壳体零件机械加工工艺及工艺装备设计
壳体的工艺与工装的设计
设计(论文)题目:壳体的工艺与工装的设计目录(一)产品介绍1(二)计算生产纲领2 1,计算生产纲领决定生产类型2,生产纲领(三)零件的分析31.零件的结构的分析2,零件的技术分析(四)确定毛坯4 1,毛坯的铸造方式2,铸件的尺寸3,铸件的加工余量4,零件—毛坯综合图的绘制(五)工艺规程设计5a) 定位基准的选择Ⅰ粗基准的选择Ⅱ精基准的选择b) 制定工艺路线c) 拟订定位方案和选择定位元件Ⅰ定位方案Ⅱ 选择定位元件d) 初步拟定加工工艺路线e) 修改后的工艺路线6,选择加工设备7,填写机械加工工艺过程卡和机械加工工序卡(六)机床夹具设计6 1,加工中心用的夹具Ⅰ零件体工序的加工要求分析Ⅱ确定夹具的类型2,工作台面与夹具体的设计Ⅰ定位装方案Ⅱ加紧机构设计Ⅲ夹具精度分析与计算Ⅳ绘制夹具总图Ⅴ总图的绘制(七)设计所参考书籍7第一章 产品介绍世界上包括我国的中重型卡车用动力几乎百分之百采用柴油机。
变速箱壳体零件的加工工艺设计
变速箱壳体零件的加工工艺设计制造技术是一个永恒的主题,是设想、概念、科学技术物化的基础和手段,是国家经济和国防实力的体现,是国家工业化的关键。
工艺技术是制造技术的重要组成部分,提高工艺技术水平是机电产品提高质量、增强国际市场竞争力的有力措施。
传统大批大量生产方式广泛采用高效率的专用组合机床,按流水线排列进行生产,可以极大地降低产品成本,具有很高的产能。
但是,这些适用于大批、大量生产的传统的生产线,都有很大的刚性(专用性),很难迅速改变原有的生产对象,适应市场发展的需求。
发展适应多品种、中小批量、高效率、低成本和具有快速响应市场能力的以先进的制造技术和组织方式为基础的生产系统是未来的发展趋势。
本设计以中国第一拖拉机制造厂的东方红拖拉机变速箱壳体为研究对象,考虑到变速箱壳体为拖拉机中的重要部件,产品要求精度高,结构复杂,因而选择做拖拉机变速箱壳体加工工艺的设计对自己是个挑战又是个锻炼。
一、工艺性分析1.变速箱壳体零件的工艺特点变速箱内装有输入轴、输出轴、其他传动轴和齿轮等。
通过改变安装在这些轴上的滑移齿轮和固定齿轮的传动比,来改变拖拉机的行进速度。
从而可知,变速箱体的主要功用就是支撑个传动轴,保证各轴之间的中心距及平行度,并且保证拖拉机变速箱体部件与其相连接的其他部件的正确安装。
变速箱体的主要技术要求如下:(1)轴承孔的尺寸精度和几何形状精度。
(2)轴承孔孔距公差。
(3)中心线间的平行度公差。
(4)端面对轴承孔的垂直度公差,(5)轴承孔的同轴度公差。
(6)装配基面的平面度公差。
(7)各主要加工表面的粗糙度。
(8)各螺纹孔的位置度。
2.毛坯的工艺性由于灰铸铁具有良好的铸造性和切削性以及较好的耐磨性和减震性,同时价格低廉,因此箱体零件的毛坯通常采用铸铁件。
本箱体材料选用HT150.铸件表面涂以醇酸底漆。
二、机械加工工艺路线的编制1.定位基准的选择对主要定位基准进行分析。
作为一个薄壁壳体腔型零件,它的形状复杂,刚度差,易变形,但加工精度又要求较高。
壳体零件加工
壳体零件加⼯摘要数控技术应⽤的飞速发展对国民⽣产及⽣活起着越来越重要的作⽤。
本论⽂详细的介绍了壳体数控加⼯的全过程。
从怎样确定零件的选材;⼯艺路线的确定;数控机床⼑具的选择;测量⼯具的使⽤及切削参数的确定;⼯装的设计;数控编程、加⼯等。
内容涉及⼴泛,个章节紧密连接。
这次毕业设计查阅了⼤量资料和⽂献,咨询相关的专业⼈员,并结合了本⼈所学的知识加上实际的⼯作完成毕业论⽂。
使⾃⼰对数控技术及应⽤有了更深刻的了解。
关键词: ⼯艺路线, 数控加⼯, 数控编程, ⼑具、参数AbstractThe rapid development of numerical control technology and life on the national production is playing an increasingly important role. This paper describes in detail the whole process of machining the shell. How to determine from the parts selection; process route is indeed the choice of CNC machine tools; measure the use of tools and cutting parameters determination; tooling design; NC programming and processing. Covering a wide range, closely connected chapters. The graduation project examined a large amount of information and documentation, consult the relevant professionals, combined with the knowledge I learned with the actual completion of thesis. Keywords: technology line, CNC machining, CNC programming, tool, parameter第⼀章壳体零件加⼯⼯艺分析1.1零件的确定⽅案1.1.1 零件的选择、分析零件材料的合理是要满⾜零件性能要求下最⼤限度发挥材料潜⼒,再考虑到提⾼材料强度的使⽤⽔平。
壳体零件机械加工工艺及工艺装备设计
壳体零件机械加工工艺及工艺装备设计一、壳体零件机械加工工艺壳体零件常见的机械加工工艺包括铣削、车削、钻削、磨削等。
针对不同的工艺要求,可以采用不同的机床和刀具,下面介绍一些常用的加工工艺和注意事项。
1.铣削铣削是用刀具在工件上进行切削,常用于壳体零件表面的平面、开槽和轮廓加工。
铣削过程中,应注意选择合适的刀具和切削参数,保证加工精度和表面质量,并注意安全操作。
2.车削车削是通过工件在车床上旋转,刀具在工件上进行切削加工。
常用于壳体零件的外表面和内孔加工。
在车削过程中,应注意夹持牢固,避免振动和松动。
选择合适的刀具和切削参数可以保证加工质量。
3.钻削钻削是用钻头对壳体零件进行孔加工。
在钻削过程中,应选择合适的刀具类型和切削参数,控制进给速度和冷却液的使用,以确保孔的质量和尺寸精度。
4.磨削磨削是用磨料进行零件表面的加工,可以获得较高的表面质量和精度。
对于壳体零件,常用的磨削方法包括平面磨削、外圆磨削和内圆磨削。
磨削过程中,应选择合适的磨料和磨削参数,如磨削速度、进给量和磨削深度等。
1.机床选择根据壳体零件的加工要求,可以选择不同类型的机床,如铣床、车床、钻床和磨床等。
在选型时,需要考虑加工尺寸、加工精度和生产效率等因素。
2.刀具选择根据壳体零件的加工需求,选择适合的刀具类型和规格。
如铣削可采用立铣刀、面铣刀和球头铣刀等;车削可采用外圆刀具和内圆刀具;钻削可选择中心钻、钻头和镗刀等。
3.夹具设计壳体零件加工时需要固定在机床上,所以需要设计合适的夹具。
夹具的设计应考虑零件的形状、尺寸、夹持力和稳定性等因素。
夹具的设计应易于操作和调整,并能保证加工精度。
4.冷却液系统壳体零件加工过程中,冷却液的使用可以降低切削温度、延长刀具寿命和提高加工质量。
因此,需要设计合适的冷却液系统,包括冷却液的供给、流量、喷射方式和回收等。
5.自动化与智能化在壳体零件加工中,可以应用自动化设备和智能化技术,提高生产效率和产品质量。
某壳体零件加工工艺设计
[] 4 唐旎 , 郭隐彪 , 林晓辉 , 精 密加 环 境监控 系统数 据库 的开 发研 等. [ 究 [ ] 机械制造与机床 ,0 1 1 . J. 2 1( ) [] 5 涂文特 , 李家春 , 刘春伟. 数控机床刀具磨损无线监测 系统 [ ]煤 矿 J.
某零 件壳 体 如图 1所示 。该零 件是 某产 品上 一 个
淬 透性 高 。油 中临 界淬 透 直径 为 6 0mE(6 的马 氏 9%
体 ) 钢 在淬 火 后可 获 得很 高 的强 度 , , 并具 有 一定 的韧
关键性 能 件 , 机械性 能和材 料综 合性 能 要求 都相 当 高 , 而且 壁 薄 、 径 比大 ( 薄壁 厚 为 22 00 m)零 长 最 . ± .5m 、 件 还 必 须 承 受 一 定 压 力 , 水 检 压 强 P 为 3 4 . 其 3- 2 - 0
难题 。
关键 词 : 壳体 零 件
超 பைடு நூலகம் 强度 钢
旋压
焊接
中图分 类号 : H1 2 T 6
文 献标 识码 : A
A h lp r r c s ig p o e s d sg s el a t p o e sn r c s e in s
C HANG i HANG  ̄iz o Ha ,Z n h u。XI in in , AO Ja qa g YAO C u c e h n hn
国 的 D A , 于 低 合 金 超 高 强 度 钢 ,热 处 理 要 求 : 6 C) 属
≥ 1 4 0 MPa, 539% , 5. 7 6 4 5~49 5 HRC。 . ^
铸造壳体零件的机械加工工艺
1 序言铸造壳体类零件外形复杂,关联尺寸多,精度高,加工基准的选择十分重要。
某型产品的操纵机构安装在可分开的外壳中,可分开的外壳如图1所示,由1号、2号和3号壳体组成。
其中2号壳体处于中间位置,起着承上启下的作用,其上有1号壳体,下有3号壳体,其内装配有轴等多个重要零部件。
由此可以看出,2号壳体是装配时的基准零件,它的加工精度将直接影响操纵机构的装配精度。
图1 可分开的外壳2 零件的技术要求1号、2号和3号壳体的毛坯为砂型铸件,材料为ZL116铝合金(T5),铸造精度等级CT9(HB 6103—2004)。
2号壳体如图2所示。
为了保证能与1号、3号壳体紧密贴合,要求A、B 两面有良好的尺寸精度(±0.1mm)、几何公差(平面度为0.05mm)和表面质量(表面粗糙度值Ra=1.6μm)。
同时,为了保证装配后的位置关系,对A、B 两面上的定位孔也有相当高的要求,孔距尺寸精度为±0.05mm,孔径尺寸精度为H8级,表面粗糙度值Ra=1.6μm。
对于非定位孔,例如一般的安装孔、螺纹孔,尺寸精度也达到了±0.1mm。
a)三维立体图b)实物图2 2号壳体此外,为了保证轴的位置安装正确,C孔的加工也相当重要。
该孔的加工精度将直接影响轴在其内的安装位置以及轴是否能够灵活转动。
通过以上分析,从装配要求及使用上出发,该零件的机械加工主要有两方面内容:一是加工A、B面及其上的定位孔和安装孔;二是加工C孔。
3 精基准的选择精基准是指在最初几道工序中就加工出来,为后面的工序做好定位、装夹的准备,在后续的加工中,以它为基准对别的部位进行加工。
就该零件而言,选择A面作为精基准,主要是由于考虑到以下几个方面。
1)A面及其上的两个定位孔是装配基面(设计基准),这样能使工艺与设计基准重合,符合“基准重合”原则,可以减少尺寸换算,避免因基准不重合而引起的误差。
2)在后续加工过程中,将多次用到A面作为定位基准加工其他表面,这样符合“基准统一”原则,便于保证各加工表面间的相互位置精度,避免了因为基准变换所产生的误差,并简化夹具设计和制作工作。
制造壳体零件制造工艺流程
制造壳体零件制造工艺流程那咱们就开始聊聊壳体零件制造工艺流程这事儿吧。
一、壳体零件是啥呢?壳体零件在很多机械产品里那可是相当重要的部分。
你可以把它想象成一个小房子,用来保护里面的各种小部件呢。
比如说在汽车发动机里,就有壳体零件包裹着那些精密的小零件,防止它们受到外界的撞击或者灰尘啥的干扰。
它的形状各种各样,有圆形的,方形的,还有奇奇怪怪不规则形状的。
这形状主要是根据它要保护的东西和在整个设备里的功能来定的。
二、制造壳体零件的材料选择。
这制造壳体零件啊,选材料可是个大学问。
常见的材料有金属材料,像钢铁啊,铝合金啊之类的。
钢铁比较结实,能承受很大的压力,就像一个强壮的大汉,要是需要做那种要抗很多外力的壳体,钢铁就是个很好的选择。
铝合金呢,它比较轻,就像一个轻盈的小精灵,对于那些需要移动或者对重量有要求的设备,铝合金做的壳体就很合适啦。
还有些特殊的地方会用到塑料材质的壳体,塑料比较便宜,而且可以做出各种颜色,看起来就很可爱,在一些小型的、对强度要求不是特别高的设备里经常出现。
三、制造工艺流程之设计阶段。
在真正开始制造之前啊,得先设计这个壳体零件。
设计师们就像魔法师一样,在图纸上勾勒出壳体的模样。
他们要考虑好多东西呢,比如这个壳体的大小,得刚刚好能装下里面的零件,不能太大浪费空间,也不能太小让零件挤得难受。
还要考虑怎么连接其他的部件,是用螺丝啊,还是用卡扣之类的。
这个设计阶段就像是在给一个小宝贝做成长规划一样,得考虑得特别周全。
四、制造工艺流程之毛坯制造。
设计好了,接下来就是把这个壳体零件从无到有地做个大概形状出来,这就是毛坯制造啦。
如果是金属材料的话,有锻造和铸造两种常见的方法。
锻造就像是给金属做健身,把它捶打成型,这样制造出来的毛坯结构比较紧密,强度高。
铸造呢,就像是把液态的金属倒入一个模具里,等它冷却了就变成想要的形状了。
这个方法比较适合制造形状复杂的壳体零件。
五、制造工艺流程之机械加工。
毛坯做好了,但是还很粗糙呢,就像一个刚从土里挖出来的土豆,还需要精心加工。
机械工艺夹具毕业设计145壳体工艺流程说明书
毕业设计说明书专业:机械制造与设计及其自动化班级:机制姓名:学号:指导老师:目录第一部分工艺设计说明书 (1)第二部分第05道工序夹具设计说明书……………………………………………………………第三部分第08道工序刀具设计说明书……………………………………………………………第四部分第08号工序量具设计说明书……………………………………………………………第五部分毕业设计体会………………………………………………………………………………第一部分 工艺设计说明书1.零件图工艺性分析 1.1零件结构功用分析:壳体零件是机械中常见的一种零件,通常起支承作用。
它的应用范围很广,例如支承旋转轴上的轴承,等等。
由于它们功用的不同,壳体类零件的结构和尺寸有着很大的差异,但结构上仍有共同特点:零件的主要表面为精度要求较高的轴承孔、零件由内孔、外圆、凸台、等表面构成。
1.2零件图纸分析:由零件图可知,该零件形状较为复杂、外形尺寸不大,可以采用铸造毛坯。
由于该零件的两个φ28孔与轴承配合,它的表面质量直接影响两轴承的旋转精度与工作状态,,通常对其尺寸要求较高。
一般为IT5-IT7。
加工时两φ28孔的同轴度应该控制在0.01mm 。
65-+0.为孔的位置尺寸它直接影响孔在空间的位置,加工时可以将其加工精度降低,通过装配来提高精度。
1.3主要技术条件:1.孔径精度:两φ28孔的孔径的尺寸误差和形状误差会造成轴承与孔的配合不良,因此对轴承座孔的要求较高,其孔的尺寸公差为IT7,轴承座孔的形状精度一般控制在尺寸公差范围内即可。
2.孔的位置精度:同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差会使轴承装配到轴承孔内出现歪斜,从而造成径向跳动和轴向跳动,加剧了轴承的磨损,为此一般同轴上各孔的同轴度为最小孔尺寸公差之半。
3.主要平面的精度:由于φ70底面的平面度直接影响联接时的接触刚度,并且加工过程中常作为定位基面,则会影响孔的加工精度,因此须规定底面必须平直。
汽车变速箱壳体加工工艺
汽车变速箱壳体加工工艺
汽车变速箱壳体加工工艺:
1、机械加工:
(1)毛磨机加工:采用钻头和毛磨加工技术,通过钻头凸起加工变速
箱壳体表面,然后用毛磨机对壳体表面进行磨平。
(2)铣床加工:利用铣削技术,通过刀具在变速箱壳体上进行划痕加工,使零件表面形成狭窄带形痕,提高变速箱壳体表面粗糙度。
(3)钻井加工:利用钻井加工技术,在变速箱壳体上增加孔位,以满
足加工要求。
2、非机械加工:
(1)气压抛光:利用压缩空气的动能,通过抛光剂洗去变速箱壳体上
的锈蚀和污渍,使壳体成型和表面更加光滑,完成表面处理。
(2)电镀:采用电镀技术,将变速箱壳体表面处理成铝合金、锌、铬、钨和镍等不同的金属电镀,改善壳体强度,增强腐蚀抗性。
(3)喷射烤漆:采用喷射烤漆技术,在变速箱壳体表面喷洒油漆,使
壳体表面具有装饰性,增强外壳的防护性能。
3、质量检查:
(1)检查尺寸:通过接口、精密仪和滑卡检测变速箱壳体尺寸是否符
合标准要求,并验收零件质量;
(2)检查表面粗糙度:用毛料测试变速箱壳体表面粗糙度,确定粗糙度是否符合标准要求;
(3)检查材质:通过金相显微镜、纽扣试验和磁粉检查等技术,检查变速箱壳体材料是否合格。
机械工艺夹具毕业设计23差速器壳体工艺及工装设计
机械工艺夹具毕业设计23差速器壳体工艺及工装设计差速器壳体是差速器的主要组成部分之一,它的工艺及工装设计对于差速器的生产质量和效率有着重要的影响。
本文将从工艺流程、工装设计和工艺参数三个方面对差速器壳体的工艺及工装设计进行详细阐述。
一、工艺流程的设计差速器壳体的工艺流程一般包括以下几个环节:材料采购、钣金加工、焊接、表面处理和装配。
首先,根据差速器壳体的制造要求,选择合适的材料,并进行采购。
其次,对采购的材料进行钣金加工,包括剪切、冲孔、折弯等工艺,以得到相应的壳体零件。
然后,对壳体零件进行焊接,常用的焊接方法有TIG焊、MIG焊等。
接着,对焊接好的壳体进行表面处理,如砂光、喷涂、电镀等,以提高壳体的表面质量。
最后,将各个零件进行装配,形成完整的差速器壳体。
二、工装设计1.材料输送工装:用于将原材料从仓库输送到钣金加工区域,采用传送带或叉车等设备。
2.钣金加工工装:包括剪切机、冲孔机、折弯机等设备,用于对原材料进行各种加工。
3.焊接工装:包括焊接夹具、焊接机器人等设备,用于对壳体零件进行焊接操作。
4.表面处理工装:包括砂光机、喷涂机、电镀设备等,用于对焊接好的壳体进行表面处理。
5.装配工装:包括装配平台、固定夹具等设备,用于将各个零件进行装配。
三、工艺参数的确定1.材料参数:主要包括材料的种类、厚度等。
根据差速器壳体的设计要求和生产经验,选择合适的材料,并确定材料的厚度。
2.加工参数:包括钣金加工的各项参数,如剪切、冲孔、折弯等工艺的刀具选用、切削速度、切削深度等参数。
3.焊接参数:包括焊接的工艺参数和焊接设备的选择。
根据焊接材料和焊接零件的材质选择合适的焊接方法和焊接参数。
4.表面处理参数:包括砂光、喷涂、电镀等工艺的参数。
根据壳体表面的要求选择适当的参数,如砂光的颗粒大小、喷涂的喷枪间距、电镀的电流和时间等。
通过合理设计工艺流程,设计适用的工装和确定合适的工艺参数,可以提高差速器壳体的生产效率和质量,为差速器的整体性能和可靠性提供良好的保障。
制造壳体零件制造工艺流程
制造壳体零件制造工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download Tip: This document has been carefully written by the editor. I hope that after you download, they can help you solve practical problems. After downloading, the document can be customized and modified. Please adjust and use it according to actual needs. Thank you!制造壳体零件制造工艺流程:①设计与选材:根据产品需求设计壳体零件图纸,选择适宜的材料,如铸铁、铝合金或不锈钢,确保材料性能满足使用要求。
②毛坯制备:根据设计尺寸与结构,选择合适的毛坯制造方式,如铸造、锻造或钢板切割,制得初始形状与尺寸的毛坯件。
③机械加工:对毛坯进行粗加工,包括车削、铣削、钻孔等,去除大部分加工余量,形成基本外形。
随后进行精加工,保证尺寸精度、表面粗糙度及形位公差符合图纸要求。
④热处理:视材料特性及零件使用条件,可能需要进行热处理,如退火、淬火及回火,以提高零件的硬度、强度或韧性。
⑤表面处理:根据需要进行表面处理,如喷砂、磷化、电镀或涂漆,提升壳体的抗腐蚀性、耐磨性或美观度。
⑥装配与检测:完成各部件加工后,进行组装,包括安装密封件、紧固件等,确保壳体的完整性与密封性。
最后,进行全面的质量检测,包括尺寸测量、功能测试等,验证是否符合设计及质量标准。
⑦包装与发货:合格产品进行适当包装,以防运输过程中的损伤,随后根据订单要求进行发货。
火箭弹战斗部壳体机械加工工艺规程及夹具方案设计书
目录1绪论31.1课题研究的目的和意义31.2国内外类似制件的工艺现状41.3本文的主要工作62 机械加工工艺规程设计62.1零件的分析62.1.1零件图纸62.1.2零件的工艺性62.2生产纲领与生产类型72.3毛坯72.4拟定工艺路线82.4.1定位基准82.4.2表面加工方法82.4.3加工阶段的划分与整合92.4.5加工顺序的安排92.5工序设计102.5.1加工余量的确定102.5.2工序尺寸与公差计算102.5.3机床及工艺装备错误!未定义书签。
2.5.4时间定额错误!未定义书签。
2.6编制工艺卡103夹具设计113.1准备工作113.1.1设计任务及工艺状况113.1.2现有机床设备规格113.1.3相关工序情况113.1.4类似制件生产中的常见问题123.2确定设计方案123.2.1多种设计方案123.2.2设计方案的确定错误!未定义书签。
3.3结构草图与相关计算错误!未定义书签。
3.3.1结构草图的改进过程错误!未定义书签。
3.3.2相关计算错误!未定义书签。
3.4总图绘制与校对123.5零件图的绘制与校对133.6本章小结134结论14参考文献15致谢错误!未定义书签。
1绪论1.1课题研究的目的和意义战斗部壳体是火箭弹弹体的重要组成部分。
它的主要功用是用来装载火工品,连接火箭帽、固体发动机等其它部件,并承受它们的载荷[1]。
火箭弹战斗部壳体为内部装载的火工品提供正常工作条件的,如气压、温度、湿度和耐振性等要求;火箭弹产品战争储备量很大,要求全弹各壳体,尤其是战斗部壳体,具有耐储运等特点[2]。
由于战场环境的不断改变,各类型,各用途的火箭弹层出不穷,并由单一用途向多用途,多功能的方向发展,产品更新换代的年限呈减短趋势;近年来随着我国国防战略的转移,军工生产订单呈多品种,小批量的态势[ 3];所以这类产品的加工工艺研究就要强调技术的继承性、设备的通用性。
作为传统加工工艺的机加工在导弹舱体制造中主要有两种方式:1.如空射火箭弹、单兵火箭弹、防空火箭弹等小型火箭弹的机加工多采用厚壁管材作为毛坯,经过机械加工而成[2];2.一些稍大型火箭整体舱体的加工多采用旋压(拉深)毛坯由机加工精加的方式制造,而由于旋压与拉深相比具有模具简单、制造工序少等优点,所以旋压后机加工方式被更多的采用。
火箭弹战斗部壳体机械加工工艺规程及夹具设计
目录1绪论 (3)1.1课题研究的目的和意义 (3)1.2国内外类似制件的工艺现状 (4)1.3本文的主要工作 (5)2 机械加工工艺规程设计 (7)2.1零件的分析 (7)2.1.1零件图纸 (7)2.1.2零件的工艺性 (7)2.2生产纲领与生产类型 (8)2.3毛坯 (8)2.4拟定工艺路线 (8)2.4.1定位基准 (8)2.4.2表面加工方法 (9)2.4.3加工阶段的划分与整合 (9)2.4.5加工顺序的安排 (10)2.5工序设计 (11)2.5.1加工余量的确定 (11)2.5.2工序尺寸与公差计算 (11)2.5.3机床及工艺装备 ............................................................................... 错误!未定义书签。
2.5.4时间定额 ........................................................................................... 错误!未定义书签。
2.6编制工艺卡 (11)3夹具设计 (12)3.1准备工作 (12)3.1.1设计任务及工艺状况 (12)3.1.2现有机床设备规格 (12)3.1.3相关工序情况 (12)3.1.4类似制件生产中的常见问题 (13)3.2确定设计方案 (13)3.2.1多种设计方案 (13)3.2.2设计方案的确定 ............................................................................... 错误!未定义书签。
3.3结构草图与相关计算 .......................................................................... 错误!未定义书签。
壳体类机加工艺简介
车削加工: 车削加工是机械加工中应用最多的加工方法之一,广泛用于各种回转体零 件的加工,零件的回转运动为主运动,刀具轴向或径向进给为进给运动,其成 形方法属于轨迹法。它可以加工的表面有外圆、内孔、端面、锥面、螺纹等。 表面粗糙度Ra值可达0.8~1.6um,精细车可达到0.4~0.025um。 粗糙度评定参数: 国家标准规定表面粗糙度的参数由高度参数、间距参数和综合参数所组成。 高度参数有以下三个: (1)轮廓算术平均偏差Ra
值,求其反正切值,确定角度进行旋转;
4、将定心孔进行偏置,确定输出测量孔的坐标数值
位置度: 当采用任意方向上位置度公差时,其公差带是以轴线的理想位
置为轴线,直径为公差值t的圆柱面内的区域。
实际孔
理想孔
壳体类零件的装夹 壳体类产品加工采用典型的一面两孔定位。 工件的装夹包括定位和夹紧两个过程。 定位是指确定工件在机床或夹具中占有正确位置的工艺过程。夹紧是指
铰削加工 用铰刀从未淬硬的孔壁上切除微量金属层,以提高其尺寸精度和降 低表面粗糙度值的方法,称为铰孔。
由于铰刀的制造十分精确,加上铰削时切削余量小(精铰时仅为 0.01~0.03mm),所以铰孔后精度等级一般可达IT9~IT7,表面粗糙度Ra值为 0.63~5um,精细铰精度等级最高可达IT6,表面粗糙度Ra值为0.16~0.32um。
切削用量及其确定: (1)切削速度的确定 钻削时的切削速度指钻头外缘的线速度。可查阅 相关手册(附表)。加工铝合金高速钢钻头查表钻削速度为40~70m/min。 (2)进给量的确定 小直径钻头进给量f主要受钻头的钢性或强度限制,大直径钻头受机床进给 机构动力及工艺系统刚性限制。 普通麻花钻进给量可按以下经验公式计算: F=(0.01~0.02)d
差速器壳体工艺及镗工装设计
差速器壳体工艺及镗工装设计一、引言差速器壳体是汽车差速器的重要组成部分,具有支撑和固定齿轮和轴的功能,因此其工艺和装配对差速器的稳定性和运行性能起着重要作用。
本文将介绍差速器壳体的工艺流程和镗工装设计。
二、差速器壳体的工艺流程差速器壳体的制造工艺一般包括以下几个步骤:1. 材料准备选择合适的材料是制造高质量差速器壳体的前提。
常用的材料有铝合金、铸铁等。
合理选择材料可以提高差速器壳体的强度和耐磨性。
2. 零件加工差速器壳体一般由多个零件组成,需要进行零件加工。
零件加工包括铣削、钻孔、车削等工序,以形成壳体的基本形状和孔洞。
3. 焊接将加工好的零件进行焊接,焊接工艺应选用适当的焊接方式和焊接材料,以确保焊接强度和密封性。
4. 表面处理对焊接好的壳体进行表面处理,一般包括清洗、喷涂、烤漆等工序,以提高壳体的美观度和耐腐蚀性。
5. 检测和装配对制造好的壳体进行严格的检测和质量控制,包括尺寸测量、焊接质量检验等。
通过合格的检测后,进行差速器齿轮和轴的装配。
三、镗工装设计差速器壳体的镗工装设计是为了保证差速器壳体内部孔洞的精度和相互位置的精确度。
以下是镗工装设计的步骤:1. 镗工装的选择根据差速器壳体的孔洞形状和尺寸,选择合适的镗工装。
常用的镗工装有手动镗床、数控镗床等。
应根据生产量和精度要求选择最合适的镗工装。
2. 差速器壳体的夹紧方式差速器壳体在镗工装上进行夹紧,夹紧方式应能保证壳体的稳定性和刚性,以减少加工误差。
常用的夹紧方式有机械夹紧和液压夹紧等。
3. 加工路径的设计根据差速器壳体的几何形状和孔洞布局,设计加工路径,以保证镗工的精度和效率。
在设计加工路径时应考虑刀具的刚性和切削力等因素。
4. 刀具的选择和切削参数的确定根据差速器壳体材料和孔洞尺寸,选择合适的刀具,并确定切削速度、进给量和切削深度等切削参数,以提高加工效率和镗工质量。
5. 加工过程的监控和调整在镗工过程中,应定期检查加工质量,对镗削刀具进行监控和调整,以保证壳体孔洞的尺寸精度和表面质量。
壳体机械加工工艺及其夹具设计
壳体机械加工工艺及其夹具设计引言:壳体是常见的机械零部件之一,广泛应用于各种机械设备中。
壳体的机械加工工艺及夹具设计对于保证产品质量、提高生产效率具有重要作用。
本文将对壳体的机械加工工艺及其夹具设计进行详细介绍。
一、壳体的机械加工工艺1.工艺流程:壳体的机械加工工艺流程一般包括铣削、钻孔、螺纹加工、倒边等工序。
具体的工艺流程根据壳体的图纸要求来确定,也可以根据加工设备的不同来进行调整。
2.材料选择:壳体一般采用铸铁、铝合金等材料制作,根据实际工作环境和要求来选择合适的材料。
材料的选择对于机械加工工艺有很大影响,在保证产品质量的情况下,尽量选择易于加工的材料,以提高生产效率。
3.加工工具及刀具选择:壳体的机械加工需要使用到多种切削工具和测量工具。
在选择工具和刀具时,要根据具体的加工要求选择合适的切削参数,如转速、进给速度等。
此外,要保证刀具的质量和磨取工艺,以提高切削效果和延长刀具寿命。
4.加工参数的确定:加工参数的确定对于保证产品质量至关重要。
加工参数包括切削速度、进给量、切削深度等。
根据材料的硬度、切削工具的种类和状态等因素来选择合适的加工参数,以确保加工的准确性和效率。
5.精度控制:机械加工过程中,精度控制是非常重要的环节。
对于壳体的机械加工,要严格按照图纸要求进行加工,采用适当的检测工具和方法进行精度检测。
在加工过程中,要注意机床的刚度和稳定性,避免机床振动对加工精度的影响。
二、壳体夹具的设计1.设计原则:壳体夹具的设计要根据壳体的形状和尺寸进行,确保夹具能够牢固固定壳体,并且不会对壳体造成损伤。
夹具的设计要简单实用,易于操作和维护,提高生产效率。
2.夹具类型:根据壳体的形状和尺寸,夹具可以设计成手动夹具、液压夹具或自动夹具等多种类型。
根据具体的加工要求和工艺流程选择合适的夹具类型,以提高夹紧力和夹持效果。
3.夹紧方式:夹具的夹紧方式可以选择机械夹紧、液压夹紧或气动夹紧等多种方式。
夹紧方式的选择要兼顾夹紧力和工艺要求,确保夹具能够牢固固定壳体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
壳体零件机械加工工艺规程制订及工艺装备设计目录第一部分工艺设计说明书……………………………………………………………………………第二部分第05道工序夹具设计说明书……………………………………………………………第三部分第08道工序刀具设计说明书……………………………………………………………第四部分第08号工序量具设计说明书……………………………………………………………第五部分毕业设计体会………………………………………………………………………………陕西航空职业技术学院二零零七届毕业设计(论文)任务书专业:机械制造班级:机制5022班姓名:学号:13#一、设计题目:壳体零件机械加工工艺规程制订及工艺装备设计二、设计条件: 1、零件图2、生产批量:中批量生产三、设计内容:㈠零件图分析: 1、零件图工艺性分析(结构工艺性及条件分析);2、绘制零件图。
㈡毛坯选择㈢机械加工工艺路线确定:1、加工方案分析及确定2、基准的选择3、绘制加工工艺流程图㈣工序尺寸及其公差确定1、基准重合时(工序尺寸关系图绘制);2、利用工序尺寸关系图计算工序尺寸;3、基准重合时(绘制尺寸链图)并计算工序尺寸。
㈤设备及其工艺装备的确定㈥切削用量及工时定额确定:确定全部工序切削用量及工时定额。
㈦工艺文件制订:1、编写工艺文件设计说明书:2、编写工艺规程:㈧指定工序机床夹具设计1、工序图分析;2、定位方案确定;3、定位误差计算;4、夹具总装图绘制;㈨刀具、量具设计四设计任务(工作量):1、零件机械加工工艺规程制订设计说明书一份;2、工艺文件一套(含工艺流程卡片、某一道工序的工序卡片、全套工序附图);3、机床夹具设计说明书一份;4、夹具总装图一张(A2图纸);零件图两张(A4图纸);5、刀量具设计说明书一份;6、刀具工作图一张(A4图纸);量具图一张(A4图纸)。
五起止日期: 2006年11月28日——2007年1月20日(共8周)六指导教师:七审核批准教研室主任:系主任:八设计评语:年月日九设计成绩:年月日第一部分 工艺设计说明书1.零件图工艺性分析 1.1零件结构功用分析:壳体零件是机械中常见的一种零件,通常起支承作用。
它的应用范围很广,例如支承旋转轴上的轴承,等等。
由于它们功用的不同,壳体类零件的结构和尺寸有着很大的差异,但结构上仍有共同特点:零件的主要表面为精度要求较高的轴承孔、零件由内孔、外圆、凸台、等表面构成。
1.2零件图纸分析:由零件图可知,该零件形状较为复杂、外形尺寸不大,可以采用铸造毛坯。
由于该零件的两个φ28孔与轴承配合,它的表面质量直接影响两轴承的旋转精度与工作状态,,通常对其尺寸要求较高。
一般为IT5-IT7。
加工时两φ28孔的同轴度应该控制在0.01mm 。
65-+0.为孔的位置尺寸它直接影响孔在空间的位置,加工时可以将其加工精度降低,通过装配来提高精度。
1.3主要技术条件:1.孔径精度:两φ28孔的孔径的尺寸误差和形状误差会造成轴承与孔的配合不良,因此对轴承座孔的要求较高,其孔的尺寸公差为IT7,轴承座孔的形状精度一般控制在尺寸公差范围内即可。
2.孔的位置精度:同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差会使轴承装配到轴承孔内出现歪斜,从而造成径向跳动和轴向跳动,加剧了轴承的磨损,为此一般同轴上各孔的同轴度为最小孔尺寸公差之半。
3.主要平面的精度:由于φ70底面的平面度直接影响联接时的接触刚度,并且加工过程中常作为定位基面,则会影响孔的加工精度,因此须规定底面必须平直。
2.毛坯选择 2.1毛坯类型考虑到壳体工作时起支承轴承,要求材料要有很高的强度,并且该零件结构较为复杂,故选用铸造毛坯材料为HT200。
2.2毛坯余量确定由书机械加工工艺设计资料表1.2-10查得毛坯加工余量为5,毛坯尺寸偏差由表1.2-2查得为±1.4.2.3毛坯-零件合图草图3.机械工艺路线确定3.1定位基准的选择:3.1.1精基准的选择:选择壳体底面与两φ7孔作定位基准,因为φ25f7外圆柱面,及底面是装配结合面,且壳体底面又是轴承座孔空间位置的设计基准,故选择壳体底面与两φ7孔作定位基准,符合基准重合原则且装夹误差小。
3.1.2粗基准的选择:以壳体上端面和壳体支撑外圆弧定位加工出精基准。
3.2加工顺序的安排:壳体零件主要由孔和平面构成与箱体类零件大体相同,加工顺序为先面后孔,这样可以用加工好的平面定位再来加工孔,因为轴承座孔的精度要求较高,加工难度大,先加工好平面,再以平面为精基准加工孔,这样即能为孔的加工提供稳定可靠的精基准,同时可以使孔的加工余量较为均匀3.3段的划分说明加工阶段分为:粗加工阶段、半精加工阶段、精加工阶段。
3.4加工工序简图1、铸铸造、清理2、热处理时效3、粗车、半精车、精车:4粗铣φ12凸台顶面:5.钻2-φ7孔:6.去毛刺:7.φ40外圆两端面;8.粗镗2-φ25内孔、半精镗、精镗2-φ28内孔:9.检验:10.钻、攻M5螺纹孔:11.钻、攻3-M4螺纹孔:12.钻、攻2-M7螺纹孔:13.锪2-φ12沉头孔:14.去毛刺: 15.终检:4.工序尺寸及其公差确定φ25f7 工艺路线基本尺寸 工序余量 经济精度工序尺寸 铸 φ30.5 5.5 φ30.5±1.4粗车 φ27 3.5 12.5(IT11) φ26.5013.0- 半精车 φ25.5 1.5 6.3(IT9) φ25.50062.0- 精车 φ250.51.6(IT7)φ25020.0041.0--工艺路线 基本尺寸 工序余量 经济精度工序尺寸 铸 φ22 6 φ22±1.4粗镗 φ25 3 6.3(IT11) φ2513.00+ 半精镗 φ27.5 2.5 3.2(IT9) φ27.5062.00+精镗床φ280.51.6(IT7)φ28±0.015.设备及其工艺装备确定所用的设备有: CA6140、X62W 、Z3025B ×10、X6120、T68、Z4012、验台、钳工台。
夹具有:V 形块、钻2-φ7孔专用夹具、车床专用夹具、一面两孔夹具、心轴、刀具有:90度车刀、硬质合金铣刀、φ7钻头、平板锉、开式自锁夹紧镗刀、φ5钻头、M5丝锥、φ4钻头、M4丝锥、φ7钻头、M7丝锥、圆锉刀量具有:游标卡尺、专用塞规。
6.切削用量及工时定额确定(1)粗车、半精车、精车时:(T1=T辅 T2=T机 T3=T工 T4=T休)1.粗车φ70底面时:(车刀刀杆尺寸BXH取25X25)ap=2.5由表5.3-1得::f=1.0 mm/r由表5.3-20得:v=59 m/min则n=318x59/70=268r/mm工时定额:由表3.3-1得:装夹工件时间为0.42min由表3.3-2得:松开卸下工件时间为0.12 min由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.42+0.12+0.64+0.08=1.2 min由表5.4-1得机动时间为:T2=0.07+0.05+0.02+0.03=0.17 min由表3.3-33得布置工作地、休息和生理时间分别为:T3=56 min、T4=15minT基=lz/nfap=100 x3.5/268 x1 x2.5=0.52 min则T总=T1+T2+T3+T4+T基=75 min2.半精车φ70底面时:(车刀刀杆尺寸BXH取25X25)ap=1由表5.3-1得::f=0.7 mm/r由表5.3-20得:v=80 mm/r则n=318x80/70=363.4 r/mm工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.07+0.05+0.02+0.03=0.17 minT基=lz/nfap=100 x3.5/363.4x1x0.7=1.38 min则T总=T1+T2+T基=2.26 min3.粗镗环形槽:(车刀刀杆尺寸BXH取25X25)ap=2由表5.3-1得::f=0.4m/r由表5.3-20得:v=90m/r则n=318x90/40=715.5 r/mm工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.05+0.02+0.03=0.1 m/rT基=lz/nfap=0.2 min则T总=T1+T2+T基=2.26 min4.粗车φ25外圆时:(车刀刀杆尺寸BXH取16X25)ap=2由表3-1得::f=0.5 m/r由表5.3-20得:v=82 m/r则n=318x82/25=1043 m/r工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min 由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.05+0.02+0.03=0.1 m/rT基=lz/nfap=0.167 min则T总=T1+T2+T基=0.347 min5. 半精车φ25外圆时:(车刀刀杆尺寸BXH取16X25)ap=1由表3-1得::f=0.4 m/r由表5.3-20得:v=100 m/r则n=318x100/25=1227 m/r工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min 由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.05+0.02+0.03=0.1 m/rT基=lz/nfap=0.34 min则T总=T1+T2+T基=0.52 min6. 精车φ25外圆时:(车刀刀杆尺寸BXH取16X25)ap=0.5由表3-1得::f=0.3 m/r由表5.3-20得:v=107 m/r则n=318x107/25=1361 m/r工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min 由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.05+0.02+0.03=0.1 m/rT基=lz/nfap=0.857 min则T总=T1+T2+T基=1.75 min7. 粗车φ25端面时:(车刀刀杆尺寸BXH取16X25)ap=0.5由表3-1得::f=0.5 m/r由表5.3-20得:v=74 m/r则n=318x74/25=941.2 m/r工时定额:由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min由表3.3-4得:测量工件时间为:0.08+0.08=0.16 minT1=0.64+0.16=0.8 min由表5.4-1得机动时间为:T2=0.05+0.02+0.03=0.1 m/rT基=lz/nfap=0.2 min则T总=T1+T2+T基=1.1 minT总=T总1+T总2+T总3+T总4+T总5+T总6+T总7=82.07min (2)铣φ12凸台顶面时:切削用量:ap=3.5由表6.3-2得:f=0.2 m/r由表6.3-21得:v=120 m/r则n=318V/D= 318 x120/30=1272 m/r工时定额:由表6.4-1得:T2= lw+lf/fxn=1.45 min由表3.3-7得:操作机床时间为:0.83 min由表3.3-8得:测量工件时间为:0.14 minT1=2.27min T3=51min T4= 15minT基=lz/nfap=0.5 min则T总=T1+T2+T基=68.7min(3):钻2-φ7孔时;切削用量:ap=3.5由表7.3-1得:f=0.36 m/r由表7.3-11得:v=13 m/r则n=318V/D= 318 x13/7=590 m/r工时定额:T2= lw+lf/fxn=0.1 min由表3.3-9得:装夹工件时间为0.17min由表3.3-10得:松开卸下工件时间为0.15min由表3.3-12得:测量工件时间为:0.04minT1=0.76 min T3=47 min T4=15 min则T总=T1+T2+T基=62.9min(4):粗铣、半精铣φ40两端面时;粗铣时:切削用量:ap=2.5由表6.3-2得:f=0.2 m/r由表6.3-21硬质合金铣刀铣削灰铸铁时v=120 m/r则n=318V/D=763.2m/r工时定额:由表6.4-1得:T2= lw+lf/vf=2.63 min精铣时:切削用量:ap=1由表6.3-2得:f=0.12 m/r由表6.3-21硬质合金铣刀铣削灰铸铁时v=150 m/r则n=318V/D=954m/r工时定额:由表6.4-1得:T2= lw+lf/vf=3.5 min由表3.3-7得:操作时间为0.83min由表3.3-8得:测量工件时间为:0.14minT1=2.27 min T3=51 min T4=15 min则T总=T1+T2+T基=80.53min(5):粗镗φ25内孔、半精镗、精镗φ28内孔时;粗镗时:切削用量:ap=3由表8.2-1得:f=0.5 m/r v=80 m/r则n=318V/D=1017.6m/r工时定额:T2= lw+lf/vf=0.03 min半精镗时:切削用量:ap=2.5由表6.3-2得:f=0.2m/r v=100m/r则n=318V/D=1272m/r工时定额:T2= lw+lf/vf=0.04min精镗时:切削用量:ap=0.5由表6.3-2得:f=0.15m/r v=80m/r则n=318V/D=1017.6m/r工时定额:T2= lw+lf/vf=0.07min由表3.3-1得:装夹工件时间为0.42min由表3.3-2得:松开卸下工件时间为0.12min由表3.3-3得:操作机床时间为:0.02+0.04+0.03+0.07+0.06+0.02+0.01+0.02+0.03+0.04=0.64 min由表3.3-4得:测量工件时间为:0.16minT1=1.34 min T3=56min T4=15 min则T总=T1+T2+T基=72.62min(6):钻、攻M7螺纹孔时;切削用量:ap=2.5由表7.3-1得:f=0.27 m/r由表7.3-11得:v=15 m/r则n=318V/D= 318 x15/5=954m/r工时定额:T2= lw+lf/fxn=1.5 min由表3.3-9得:装夹工件时间为0.04min由表3.3-10得:松开卸下工件时间为0.05min由表3.3-11得:操作机床时间为:0.32 minT1=0.43 min T3=47 min T4=15 min则T总=T1+T2+T基=62.73min(7):钻、攻3-M4螺纹孔时;切削用量:ap=2.由表7.3-1得:f=0.27 m/r由表7.3-11得:v=15 m/r则n=318V/D= 318 x15/5=1192m/r工时定额:T2= lw+lf/fxn=2.1 min由表3.3-9得:装夹工件时间为0.04min由表3.3-10得:松开卸下工件时间为0.05min由表3.3-11得:操作机床时间为:0.32 minT1=0.43 min T3=47 min T4=15 min则T总=T1+T2+T基=63.93min(8):钻、攻2-M7螺纹孔时;切削用量:ap=2.5由表7.3-1得:f=0.27 m/r由表7.3-11得:v=15 m/r则n=318V/D= 318 x15/5=618.4m/r工时定额:T2= lw+lf/fxn=1.5 min由表3.3-9得:装夹工件时间为0.04min由表3.3-10得:松开卸下工件时间为0.05min由表3.3-11得:操作机床时间为:0.32 minT1=0.43 min T3=47 min T4=15 min则T总=T1+T2+T基=63.23min(9):锪2-φ12沉头孔时时;切削用量:ap=2.5由表7.3-1得:f=0.27 m/r由表7.3-11得:v=15 m/r则n=318V/D= 318 x15/5=397.5m/r工时定额:T2= lw+lf/fxn=1min由表3.3-9得:装夹工件时间为0.04min由表3.3-10得:松开卸下工件时间为0.05min由表3.3-11得:操作机床时间为:0.32 minT1=0.43 min T3=47 min T4=15 min则T总=T1+T2+T基=62.63min第二部分第5道序夹具设计说明书1.工序尺寸精度分析由工序图可知此工序的加工精度要求不高,具体加工要求如下:钻2-φ7孔,无其它技术要求,该工序在摇臂钻床上加工,零件属中批量生产。