初中数学不等式教案
初中数学不等式游戏教案

初中数学不等式游戏教案教学目标:1. 让学生理解和掌握不等式的基本概念和性质。
2. 培养学生解决实际问题的能力,提高学生的逻辑思维和创造力。
3. 培养学生团队合作精神,提高学生的沟通能力和协作能力。
教学内容:1. 不等式的基本概念和性质。
2. 解决实际问题的方法和技巧。
教学过程:一、导入(5分钟)1. 教师通过引入日常生活中的不等式例子,如身高、体重等,引发学生对不等式的兴趣。
2. 学生分享自己对不等式的理解和例子。
二、基本概念和性质(15分钟)1. 教师介绍不等式的基本概念,如大于、小于、等于等。
2. 教师引导学生通过观察和操作,探索不等式的性质,如传递性、互补性等。
3. 学生进行小组讨论,总结不等式的性质。
三、解决实际问题(15分钟)1. 教师提出一个实际问题,如分配物品、安排时间等,要求学生用不等式表示问题。
2. 学生独立思考,列出不等式,并解释不等式的含义。
3. 学生进行小组讨论,共同解决不等式问题,并分享解题思路和方法。
四、不等式游戏(10分钟)1. 教师设计一个不等式游戏,如不等式接龙、不等式猜谜等。
2. 学生分组进行游戏,要求学生在游戏中运用不等式的知识和技巧。
3. 教师引导学生总结游戏中的规律和技巧。
五、总结和反思(5分钟)1. 教师引导学生总结不等式的基本概念和性质,以及解决实际问题的方法和技巧。
2. 学生分享自己的学习心得和体会。
3. 教师对学生的表现进行评价和反馈。
教学评价:1. 学生对不等式的理解和应用能力。
2. 学生在解决实际问题中的逻辑思维和创新能力。
3. 学生在团队合作中的沟通能力和协作能力。
教学资源:1. 不等式的实例和图片。
2. 不等式游戏的设计和材料。
教学建议:1. 在教学过程中,教师要注重引导学生主动探索和发现不等式的性质,培养学生的观察力和思考能力。
2. 在解决实际问题时,教师要鼓励学生运用不等式的知识和技巧,培养学生的应用能力和创新意识。
3. 在游戏环节,教师要注重引导学生总结规律和技巧,培养学生的归纳能力和反思意识。
一元二次方程不等式教案(初中数学第一册)

本文讲述的是初中数学第一册中一元二次方程不等式教案。
一、教学目标1. 理解一元二次方程的概念及其解法。
2. 熟练掌握一元二次方程的不等式解法。
二、教学重难点1. 一元二次方程和一元二次方程不等式的基本概念。
2. 如何正确应用解一元二次方程的方法求解其不等式解。
三、教学过程1. 课前预备教师可结合视频或PPT等形式简单介绍一元二次方程的基本概念,如何列方程以及解方程的方法,让学生对这一知识点有一个初步的了解和认识。
2. 课堂授课(1)知识点讲解一元二次方程不等式是指将一元二次方程的等号改为大于号或小于号,从而形成的不等式。
这种不等式的解法和一元二次方程是类似的。
(2)例题演练对于形如ax^2+bx+c>0或ax^2+bx+c<0的一元二次方程不等式,我们可以先通过求一元二次方程的根的方法求出方程的零点,再根据零点的情况判断其不等式的解法。
例如,对于方程2x^2-3x-1>0,我们可以运用求根公式得到其根为:x1 = 1,x2 = -0.5根据根的情况,可知该方程在x<-0.5或x>1时成立,其解集为x∈( -∞,-0.5 )∪( 1,+∞ )。
3. 课后作业为了帮助学生更好地掌握一元二次方程不等式的解法,教师可以布置练习题,如:1. 解方程:2x^2-7x+3<02. 解方程:3x^2-6x-7>03. 解方程:x^2-2x+5<0四、教学方式本节课程的教学方式可以采用教师讲解和学生练习相结合的方式。
在教师讲解完知识点后,可以让学生分组完成练习题,帮助他们更好地掌握和理解所学知识。
五、教学效果评估通过练习题和随堂测试等方式,可以对学生掌握程度和理解情况进行评估。
同时,教师也可以结合授课情况和学生反馈,及时进行调整和改进,确保教学效果的最大化。
六、教学心得体会一元二次方程不等式虽然和一元二次方程的解法类似,但由于不等式的存在,需要考虑更多的情况和方法,对学生的思维能力和数学素养要求也更高。
初中数学不等式的性质教案

初中数学不等式的性质教案教学目标:1. 理解不等式的概念,掌握不等式的基本性质。
2. 能够运用不等式的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 不等式的概念和基本性质2. 不等式的运算规则3. 不等式的解法4. 不等式在实际问题中的应用5. 不等式的证明方法教学准备:1. 教学课件或黑板2. 练习题和答案3. 教学参考资料教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的数学知识,为新课的学习做铺垫。
二、不等式的基本性质(15分钟)1. 介绍不等式的基本性质,如传递性、同向可加性等。
2. 通过示例和练习,让学生理解和掌握不等式的基本性质。
三、不等式的运算规则(15分钟)1. 介绍不等式的运算规则,如加减乘除等。
2. 通过示例和练习,让学生理解和掌握不等式的运算规则。
四、不等式的解法(15分钟)1. 介绍不等式的解法,如移项、化简等。
2. 通过示例和练习,让学生理解和掌握不等式的解法。
五、不等式在实际问题中的应用(15分钟)1. 介绍不等式在实际问题中的应用,如优化问题、经济问题等。
2. 通过示例和练习,让学生理解和掌握不等式在实际问题中的应用。
教学评价:1. 通过课堂讲解和练习,评估学生对不等式的概念、性质、运算规则和解法的理解和掌握程度。
2. 通过课后作业和测试,评估学生对不等式在实际问题中应用的能力。
教学反思:根据学生的反馈和表现,对教学方法和内容进行调整和改进,以提高学生的学习效果和兴趣。
初中数学不等式的性质教案(续)六、不等式的证明方法(15分钟)1. 介绍不等式的证明方法,如直接证明、反证法等。
2. 通过示例和练习,让学生理解和掌握不等式的证明方法。
七、实际问题中的不等式(15分钟)1. 介绍不等式在实际问题中的应用,如物理、化学等领域的应用。
2. 通过示例和练习,让学生理解和掌握不等式在实际问题中的应用。
1. 提供一些综合性的不等式题目,让学生独立解答。
人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计

(二)过程与方法
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力,采用以下方法:
1.通过引入实际生活中的例子,激发学生对不等式的兴趣,引导学生发现不等式在生活中的广泛应用。
2.采用启发式教学,鼓励学生主动探究不等式的基本性质,培养学生的自主学习能力。
教师提问:“同学们,你们知道什么是比较吗?在生活中,我们经常会比较一些事物的大小,比如身高、体重等。今天,我们就来学习一种新的数学表达方式,用来表示两个数的大小关系。”
2.学生分享:请学生举例说明生活中遇到的大小比较情况,让学生感受到数学与生活的联系。
3.引入概念:教师通过学生分享的例子,引出不等式的定义,并用数学符号表示。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.了解不等式的定义,理解不等式两边的关系,能够正确书写和识别常见的不等式。
2.熟练掌握不等式的基本性质,如加法、减法、乘法、除法的性质,并能够运用这些性质进行不等式的化简和求解。
3.学会使用数轴和区间表示不等式的解集,掌握求解一元一次不等式的方法,并能够解决实际问题。
难点:运用不等式的基本性质进行复杂不等式的化简和求解,以及在实际问题中灵活运用不等式知识。
2.重点:培养学生利用数轴和区间表示不等式解集的能力,提高学生的直观想象力和逻辑思维能力。
难点:让学生理解并掌握不等式解集的求解方法,特别是在处理多重不等式和区间交、并问题时。
(二Байду номын сангаас教学设想
1.创设情境,导入新课
1.学生在不等式的理解上可能存在一定难度,需要通过具体实例和生活情境,帮助学生建立起不等式的直观感知。
初中数学_不等式的基本性质教学设计学情分析教材分析课后反思

2.2 不等式的基本性质执教人一、教学目标1.知识与能力(1)掌握不等式的三条基本性质.(2)运用不等式的基本性质对不等式进行变形.2.过程与方法(1)通过等式的基本性质,探究不等式的基本性质,体会类比的数学思想.(2)通过观察、猜想、验证、归纳等数学活动,经历从特殊到一半、有具体到抽象的认知过程,感受数学思考过程的合理性,发展思维能力和语言表达能力.3.情感态度与价值观通过探究不等式的基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质.通过生活中鲜活的素材,渗透德育教育,培养学生正确的人生观,增强学好数学的信心.二、教学重点探索不等式的基本性质,并能正确运用他们将不等式变形.三、教学难点不等式的基本性质3的探索及运用.难点成因:根据等式的基本性质进行变形不需要考虑符号问题,而不等式的两边同时乘以或除以同一个数时,学生对数的分类意识淡薄,特别是这个数是负数时不等号的方向忘记发生改变是学生的易错点.破解策略:一是设计探究活动3、抢答题、典例互动让学生由特殊数到字母体会不等式的两边同时乘以或除以同一个负数时不等号的方向要发生改变;二是在教师启发下让学生充分思考、交流,鼓励学生大胆发言,教师给予评价,调动学生的积极性.四、教学方法和学法指导数学课程新标准特别强调数学学习的选择、教学活动的设计及教学的评价。
强调学习内容要有利于学生主动进行观察、实验、验证、推理等交流活动;有效的数学学习活动不能单纯的模仿与记忆,动手实践、自主探索和合作交流是学生学习数学的重要方式.教师向学生提供现实、有趣、有教育意义的学习素材,以便于学生自主展开探究,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、获取数学思想和方法、积累广泛的数学活动的经验.根据课标和本节课的特点,本节课采取“探究—研讨”教学法为主,形成一种多项交流的课堂氛围.根据学生的身心特点和已有的知识储备,指导学生以“自主学习、合作学习、类比迁移学习”为主.三、教学程序(一)复习回顾你还记得等式的基本性质吗?等式的基本性质1:等式的基本性质2:提出问题:不等式与等式只一字之差,它们有类似的性质吗?设计意图:不等式的基本性质与等式的基本性质类比,同时为“思考题:不等式的基本性质与等式的基本性质有什么相同点和不同点?”做铺垫.二、情景导入欣赏2014春晚视频《时间去哪儿了》,体会你最感动的一句话是什么?最想对自己的父母说些什么?设计意图:用学生熟悉和感兴趣的问题情境引出问题,展现数学与现实生活与其他学科的综合,突出“数学化”的过程,让学生体验数学的科学性、工具性、应用性.三、合作探究探究活动1用不等式表示: 40>1510年前:40-10 > 15-105年后:X年前:X年后:观察以上不等式,你发现了什么结论?不等式的基本性质1:不等式的两边都(或)同一个,不等号的 .符号表示: .设计意图:让学生从生活中鲜活的实例感受数学的存在,同时类比等式的基本性质1总结不等式的基本性质,指出“=”没有方向性,而不等号有方向性,我们应该重点研究不等式方向上的变化。
人教版数学七年级下册 9.1.2不等式的性质(习题课) 教案

9.1.2 不等式的性质(习题课)一、教材内容分析:《不等式的性质》是人教版初中数学教材七年级下册第9章第3节内容。
在此之前学生已学习了等式的基本性质,这为过渡到本节的学习起着铺垫作用。
不等式是初中代数的重要内容之一。
数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。
“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。
二、教学目标1.知识与技能目标:掌握不等式的三个性质,并能熟练的应用不等式的性质进行不等式的变形。
2.过程与方法目标:通过类比,理解不等式的基本性质与等式的基本性质之间的区别和联系。
3.情感态度与价值观目标:通过探索不等式的性质,让学生体会数学的乐趣,同时提高新旧知识的迁移学习能力。
三、学情分析七年级学生思维活跃,求知欲望强,在知识掌握上,学生已学过等式的基本性质,许多同学出现知识遗忘,所以应全面系统的去讲述,深入浅出的分析。
四、重难点重点:熟练掌握不等式的三个基本性质难点:对不等式的基本性质3的理解和熟练运用五、教学方法教法:本节课从学生的认知规律出发,采用引导探究法,讲练结合法,进行教学学法:本节课的学习以学生动脑思考、自主探索与合作交流为主,调动学生学习的积极性和课堂参与程度。
六、教具准备:多媒体课件、课时练七、教学过程1.复习回顾上节课我们已经学过了不等式的基本性质,现在一起回顾一下不等式的基本性质有哪些?(1)不等式的性质1是什么?符号语言呢?(2)不等式的性质2是什么?符号语言呢?(3)不等式的性质3是什么?符号语言呢?老师提问并总结不等式的性质通过让学生复习回顾不等式的性质,为本节课用不等式基本性质解决问题做铺垫2.典例解析在这个不等式两边进行怎么样的变形,才能得到其中的不等式。
比较大小时,要明确不等式两边进了哪种变形,再依据对应的不等式性质,确定不等号方向是否改变.变式1 (课时练94页第2题)已知x<y,用“>”或“<”填空:(1)-2x______ -2y(2)2x _____ 2y .(3)x+3 _____ y+3 .(4)3x-100m _____ 3y-100m .教师先做示范,然后提问学生:每一道题都提问学生回答,并且每个小题分两步:一不等式两边进行了哪种变形?二根据不等式性质,不等号方向是否改变。
教案 北师大版 初中 数学 八年级 下册《不等式的性质》

教案北师大版初中数学八年级下册《不等式的性质》一. 教材分析北师大版初中数学八年级下册《不等式的性质》这一节,主要让学生掌握不等式的性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
这些性质是解不等式问题的关键,也为后续学习不等式的解集和不等式的应用打下基础。
二. 学情分析学生在学习这一节之前,已经掌握了整式的加减、乘除运算,具备了一定的逻辑思维能力。
但是,对于不等式的性质的理解和应用,还需要通过实例进行引导和巩固。
同时,学生可能对于不等式的两边同时乘以或除以同一个负数时,不等号方向改变的理解存在困难。
三. 教学目标1.让学生理解不等式的性质,并能够运用不等式的性质解不等式。
2.培养学生的逻辑思维能力和解决实际问题的能力。
3.激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:不等式的性质及其应用。
2.教学难点:不等式的两边同时乘以或除以同一个负数时,不等号方向的改变。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,通过引导、讲解、练习、讨论等方式,让学生深入理解不等式的性质,提高学生的数学思维能力。
六. 教学准备1.教案、PPT等相关教学资料。
2.练习题、黑板、粉笔等教学用品。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5厘米,那么他比小红高多少厘米?”引导学生思考不等式的性质。
2.呈现(15分钟)讲解不等式的性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
通过实例进行讲解,让学生深入理解不等式的性质。
3.操练(15分钟)让学生分组讨论,每组找出一个不等式,运用不等式的性质进行变形,并解释为什么这样变形是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式和不等式组知识点:一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc. 注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种): (1)a – b >0⇔ a >b (2)a – b=0⇔a=b (3)a –b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
三、不等式(组)的类型及解法 1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
典型例题:1、判断正误:(1)若a >b ,c 为实数,则2ac >2bc ;(2)若2ac >2bc ,则a >b2、若a <b <0,那么下列各式成立的是( )A 、b a 11<B 、ab <0C 、1<b aD 、1>b a3、如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)4、若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y>5、不等式325x +≥的解集是6、不等式23x x >-的解集为7、不等式5(1)31x x -<+的解集是8、不等式组103x x +>⎧⎨>-⎩,的解集是9、不等式组6020x x -<⎧⎨->⎩的解是10、解不等式组5125431x x x x ->+⎧⎨-<+⎩,.(按格式写过程)11、下列哪个不等式组的解集在数轴上表示如图2所示 ( )A.21xx≥⎧⎨<-⎩B.21xx≤⎧⎨>-⎩C.21xx>⎧⎨≤-⎩D.21xx<⎧⎨≥-⎩12、不等式组11223xx⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为()13、解不等式组⎩⎨⎧->+<-.)1(215,02xxx(按格式写过程)14、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm15、不等式组221xx-⎧⎨-<⎩≤的整数解共有()A.3个B.4个C.5个D.6个16、若(m-2)x|m-1|-3>6 是关于x 的一元一次不等式,则m=_____A.B.C.D.17、甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h18、某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A.6折B.7折C.8折D.9折19、某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.20、由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A 型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?21、某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?22、某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.24、植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?课后作业1、如果(m+1)x |m|>2 是一元一次不等式,则 m=_____2、若x<y<0,用“<”或“>”填空:3、(1)-x________-y;(2)x 1________y 1;(3)|x|________|y|;(4)x 2________y 2;4、不等式组260,58x x x +>⎧⎨+⎩≤ 的解集在下列数轴上表示正确的是( )5、 6、 7、 8、 9、 10、 11、 12、5、不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )6、求不等式4(x+1)≤24的正整数解.7、解不等式:5x –12≤2(4x-3)8、解不等式:322x x -≥-AB C D9、解不等式组2x xx x⎧⎨⎩≥+1 ①+8≥4-1 ②,并把解集在数轴上表示出来.10、解不等式组3(21)2102(1)3(1)xx x---⎧⎨-+-<-⎩≥,并把解集在数轴上表示出来.11、解不等式组312(1)312x xx-<+⎧⎪⎨+≥⎪⎩,,并在所给的数轴上表示出其解集。
12、某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?13、某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.14、某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?15、某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?16、在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游(总共有8辆车,每辆车安排一名导游),现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?。