点的纵坐标为,当y =时,y =x 2﹣4x +3=,解得,x =,或x =(舍去),∴P ();②当∠PNM =90°时,PN ∥x 轴,则P 点与N 点的纵坐标相等,∴P 点的纵坐标为﹣,当y =﹣时,y =x 2﹣4x +3=﹣,解得,x =,或x =(舍去),∴P (,);③当∠MPN =90°时,则MN 为△PMN 的外接圆的直径,∴△PMN的外接圆的圆心Q为MN的中点,∴Q(),半径为,过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,令y=,得y=x2﹣4x+3=,解得,x=<(舍),或x=,∴K(,),∴QK=>,即K点在以MN为直径的⊙Q外,设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),连接LK,如图②,则L到QK的距离为,LK=,设Q点到LK的距离为h,则,∴=,∴直线LK下方的抛物线与⊙Q没有公共点,∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,∴抛物线中NL部分(除N点外)与⊙Q没有公共点,∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;综上,点P的坐标为()或().20.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∴该抛物线解析式为y=﹣x2+2x+3;(2)设P(x1,y1),Q(x2,y2),令y=kx+1=﹣x2+2x+3,整理得:x2+(k﹣2)x﹣2=0,∴x1+x2=2﹣k,x1x2=﹣2①,∵△QMT的面积是△PMT面积的两倍,∴MT•(x2﹣1)=2×MT•(1﹣x1),∴2x1+x2=3,即x2=3﹣2x1②,将②代入①得:2x12﹣3x1﹣2=0,解得:x1=2或,∴或,∴k=1或,∵k<0,∴k=﹣;(3)线段EF的长为定值1,如图,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴,∴,∴EF===1,∴线段EF的长为定值1.21.如图,抛物线y=﹣x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②△BCF的面积为S,求S与m的函数关系式,并求出S的最大值.(3)现有一个以原点O为圆心,长为半径的圆沿y轴正半轴方向向上以每秒1个单位的速度运动,问几秒后⊙O与直线AC相切?解:(1)设0=﹣x2+2x+3,解得:x=﹣1或3,∵抛物线y=﹣x2+2x+3与x相交于AB(点A点B左侧),∴A(﹣1,0),B(3,0),∵抛物线与y轴相交于点C,∴C(0,3),∴抛物线的对称轴是:直线x=1.(2)①设直线BC的函数关系式为y=kx+b,把B(3,0),C(0,3)分别代入,得,解得:k=﹣1,b=3∴直线BC的函数关系式为y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1.2).当x=m时,y=﹣m+3,∴P(m,﹣m+3)在y=﹣x2+2x+3中,当x=1时,y=4,∴D(1,4).当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PF∥DE∴当PF=DE时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得m=2或m=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3.+S△CPF,∵S=S△EPF即S=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0≤m≤3)∴当m=﹣=时S最大值=;。

备战高考数学复习考点知识与题型讲解68---抛物线

备战高考数学复习考点知识与题型讲解68---抛物线

备战高考数学复习考点知识与题型讲解第68讲 抛物线考向预测核心素养抛物线的方程、几何性质及抛物线的综合问题是高考热点,综合问题难度较大.直观想象、数学抽象、数学运算一、知识梳理 1.抛物线的概念(1)定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹.(2)焦点:点F 叫做抛物线的焦点. (3)准线:直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2准线 方程 x =-p 2x =p 2y =-p 2y =p 2对称轴 x 轴y 轴顶点 (0,0)离心率e =1常用结论1.与焦点弦有关的常用结论如图,倾斜角为θ的直线AB与抛物线y2=2px(p>0)交于A,B两点,F为抛物线的焦点,设A(x1,y1),B(x2,y2).则有(1)y1y2=-p2,x1x2=p2 4.(2)焦点弦长:|AB|=x1+x2+p=2psin2θ(θ为直线AB的倾斜角).通径(过焦点垂直于对称轴的弦)长:2p.(3)焦半径:|AF|=p1-cos α,|BF|=p1+cos α,1|AF|+1|BF|=2p.(4)以弦AB为直径的圆与准线相切;以AF或BF为直径的圆与y轴相切.2.若A,B为抛物线y2=2px(p>0)上两点,且OA⊥OB,则直线AB过定点(2p,0).二、教材衍化1.(人A选择性必修第一册P133练习T3(2)改编)抛物线y2=12x上与焦点的距离等于6的点的坐标是________.答案:(3,±6)2.(人A选择性必修第一册P136练习T4改编)已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=________.解析:设点A的横坐标是x1,则依题意有焦点F(1,0),|AF|=x1+1=2,则x1=1.因为AF所在直线过点F,所以直线AF的方程是x=1,此时弦AB为抛物线的通径,故|BF|=|AF|=2.答案:2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.() (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.() (3)若一抛物线过点P (-4,3),则其标准方程可写为y 2=2px (p >0).() (4)抛物线x 2=-2ay (a >0)的通径长为2a .() 答案:(1)×(2)×(3)×(4)√ 二、易错纠偏1.(多选)(忽视焦点的位置致误)顶点在原点,且过点P (-2,3)的抛物线的标准方程是()A .y 2=-92xB.y 2=92xC .x 2=43yD.x 2=-43y解析:选AC.设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 2.(忽视抛物线的开口方向致误)若抛物线y =ax 2的准线方程是y =2,则a 的值是________.解析:把抛物线方程y =ax 2化为标准形式得x 2=1a y ,所以-14a =2,解得a =-18.答案:-183.(忽视方程多解致误)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析:设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2.答案:2考点一 抛物线的定义和标准方程(自主练透)复习指导:1.了解抛物线的定义、标准方程、掌握各种形式下抛物线的图形. 2.理解参数p 的几何意义.1.(2021·新高考卷Ⅱ)若抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =() A .1 B.2 C.2 2D.4解析:选B.抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x3.在平面直角坐标系xOy 中,有一定点A (2,1).若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.解析:线段OA 的垂直平分线方程是y =-2x +52,且交x 轴于点⎝ ⎛⎭⎪⎫54,0,该点为抛物线y 2=2px (p >0)的焦点,故该抛物线的准线方程为x =-54.答案:x =-54抛物线的定义及标准方程应用关键点(1)由抛物线定义,抛物线上的点到焦点的距离和到准线的距离可相互转化.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.考点二 抛物线的几何性质(多维探究)复习指导:理解应用抛物线的简单几何性质. 角度1 焦半径和焦点弦(1)(2022·河北衡水三模)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若A ,B ,C 三点坐标分别为(1,2),(x 1,y 1),(x 2,y 2),且||+||+||=10,则x 1+x 2=()A .6 B.5 C.4D.3(2)(链接常用结论1(2))设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为()A.334B.938C.6332D.94【解析】 (1)根据抛物线的定义,知||,||,||分别等于点A ,B ,C 到准线x =-1的距离,所以由||+||+||=10,可得2+x 1+1+x 2+1=10,即x 1+x 2=6.故选A.(2)由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.方法一:联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 则y A +y B =33,y A y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB=12|OF||y A-y B|=12×34×6=94.方法二:联立直线方程与抛物线方程得x2-212x+916=0,故x A+x B=212.根据抛物线的定义有|AB|=x A+x B+p=212+32=12,同时原点到直线AB的距离为d=|-3|42+(-43)2=38,因此S△OAB=12|AB|·d=94.【答案】(1)A(2)D角度2 与抛物线有关的最值设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】 41.若本例条件不变,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是________.解析:由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离,所以点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为焦点F(1,0)到直线3x+4y+7=0的距离,即|3+7|32+42=2.答案:22.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部,F(1,0).因为|PB|+|PF|的最小值即为B,F两点间的距离,所以|PB|+|PF|≥|BF|=(3-1)2+(4-0)2=25,即|PB|+|PF|的最小值为2 5.抛物线的性质及应用要点(1)由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.(2)与抛物线有关的最值问题的两个转化策略转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,“三角形两边之和大于第三边”,使问题得以解决.转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.|跟踪训练|1.已知点Q(22,0)及抛物线y=x24上的动点P(x,y),则y+|PQ|的最小值是()A.2 B.3 C.4 D.2 2 解析:选A.因为抛物线的方程为x 2=4y , 所以焦点为F (0,1),准线方程为y =-1, 所以抛物线上的动点P (x ,y )到准线的距离为y -(-1)=y +1,由抛物线的定义可得|PF |=y +1,又因为Q (22,0),所以y +|PQ |=y +1+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=(22-0)2+(0-1)2-1=3-1=2, 当且仅当F ,P ,Q 三点共线时取等号.2.(2022·沈阳质量检测)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝ ⎛⎭⎪⎫32a ,12a ,因为点A 在抛物线y 2=3x 上,所以14a 2=3×32a ,所以a =6 3.答案:6 3考点三 直线与抛物线(综合研析)复习指导:了解圆锥曲线的简单应用,了解抛物线的实际背景.(2021·高考全国卷乙)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足=9,求直线OQ 斜率的最大值. 【解】 (1)由抛物线的定义可知,焦点F 到准线的距离为p ,故p =2,所以C 的方程为y 2=4x .(2)由(1)知F (1,0),设P (x 1,y 1),Q (x 2,y 2), 则=(x 2-x 1,y 2-y 1),=(1-x 2,-y 2), 因为=9,所以⎩⎨⎧x 2-x 1=9(1-x 2),y 2-y 1=-9y 2,可得⎩⎨⎧x 1=10x 2-9,y 1=10y 2,又点P 在抛物线C 上,所以y 21=4x 1,即(10y 2)2=4(10x 2-9),化简得y 22=25x 2-925,则点Q 的轨迹方程为y 2=25x -925.设直线OQ 的方程为y =kx ,易知当直线OQ 与曲线y 2=25x -925相切时,斜率可以取最大,联立y =kx 与y 2=25x -925并化简,得k 2x 2-25x +925=0,令Δ=(-25)2-4k 2·925=0,解得k =±13,所以直线OQ 斜率的最大值为13.解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[注意]涉及弦的中点、斜率时,一般用“点差法”求解.|跟踪训练|1.直线y=x+b交抛物线y=12x2于A,B两点,O为抛物线顶点,OA⊥OB,则b的值为()A.-1 B.0C.1D.2解析:选D.设A(x1,y1),B(x2,y2),将y=x+b代入y=12x2,化简可得x2-2x-2b=0,故x1+x2=2,x1x2=-2b,所以y1y2=x1x2+b(x1+x2)+b2=b2.又OA⊥OB,所以x1x2+y1y2=0,即-2b+b2=0,则b=2或b=0,经检验b=0时,不符合题意,故b=2.2.(多选)(2022·广东省广雅中学月考)已知O为坐标原点,M(2,2),P,Q是抛物线C:y2=2px上两点,F为其焦点,若F到准线的距离为2,则下列说法正确的有() A.△PMF周长的最小值为2 5B.若=λ,则||PQ最小值为4C.若直线PQ过点F,则直线OP,OQ的斜率之积恒为-2D.若△POF外接圆与抛物线C的准线相切,则该圆面积为9π4解析:选BD.因为F到准线的距离为2,所以p=2,所以抛物线C:y2=4x,F(1,0),|MF|=(2-1)2+(2-0)2=5,准线l:x=-1,对于A,过P作PN⊥l,垂足为N,则|PF|+|PM|=|PN|+|PM|≥|MN|=2+1=3,所以△PMF周长的最小值为3+5,故A不正确;对于B ,若=λ,则弦PQ 过F ,过P 作l 的垂线,垂足为P ′,过Q 作l 的垂线,垂足为Q ′,设PQ 的中点为G ,过G 作GG ′⊥l ,垂足为G ′,则|PQ |=|PF |+|QF |=|PP ′|+|QQ ′|=2|GG ′|≥2×2=4,即||PQ 最小值为4,故B 正确;对于C ,若直线PQ 过点F ,设直线PQ :x =my +1, 联立⎩⎨⎧x =my +1,y 2=4x ,消去x 得y 2-4my -4=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,所以k OP ·k OQ =y 1x 1·y 2x 2=4y 1·4y 2=16-4=-4,故C 不正确;对于D ,因为OF 为外接圆的弦,所以圆心的横坐标为12,因为△POF 外接圆与抛物线C 的准线相切,所以圆的半径为1+12=32,所以该圆面积为π(32)2=94π,故D 正确.3.设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:不妨设点A 在第一象限.由题意得图,其中AB 垂直于抛物线的准线l .则|FC |=3p ,所以|AF|=|AB|=|CF| 2=32p,则A(p,2p).易证△EFC∽△EAB,所以|EF||EA|=|CF||AB|=|CF||AF|=2,所以|EA||AF|=13,所以S△ACE=13S△AFC=13×12×3p×2p=22p2=32,所以p= 6.答案: 6[A 基础达标]1.(2022·荆州市检测)过点A(3,0)且与y轴相切的圆的圆心的轨迹为()A.圆 B.椭圆C.直线D.抛物线解析:选D.如图,设P为满足条件的一点,不难得出结论:点P到点A的距离|PA|等于点P到y轴的距离|PB|,故点P在以点A为焦点,y轴为准线的抛物线上,故点P的轨迹为抛物线.2.已知点P(2,y)在抛物线y2=4x上,则点P到抛物线焦点F的距离为()A.2 B.3C. 3D. 2解析:选B.因为抛物线y2=4x的焦点为(1,0),准线为x=-1,结合定义点P到抛物线焦点的距离等于它到准线的距离,为3.3.(2022·哈尔滨六中期末)过抛物线x 2=4y 的焦点F 作直线l 交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=()A .5 B.6 C.8D.10解析:选C.抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线l 与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|=y 1+y 2+2=8.4.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2 B.4 C.6 D.8解析:选B.如图,不妨设抛物线C :y 2=2px (p >0),A (x 1,22),则x 1=(22)22p =4p,由题意知|OA |=|OD |,所以⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.5.(2020·高考全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.⎝ ⎛⎭⎪⎫14,0 B.⎝ ⎛⎭⎪⎫12,0 C .(1,0)D.(2,0)解析:选B.将直线方程与抛物线方程联立,可得y =±2p ,不妨设D (2,2p ),E (2,-2p ),由OD ⊥OE ,可得·=4-4p =0,解得p =1,所以抛物线C 的方程为y 2=2x ,其焦点坐标为⎝ ⎛⎭⎪⎫12,0.6.已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F 与l 相切,则抛物线的方程为________.解析:因为半径为3的圆与抛物线的准线l 相切, 所以圆心到准线的距离等于3,又因为圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x7.(2021·新高考卷Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________.解析:通解(解直角三角形法):由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p2p =p 6,解得p =3,所以C 的准线方程为x =-32. 光速解(应用射影定理法):由题易得|OF |=p2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32. 答案:x =-328.(2022·山东模拟)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =________,1|AF |+1|BF |=________.解析:由题意知p2=1,从而p =2,所以抛物线方程为y 2=4x .当直线AB 的斜率不存在时,将x =1代入抛物线方程, 解得|AF |=|BF |=2,从而1|AF |+1|BF |=1.当直线AB 的斜率存在时,设AB 的方程为y =k (x -1), 联立⎩⎨⎧y =k (x -1),y 2=4x ,整理,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2k 2+4k 2,x 1x 2=1,从而1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1.综上,1|AF |+1|BF |=1.答案:219.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=45,所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x . 10.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p2.由|AF |=3,得2+p2=3,解得p =2.所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆,必与直线GB 相切.[B 综合应用]11.(2022·陕西省咸阳市质检)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是()A.72B.3C.52D.2解析:选C.如图,抛物线的准线方程为x =-12,过点Q 作QQ ′垂直准线于点Q ′,|MQ |-|QF |=|MQ |-|QQ ′|,显然当MQ ∥x 轴时,|MQ |-|QF |取得最小值,此时|MQ |-|QF |=|2+3|-⎪⎪⎪⎪⎪⎪2+12=52.12.(多选)(2022·盐城市阜宁中学高二检测)已知抛物线C :y 2=4x 的焦点为F ,点P 在抛物线的准线上,线段PF 与抛物线交于点M ,则下列判断正确的是()A .△OMF 不可能是等边三角形B .△OMF 可能是等腰直角三角形 C.|PF ||PM |=1+2|PF |D.|PF ||MF |-|PF |=1 解析:选AC.若△OMF 是等边三角形,则边长为1,且点M 的横坐标为12,纵坐标为±2,此时|OM |=14+2=32≠1,所以△OMF 不可能是等边三角形,故A 正确;若△OMF 是等腰直角三角形,则只可能是∠OMF =90°,|OM |=|FM |=32,所以|OM |2+|FM |2≠|OF |2,故B 不正确;过点M 作准线的垂线交准线于点N ,则|MF |=|MN |,|PF ||PM |=|PM |+|MF ||PM |=1+|MF ||PM |=1+|MN ||PM |=1+2|PF |,故C 正确,D 不正确. 13.(多选)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直于l 且交l 于点Q ,M ,N 分别为PQ ,PF 的中点,MN 与x 轴相交于点R ,若∠NRF =60°,则()A .∠FQP =60° B.|QM |=1 C .|FP |=4 D.|FR |=2解析:选ACD.如图,连接FQ ,FM ,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥FQ ,又PQ ∥x 轴,∠NRF =60°,所以∠FQP =60°,由抛物线的定义知,|PQ |=|PF |,所以△FQP 为等边三角形,则FM ⊥PQ ,|QM |=2,等边三角形FQP 的边长为4,|FP |=|PQ |=4,|FN |=12|PF |=2,则△FRN 为等边三角形,所以|FR |=2.故选ACD.14.(2022·江苏省如皋市高三调研)已知抛物线C :y 2=4x 的焦点为F ,过F 的直线交抛物线C 于A ,B 两点,以AF 为直径的圆过点()0,2,则直线AB 的斜率为________.解析:由抛物线C :y 2=4x 可得焦点为F ()1,0,设A ()x 1,y 1, 由抛物线的定义可得||AF =x 1+p2=x 1+1,AF 的中点为⎝⎛⎭⎪⎫x 1+12,y 12, 所以AF 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -x 1+122+⎝ ⎛⎭⎪⎫y -y 122=⎝ ⎛⎭⎪⎫x 1+122, 因为以AF 为直径的圆过点()0,2,所以⎝ ⎛⎭⎪⎫0-x 1+122+⎝ ⎛⎭⎪⎫2-y 122=⎝ ⎛⎭⎪⎫x 1+122,可得y 1=4,所以x 1=4, 所以点A ()4,4,所以直线AB 的斜率为4-04-1=43.答案:43[C 素养提升]15.(2022·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、y 轴交于M ,N 两点,点A (2,-4),且=λ+μ,则λ+μ的最小值为________.解析:由题意得M (2,0),N (0,-4),设P (x ,y ),由=λ+μ得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74. 答案:7416.(2021·高考全国卷甲)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切.(1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.解:(1)由题意,直线x =1与C 交于P ,Q 两点,且OP ⊥OQ ,设C 的焦点为F ,P 在第一象限,则根据抛物线的对称性,∠POF =∠QOF =45°, 所以P (1,1),Q (1,-1).设C 的方程为y 2=2px (p >0),则1=2p ,p =12,所以C 的方程为y 2=x .由题意,圆心M (2,0)到l 的距离即⊙M 的半径,且距离为1,所以⊙M 的方程为(x -2)2+y 2=1.(2)设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),当A 1,A 2,A 3中有一个为坐标原点,另外两个点的横坐标均为3时,A 1A 2,A 1A 3均与⊙M 相切,此时直线A 2A 3与⊙M 相切.当x 1≠x 2≠x 3时,直线A 1A 2:x -(y 1+y 2)y +y 1y 2=0, 则|2+y 1y 2|(y 1+y 2)2+1=1,即(y 21-1)y 22+2y 1y 2+3-y 21=0, 同理可得(y 21-1)y 23+2y 1y 3+3-y 21=0,所以y 2,y 3是方程(y 21-1)y 2+2y 1y +3-y 21=0的两个根,则y 2+y 3=-2y 1y 21-1,y 2y 3=3-y 21y 21-1.直线A2A3的方程为x-(y2+y3)y+y2y3=0,设M到直线A2A3的距离为d(d>0),则d2=(2+y2y3)2==1,1+(y2+y3)2即d=1,所以直线A2A3与⊙M相切.综上可得,直线A2A3与⊙M相切.21 / 21。

抛物线与圆综合题

抛物线与圆综合题

抛物线与圆综合题徐州王黎之1.(2016赤峰)在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点 A,C 的直线解析式和过点 A,B,C 的抛物线的解析式;(2)求过点 A,B 及抛物线的顶点 D 的⊙P的圆心 P 的坐标;(3)在抛物线上是否存在点 Q,使 AQ 与⊙P相切,若存在请求出 Q 点坐标.2.(2015 • 陕西)如图,在直角坐标系中,⊙ C 过原点 O,交 x 轴于点 A(2,0),交y 轴于点 B(0,2 √3).(1)求圆心的坐标;(2)抛物线 y=ax 2 +bx+c 过 O、A 两点,且顶点在正3.(2016 宿迁)如图,在平面直角坐标系 xOy 中,将二次函数 y=x2﹣1 的图象 M 沿 x 轴翻折,把所得到的图象向右平移 2 个单位长度后再向上平移 8 个单位长度,得到二次函数图象N.(1)求 N 的函数表达式;(2)设点 P(m,n)是以点 C(1,4)为圆心、1 为半径的圆上一动点,二次函数的图象 M 与x 轴相交于两点 A、B,求PA2+PB2 的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求 M 与N 所围成封闭图形内(包括边界)整点的个数.比例函数y=- x 的图象上,求抛物线的解析式;3(3)过圆心 C 作平行于 x 轴的直线 DE ,交⊙C 于 D、E 两点,试判断 D、E 两点是否在(2)中的抛物线上;(4)若(2)中的抛物线上存在点 P(x0 ,y),满足∠ APB 为钝角,求 x0 的取值范围.34、已知抛物线 y = ax2+bx +3 ( a ≠0 )经过 A ( 3 , 0 ), B ( 4 , 1 )两点,且与 y 轴交于点 C .(1 )求抛物线 y = ax2+bx +3( a ≠0 )的函数关系式及点 C 的坐标;(2 )如图1 ,连接 AB ,在题( 1 )中的抛物线上是否存在点 P ,使△ PAB 是以 AB 为直角边的直角三角形? 若存在,求出点 P 的坐标;若不存在,请说明理由;(3 )如图2 ,连接 AC , E 为线段 AC 上任意一点(不与A , C 重合),经过 A , E , O 三点的圆交直线 AB 于点 F , 当△ OEF的面积取得最小值时,求点 E 的坐标.5.抛物线 y=ax2+bx+c 交x 轴于A、B 两点,交 y 轴于点 C,已知抛物线的对称轴为 x=1,B(3,0),C(0,-3),(1)求二次函数 y=ax2+bx+c 的解析式;(2)在抛物线对称轴上是否存在一点 P,使点 P 到 B、C 两点距离之差最大?若存在,求出 P 点坐标;若不存在,请说明理由;(3)平行于 x 轴的一条直线交抛物线于 M、N 两点,若以 M N 为直径的圆恰好与 x 轴相切,求此圆的半径。

人教A版高中同步学考数学选修1精品课件 第二章 习题课——抛物线的综合问题

人教A版高中同步学考数学选修1精品课件 第二章 习题课——抛物线的综合问题

= (-4) + 2,
2 = ,
消去 y,整理得,
k2x2+(-8k2+4k-1)x+16k2-16k+4=0.
因为 A(4,2),B(xB,yB)是上述方程的解,
由方程组
16 2 -16+4
所以 4·xB=
2
4 2 -4+1
,得 xB=
2
,
课堂篇探究学习
探究一
探究二
探究三
消去
y
可得
x
1 2
2 = 4,
12
于是 y1y2=
4
22
( 1 2 )2
4
16
· =
=1,即 y1y2 为定值.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
利用抛物线的定义解决计算问题
例1已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)
到焦点的距离等于5,求抛物线的方程和m的值.
(
16
答案:2 2
课前篇自主预习
【做一做5】 已知抛物线x2=4y,经过其焦点F的直线与抛物线相交
于A(x1,y1),B(x2,y2)两点,求证:y1y2为定值.
证明:抛物线x2=4y的焦点F(0,1),
由题易知直线AB的斜率存在,设其为k,则直线AB的方程为y-1=kx.

-1 = ,
2-4kx-4=0,由根与系数的关系可得 x x =-4,
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
(2)设 A(x3,y3),B(x4,y4),由抛物线的定义,

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。

P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。

求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。

【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。

〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。

专题复习:抛物线与圆的综合探究

专题复习:抛物线与圆的综合探究
求证:①△AOC是等腰三角形; ②直线l1是⊙P的切线;
课堂总结
抛物线与圆综合探究题,综合性强,难度较大, 通常都作为“压轴题”,解此类题通常需要熟练掌 握抛物线与圆相关的基本知识和基本技能(切线的 性质与判定、切线长定理、点、线、圆的位置关系 等),求解时注意运用有关性质,进行综合分析, 探究解题思路。
方法3:(利用斜率)
设直线F1M的斜率为 K1 ,直线FN1的斜率为 K2;
2
2
K1 x1 , K2 x2
K1
K2

4 x1x2
1
M1F FN1
∴△M1FN1是直角三角形.
方法4:(利用平分角)
中考模拟 (2015长沙模拟卷六T26)
如图,已知抛物线 y ax2 bx c(a 0)的顶点为(0, 1),且与x轴两 个交点之间的距离为4,直线l1经过点(0, 2)且与x轴平行,直线l2经过 原点且交抛物线于点A和点B(点A在y轴的右侧,点B在y轴的左侧). (1)求抛物线的解析式; (2ቤተ መጻሕፍቲ ባይዱ过点A作AC⊥l1于点C,连接OC,以AB为直径作⊙P,
挑战中考
如图所示,过点F(0,1)的直线y=kx+b与抛物线 交于M(x1,y1)
和N(x2,y2)两点(其中x1<0,x2>0).
1 -4 (1)填空:b=_______.x1•x2=_____________ ;
(2)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,
判断△M1FN1的形状,并证明你的结论.
M1F 2 FN12 M1N12
M1FN1 90
∴△M1FN1是直角三角形.
方法2(利用相似)
设M1N1交y轴于F1 ∵ M(x1,y1)和N(x2,y2) , ∴ F1M1•F1N1=-x1•x2=4, ∵FF1=2, ∴F1M1•F1N1=F1F2, 又∵∠M1F1F=∠FF1N1=90°, ∴ Rt△M1FF1∽Rt△N1FF1, ∴ ∠M1FF1=∠FN1F1, ∴∠M1FN1=∠M1FF1+∠F1FN1=∠FN1F1+∠F1FN1=90°, ∴△M1FN1是直角三角形

二次函数压轴题(与圆综合问题)

二次函数压轴题(与圆综合问题)

二次函数压轴题(与圆综合问题)【典例分析】例1 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C 三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.思路点拨(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b 取何值,点D的坐标均不改变.满分解答(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴42064804a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得14324abc⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩.学#科网∴抛物线的解析式为y=14x2-32x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴804m nn+=⎧⎨=⎩,学&科网解得124mn⎧=-⎪⎨⎪=⎩,(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.考点:圆的综合题例2已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB 于点F,当△OEF的面积取得最小值时,求点E的坐标.思路点拨(1)用待定系数法求解;(2) 假设存在,分两种情况讨论(3)根据面积公式,列出二次函数,求函数的最值.满分解答(1)将A(3,0),B(4,1)代人得∴∴∴C(0,3) 学科@网②当∠ABP=90O时,过B作BP∥AC,BP交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC的函数关系式为将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为由,得又B(4,1),∴P2(-1,6).综上所述,存在两点P1(0,3), P2(-1,6).(3)∵∠OAE=∠OAF=45O,而∠OEF=∠OAF=45O, ∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF,∠EOF=90O∵点E在线段AC上,∴设E∴=∴===∴当时,取最小值,此时,∴例3如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求D点的坐标和圆D的半径;(2)求sin∠ACB的值和经过C、A、B三点的抛物线对应的函数表达式;(3)设抛物线的顶点为F,证明直线AF与圆D相切.思路点拨(1)连接CD,过点D作DE⊥AB,垂足为E,连接AD.依据垂径定理可知AE=3,然后依据切线的性质可知CD⊥y轴,然后可证明四边形OCDE为矩形,则DE=4,然后依据勾股定理可求得AD的长,故此可求得⊙D的半径和点D的坐标;学科.网(2)先求得A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入可求得a 的值.根据三角形面积公式得:S△ABC=BC×AC sin∠ACB=AB×CO,代入计算即可;(3)求得抛物线的顶点F的坐标,然后求得DF和AF的长,依据勾股定理的逆定理可证明△DAF为直角三角形,则∠DAF=90°,故此AF是⊙D的切线.满分解答(2)如图1所示:∵D(5,4),∴E(5,0),∴A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入得:16a=4,解得:a,∴抛物线的解析式为y x 2x +4.∵S △ABC =BC ×AC sin ∠ACB =AB ×CO ,∴sin ∠ACB ==.例4如图,已知二次函数()22y x m 4m =--(m >0)的图象与x 轴交于A 、B 两点.(1)写出A 、B 两点的坐标(坐标用m 表示);(2)若二次函数图象的顶点P 在以AB 为直径的圆上,求二次函数的解析式; (3)设以AB 为直径的⊙M 与y 轴交于C 、D 两点,求CD 的长. 思路点拨(1)解关于x 的一元二次方程()22x m 4m 0--=,求出x 的值,即可得到A 、B 两点的坐标。

抛物线的简单几何性质(综合)

抛物线的简单几何性质(综合)

外切
总结词
当抛物线的焦点在圆外,且圆心在抛物线上 时,抛物线与圆相切于两点,即外切。
详细描述
外切的情况发生在抛物线的焦点位于圆心所 在直线的另一侧时。此时,圆心到抛物线准 线的距离等于圆的半径,因此抛物线与圆相 切于两点。
相交
总结词
当抛物线的焦点在圆内或圆在抛物线上时, 抛物线与圆有两个交点,即相交。
抛物线的简单几何性质(综合)
目 录
• 抛物线的定义与基本性质 • 抛物线的对称性 • 抛物线的几何变换 • 抛物线与直线的交点 • 抛物线与圆的位置关系 • 抛物线的实际应用
01 抛物线的定义与Байду номын сангаас本性质
定义
01
抛物线是一种二次曲线,其方程为 $y = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a neq 0$。
关于原点的对称性
总结词
抛物线关于原点的对称性表现为,将抛物线绕原点旋转180度,其形状和位置 保持不变。
详细描述
当抛物线绕原点旋转180度时,抛物线的开口方向发生改变,顶点的位置也发生 改变,但抛物线的形状和位置保持不变,即关于原点对称。
03 抛物线的几何变换
平移
总结词
平移不改变抛物线的形状和开口方向,只是沿垂直或水平方向移动抛物线。
联立方程法
将抛物线的方程与直线的 方程联立,解出交点的坐 标。
判别式法
利用二次方程的判别式来 判断直线与抛物线是否有 交点,以及交点的个数。
参数方程法
利用抛物线的参数方程, 将参数表示为交点的坐标。
交点与弦长
弦长公式
根据抛物线与直线的交点坐标,利用弦长公式计算弦长。

抛物线和圆的关系

抛物线和圆的关系

抛物线和圆的关系
抛物线和圆是几何学中两个重要的图形,它们之间存在着一定的关系。

在平面直角坐标系中,抛物线的标准方程为y=ax^2+b,其中a 和b为常数,a决定了抛物线的开口方向和大小,b则决定了抛物线
的位置。

圆的标准方程为(x-h)^2+(y-k)^2=r^2,其中(h,k)为圆心坐标,r为半径。

将抛物线的方程中的x代入圆的方程中,得到
(x-h)^2+(ax^2+b-k)^2=r^2。

这是一个二次方程,可以解出x的值,进而得到与抛物线相交的点的坐标。

通过对解出的x值进行分析,可以得到以下结论:
1.当抛物线和圆相切时,只有一个交点,此时抛物线的顶点和圆心重合。

2.当抛物线和圆相交但不相切时,有两个交点。

3.当抛物线完全包含在圆内时,没有交点。

4.当抛物线和圆没有交点时,它们之间没有关系。

因此,抛物线和圆之间的关系主要取决于它们的位置和大小关系。

在实际应用中,这种关系可以被用于解决许多几何问题,例如确定抛物线的顶点位置、确定圆形障碍物的半径和位置等。

- 1 -。

抛物线与圆的结合

抛物线与圆的结合

拔高专题抛物线与圆的综合二、拔高精讲精练探究点一:抛物线、圆和直线相切的问题例1: 如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x 轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(2,0),B(8,0),C (0,4);(2)设经过A,B两点的抛物线解析式为y=14(x-5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.(1)解:连接MC、MA,如图1所示:∵⊙M与y轴相切于点C,∴MC⊥y轴,∵M(5,4),∴MC=MA=5,OC=MD=4,∴C(0,4),∵MD⊥AB,∴DA=DB,∠MDA=90°,∴=3,∴BD=3,∴OA=5-3=2,OB=5+3=8,∴A(2,0),B(8,0);(2)证明:把点A(2,0)代入抛物线y=14(x-5)2+k,得:k=-94,∴E(5,-94),∴DE=94,∴ME=MD+DE=4+94=254,EA2=32+(94)2=22516,∵MA2+EA2=52+22516=22516,ME2=225 16,∴MA2+EA2=ME2,∴∠MAE=90°,即EA⊥MA,∴EA与⊙M相切;(3)解:存在;点P坐标为(5,4),或(5,或(5,;理由如下:由勾股定理得:PB=PC时,点P 在BC的垂直平分线上,点P与M重合,∴P(5,4);②当如图2所示:∵,∴P(5);③当PC=BC=4时,连接MC,如图3所示:则∠PMC=90°,根据勾股定理得:∴P(5,;综上所述:存在点P,且点P在x轴的上方,使△PBC是等腰三角形,点P的坐标为(5,4),或(5),或(5,.【变式训练】如图,已知抛物线y=-12(x2-7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x-h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N 的切线.(1)解:∵y=-12(x2-7x+6)=-12(x2-7x)-3=-12(x-72)2+258,∴抛物线的解析式化为顶点式为:y=-12(x-72)2+258,顶点M的坐标是(72,258);(2)解:∵y=-12(x2-7x+6),∴当y=0时,-12(x2-7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=-3,∴C(0,-3).连接BC,则BC与对称轴x=72的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC的解析式为y=kx+b,∵B(6,0),C(0,-3),∴603k bb⎨⎩+-⎧==,解得231kb-⎧⎪⎨⎪⎩==,∴直线BC的解析式为:y=12x-3,令x=72,得y=12×7 2-3=-54,∴R点坐标为(72,-54);(3)证明:设点P坐标为(x,-12x2+72x-3).∵A(1,0),B(6,0),∴N(72,0),∴以AB为直径的⊙N的半径为12AB=52,∴NP=52,即(x-72)2+(-12x2+72x-3)2=(52)2,化简整理得,x4-14x3+65x2-112x+60=0,(x-1)(x-2)(x-5)(x-6)=0,解得x1=1(与A 重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(72,258),N(72,0),∴PM2=(2-72)2+(2-258)2=22564,PN2=(2-72)2+22=254=40064,MN2=(258)2=62564,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.。

(精校版)抛物线知识点归纳总结与经典习题

(精校版)抛物线知识点归纳总结与经典习题

(直打版)抛物线知识点归纳总结与经典习题(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)抛物线知识点归纳总结与经典习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)抛物线知识点归纳总结与经典习题(word版可编辑修改)的全部内容。

直线,抛物线, ,得:
抛物线,

点的横坐标相同即为为抛物线上一点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拔高专题抛物线与圆的综合常见模型思考圆与抛物线以及与坐标系相交,根据抛物线的解析式可求交点坐标,根据交点可求三角形的边长,由于圆的位置不同,三角形的形状也不同。

再根据三角形的形状,再解决其它问题。

二、拔高精讲精练探究点一:抛物线、圆和直线相切的问题例1: (2015•崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(2,0),B(8,0),C (0,4);(2)设经过A,B两点的抛物线解析式为y=14(x-5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC 是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.(1)解:连接MC、MA,如图1所示:∵⊙M与y轴相切于点C,∴MC⊥y轴,∵M(5,4),∴MC=MA=5,OC=MD=4,∴C(0,4),∵MD⊥AB,∴DA=DB,∠MDA=90°,∴,∴BD=3,∴OA=5-3=2,OB=5+3=8,∴A(2,0),B(8,0);(2)证明:把点A(2,0)代入抛物线y=14(x-5)2+k,得:k=-94,∴E(5,-94),∴DE=94,∴ME=MD+DE=4+94=254,EA2=32+(94)2=22516,∵MA2+EA2=52+22516=22516,ME2=225 16,∴MA2+EA2=ME2,∴∠MAE=90°,即EA⊥MA,∴EA与⊙M相切;(3)解:存在;点P坐标为(5,4),或(5),或(5,;理由如下:由勾股定理得:PB=PC 时,点P在BC的垂直平分线上,点P与M重合,∴P(5,4);②当2所示:∵P(5;③当MC,如图3所示:则∠PMC=90°,根据勾股定理得:∴P(5,;综上所述:存在点P,且点P在x轴的上方,使△PBC 是等腰三角形,点P的坐标为(5,4),或(5,或(5,.【变式训练】(2015•柳州)如图,已知抛物线y=-12(x2-7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x-h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.(1)解:∵y=-12(x2-7x+6)=-12(x2-7x)-3=-12(x-72)2+258,∴抛物线的解析式化为顶点式为:y=-12(x-72)2+258,顶点M的坐标是(72,258);(2)解:∵y=-12(x2-7x+6),∴当y=0时,-12(x2-7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=-3,∴C(0,-3).连接BC,则BC与对称轴x=72的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC的解析式为y=kx+b,∵B(6,0),C(0,-3),∴603k bb⎨⎩+-⎧==,解得231kb-⎧⎪⎨⎪⎩==,∴直线BC的解析式为:y=12x-3,令x=72,得y=12×72-3=-54,∴R点坐标为(72,-54);(3)证明:设点P坐标为(x,-12x2+72x-3).∵A(1,0),B(6,0),∴N(72,0),∴以AB为直径的⊙N的半径为12AB=52,∴NP=52,即(x-72)2+(-12x2+72x-3)2=(52)2,化简整理得,x4-14x3+65x2-112x+60=0,(x-1)(x-2)(x-5)(x-6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(72,258),N(72,0),∴PM2=(2-72)2+(2-258)2=22564,PN2=(2-72)2+22=254=40064,MN2=(258)2=62564,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.【教师总结】本题是二次函数综合题目,考查了坐标与图形性质、垂径定理、二次函数解析式的求法、勾股定理、勾股定理的逆定理、切线的判定、等腰三角形的性质等知识;综合性强.探究点二:抛物线、圆和三角形的最值问题例2:(2015•茂名)如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),D(-8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标。

解:(1)设抛物线的解析式为:y=ax2+bx+c,把B(0,4),C(-2,0),D(-8,0)代入得:40420648ca b ca b c ⎧⎪⎨⎪-+⎩-+===,解得41452a b c ⎧⎪⎪⎪⎨⎪⎪⎪⎩===.∴经过B ,C ,D 三点的 抛物线的 函数表达式为:y=14x 2+52x+4;(2)∵y=14x 2+52x+4=14(x+5)2-94,∴E (-5,-94),设直线CE 的 函数解析式为y=mx+n ,直线CE 与y 轴交于点G ,则05429m n m n ⎧⎪⎨⎪-+⎩-+-==,解得:3432m n ⎧⎪⎪⎨⎪⎪⎩==,∴y=34x+32,在y=34x+32中,令x=0,y=32,∴G (0,32), 如图1,连接AB ,AC ,AG ,则BG=OB-OG=4-32=52,52,∴BG=CG ,AB=AC ,在△ABG 与△ACG 中,AB AC BG CG AG AG ⎧⎪⎨⎪⎩===,∴△ABG ≌△ACG ,∴∠ACG=∠ABG ,∵⊙A与y 轴相切于点B (0,4),∴∠ABG=90°,∴∠ACG=∠ABG=90°∵点C 在⊙A 上,∴直线CE 与⊙A 相切;(3)存在点F ,使△BDF 面积最大, 如图2连接BD ,BF ,DF ,设F (t ,14t 2+52t+4),过F 作FN ∥y 轴交BD 于点N ,设直线BD 的 解析式为y=kx+d ,则408d k d -+⎧⎨⎩==,解得412k d ⎧⎪⎨⎪⎩==.∴直线BD 的 解析式为y=12x+4,∴点N 的 坐标为(t ,12t+4),∴FN=12t+4-(14t 2+52t+4)=-14t 2-2t ,∴S △DBF =S △DNF +S △BNF =12OD •FN=12×8×(-14t 2-2t )=-t 2-8t=-(t+4)2+16,∴当t=-4时,S △BDF 最大,最大值是16,当t=-4时,14t 2+52t+4=-2,∴F (-4,-2).【变式训练】如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 的 圆与y 轴的 另一个交点为D .已知点A ,B ,C 的 坐标分别为(-2,0),(8,0),(0,-4). (1)求此抛物线的 表达式与点D 的 坐标;(2)若点M 为抛物线上的 一动点,且位于第四象限,求△BDM 面积的 最大值。

解:(1)∵抛物线y=ax 2+bx+c 过点A (-2,0),B (8,0),C (0,-4),∴42064804a b c a b c c -++⎪+⎪-⎧⎨⎩===,解得14324a b c ⎧⎪⎪⎪-⎨⎪-⎪⎪⎩===, ∴抛物线的 解析式为:y=14x 2-32x-4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC 、BC ,由勾股定理得:2080∵AC 2+BC 2=AB 2=100,∴∠ACB=90°,∴AB 为圆的 直径.由垂径定理可知,点C 、D 关于直径AB 对称,∴D (0,4);(2)解法一:设直线BD 的 解析式为y=kx+b ,∵B (8,0),D (0,4),∴804k b b ⎨⎩+⎧==,解得142k b -⎧⎪⎨⎪⎩==, ∴直线BD 解析式为:y=-12x+4.设M (x ,14x 2-32x-4),如答图2-1,过点M 作ME ∥y 轴,交BD 于点E ,则E (x ,-12x+4).∴ME=(-12x+4)-(14x 2-32x-4)=-14x 2+x+8.∴S △BDM =S △MED +S △MEB =12ME (x E -x D )+12ME (x B -x E )=12ME (x B -x D )=4ME ,∴S △BDM =4(-14x 2+x+8)=-x 2+4x+32=-(x-2)2+36.∴当x=2时,△BDM 的 面积有最大值为36; 解法二:如答图2-2,过M 作MN ⊥y 轴于点N .设M (m ,14m 2-32m-4),∵S △OBD =12OB•OD=12=16,S 梯形OBMN =12(MN+OB )•ON=12(m+8)[-(14m 2-32m-4)]=-12m(14m 2-32m-4)-4(14m 2-32m-4), S △MND =12MN •DN=12m[4-(14m 2-32m-4)]=2m-12m (14m 2-32m-4),∴S △BDM =S △OBD +S 梯形OBMN -S △MND=16-12m (14m 2-32m-4)-4(14m 2-32m-4)-2m+12m (14m 2-32m-4)=16-4(14m 2-32m-4)-2m=-m 2+4m+32=-(m-2)2+36;∴当m=2时,△BDM 的 面积有最大值为36.【教师总结】本题考查了待定系数法求解析式,在解答此类问题时要注意构造出辅助线,利用圆的有关性质、勾股定理、三角形面积的求法等综合求解.。

相关文档
最新文档