高效液相色谱法
高效液相色谱法
2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
高效液相色谱法 HPLC
1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓
二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)
高效液相色谱法简介
高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器
hplc高效液相色谱法
HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。
HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。
本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。
一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。
固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。
流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。
样品是通过进样器注入流动相中,并随流动相进入色谱柱。
当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。
这个时间称为保留时间(retention time),通常用tR表示。
保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。
当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。
这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。
色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。
将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。
色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。
通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。
二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。
高效液相色谱法
第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。
具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。
HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)是最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。
一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。
经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。
它存在致命弱点:速度慢、效率低和灵敏度低。
HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。
高效液相色谱法
高效液相色谱法高效液相色谱法(《中国药典》2010年版二部附录V D)系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注入的供试品,由流动相带人柱内,各组分在柱内被分离,并依次进入检测器,由积分仪或数据处理系统记录和处理色谱信号。
1 对仪器的一般要求所用的仪器为高效液相色谱仪,由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成,仪器应按现行国家技术监督局"液相色谱仪检定规程"定期检定并符合有关规定。
1.1 色谱柱最常用的色谱柱填充剂为化学键合硅胶。
反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶(如氰基键合硅烷和氨基键合硅烷等〉也有使用。
正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。
离子交换色谱系统使用离子交换填充剂;分子排阻色谱系统使用凝胶或高分子多孔微球等填充剂;对映异构体的分离通常使用手性填充剂。
填充剂的性能(如载体的形状、粒径、孔径、表面积、键合基团的表面覆盖度、含碳量和键合类型等)以及色谱柱的填充,直接影响供试品的保留行为和分离效果。
孔径在15nm(lnm= lOA)以下的填料适于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填料。
除另有规定外,分析柱的填充剂粒径一般在3~10µm之间。
粒径更小(约2µm)的填充剂常用于填装微径柱(内径约2mm)。
使用微径柱时,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也需作适当的调整。
当对其测定结果产生争议时,应以品种正文规定的色谱条件的测定结果为准。
以硅胶为载体的键合固定相的使用温度通常不超过40°C,为改善分离效果可适当提高色谱柱的使用温度,但不宜超过60°C。
流动相的pH值应控制在2~8之间。
当pH值大于8时,可使载体硅胶溶解;当pH值小于2时,与硅胶相连的化学键合相易水解脱落。
高效液相色谱法
(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。
第五章高效液相色谱法
数据处理系统
打开工作站,选择工作通道 编辑方法文件,设置方法名称、运行时间及定量方法 输入路径名、样品名、操作者等 样品分离完成后,记录谱图文件名和色谱峰峰高、峰面积和保留值等
2019/7/25
四. 液相色谱固定相
1.液-固色谱固定相
种类:硅胶、氧化铝、分子筛、聚酰胺等; 结构类型:全多孔型和薄壳型; 粒度:5~10 μm;
(3)硬质凝胶 多孔硅胶、多孔玻珠等; 化学稳定性、热稳定性好、机械强度大,流动相性质影响
小,可在较高流速下使用。 可控孔径玻璃微球,具有恒定孔径和窄粒度分布。
2019/7/25
气相色谱中的固定相原则上都可以用于液相色谱,其选 用原则与气相色谱一样。
选择合适的固定相,降低填料粒度可显著提高柱效,但 在高效液相色谱中,分离柱的制备是一项技术要求非常高的 工作,一般很少自行制备。
2019/7/25
光电二极管阵列检测器
光电二极管阵列检测器:1024个二极管阵列,各检测特 定波长,计算机快速处理,三维立体谱图,如图所示。
2019/7/25
二极管阵列检测器
样品池 D2 / W 灯
光栅
每一组分可在每一波 长处得到一吸光度值
二极管阵列
二极管阵列检测器的优点
1)采集三维谱图 2)峰纯度检验 3)光谱库检索 4)可以发现单波长检测时未测到的峰
2019/7/25
2. 液-液色谱固定相
(1)全多孔型担体 由氧化硅、氧化铝、硅藻土等制成的多孔球体;早期采
用100μm的大颗粒,表面涂渍固定液,性能不佳已不多见; 现采用10μm以下的小颗粒,化学键合制备柱填料;
(2)表面多孔型担体 (薄壳型微珠担体) 30~40μm的玻璃微球,
高效液相色谱法
正相色谱:以极性物质做固定相,非极性物质作
流动相,即流动相的极性<固定相的极性。正相色 谱适用于极性化合物的分离,极性小的先出柱, 极性大的后出柱。(反之为反相色谱)
高效液相色谱仪
压力表 储液器 高压泵
进样器
梯度洗 提装置
色 谱 柱
记录仪 检测器
馏分收集器
一 高压输液系统 1.贮液器:1-2L的玻璃瓶,配有溶剂过滤器(Ni 合金),其孔径约2 m,可防止颗粒物进行 泵内。 2.脱气:超声波脱气或真空加热脱气。溶剂通 过脱气器中的脱气膜,相对分子量小的气 体透过膜从溶剂中除去。 3.高压泵: 对输液泵的要求:密封性好、输液流量稳 定无脉动、可调范围宽、耐腐蚀。
二 分离和进样系统 (一)进样系统 与GC相比,HPLC柱要短得多,因此由于柱 本身所产生的峰形展宽相对要小些。即, HPLC的展宽多因一些柱外因素引起。这些 因素包括:进样系统、连接管道及检测器 的死体积。进样装置包括两种。 1. 隔膜注射进样:使用微量注射器进样。装 置简单、死体积小。但进样量小且重现性 差。
2.化学发光检测器
是近年发展起来的高选择性、高灵敏度
(二)荧光检测器(FD) 早期的荧光检测器是具有滤光片的荧光 光度计,已基本淘汰。 目前使用的荧光检测器多是具有流通池 的荧光分光光度计(直角光路)。 检测限可达 1× 10-10g / ml ,比紫外检测 器灵敏,但只适用于能产生荧光或其衍生 物能发荧光的物质。
主要用于氨基酸、
多环芳烃、维生素、 甾体化合物、酶类、 黄曲霉素、卟啉类 化合物、农药等的 检测。
利用固定相与流动相之间对待分离组分子溶解
度的差异来实现分离。分配色谱的固定相一般 为液相的溶剂,依靠图布、键合、吸附等手段
第五章高效液相色谱法
9
基本理论
热力学理论:塔板理论——平衡理论 热力学理论:塔板理论——平衡理论 动力学理论:速率理论—— 范第姆特 动力学理论:速率理论 ——范第姆特 方程 色谱图的基本参数:与气相色谱法类 似
10
各类高效液相色谱法的分离原理及选 择
液-固吸附色谱 液-液分配色谱 离子交换色谱 体积排阻色谱 亲和色谱
3
高效液相色谱法的类型
根据固定相的不同 液-固色谱 液-液色谱 根据分离机理的不同 分配色谱 吸附色谱 离子交换色谱 体积排阻色谱 亲和色谱
4
分配色谱:分离组分在两相中的分配系数不 同 吸附色谱:固定相对分离组分的吸附能力不 同 离子交换色谱:不同离子与固定相上的相反 电荷离子间作用力大小不同 体积排阻色谱:根据样品分子尺寸的不同按 分子大小分开 亲和色谱:不同基体上键合多种不同特性的 配位体作固定相,用具有不同pH的缓冲溶液 做流动相,依据生物分子与基体上键联的配 位体之间存在的特异性亲和作用力不同
30
流动相
1. 流动相特性
(1)液相色谱的流动相又称为:淋洗液,洗脱剂 液相色谱的流动相又称为:淋洗液, 液相色谱的流动相又称为 。流动相组成改变,极性改变,可显著改变组分 流动相组成改变,极性改变, 分离状况; 分离状况; (2)亲水性固定液常采用疏水性流动相 , 即流 亲水性固定液常采用疏水性流动相, 亲水性固定液常采用疏水性流动相 动相的极性小于固定相的极性, 动相的极性小于固定相的极性,称为正相液液色 谱法,极性柱也称正相柱。 谱法,极性柱也称正相柱。 (3)若流动相的极性大于固定液的极性 , 则称 若流动相的极性大于固定液的极性, 若流动相的极性大于固定液的极性 为反相液液色谱,非极性柱也称为反相柱。 为反相液液色谱,非极性柱也称为反相柱。组分 31 在两种类型分离柱上的出峰顺序相反。 在两种类型分离柱上的出峰顺序相反。
高效液相色谱法
31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果
高效液相色谱法
60年代研制出气动放大泵、注射泵及低流量往复式 柱塞泵,但后者的脉冲信号很大,难以满足高效液 相色谱的要求。1970年代,往复式双柱塞恒流泵, 解决了这一问题1970年代后,科克兰制备出全多孔 球形硅胶,平均粒径只有7μm,具有极好的柱效, 并逐渐取代了无定形微粒硅胶。之后又制造出的键 合固定相使柱的稳定性大为提高,多次使用成为可 能。1970年后,适合分离生物大分子的填料又成为 研究的热点。1980年后,改善分离的选择性成为色 谱工作者的主要问题,人们越来越认识到改变流动 相的组成是提高选择性的关键
• 流程:如左图所示,流 动相贮器⑴中的流动相 被泵⑵吸入,经梯控制 器按一定的梯度进行混 合然后输出,测其压力 和流量,导入(3)进样 阀(器)经(4)色谱柱 后到(5)检测器检测, 由(7)记录仪记录色谱 图,(6)为废液。
特点(高效液相色谱法有“四高一广”的特点):
①高压:流动相为液体,流经色谱柱时,受 到的阻力较大,为了能迅速通过色谱柱,必 须对载液加高压。 ②高速:分析速度快、载液流速快, 较经典液体色谱法速度快得多,通常 分析一个样品在15~30分钟,有些样 品甚至在5分钟内即可完成,一般小于 1小时。
HPLC已在环境监测中得到广泛应用,特别 适用于分子量大、挥发性低、热稳定 性差的有机污染物的分离和分析如多 环芳烃、酚类、多环联苯、邻苯二甲 酸酯类、联苯胺类、阴离子表面活性 剂有机农药、除草剂等,其中多数属于 美国环保局(EPA)清洁水法案中颁布的 114项优先有机污染物范围。
5.在药品检验中的应用: 现在,在药品质量标准中,对有关物质检查的要 求越来越高,一个药物从合成原料到制备有 关的制剂,再经过贮备、运输、使用,要经过 一段较为复杂和漫长的过程,在此期间,每一 个过程都有可能产生有关的物质,如生产中 可能带入原料、试剂、中间体、副产物和 异构体等;在贮备和运输过程中,可能产生降 解产物,聚合物等。为了保证药物的安全有 效。同时也要考虑到生产的实际情况。因 此,对药物的研究,可以允许有一定量的无害 或低毒性的有关物质液相仪器各厂家的仪 器展。还有对药品的含量测定
高效液相色谱法HPLC
VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、
仪器分析第4讲 高效液相色谱法
经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
4、 离子色谱
ion chromatography
离子色谱法是由离子交换色谱法派生出来的一种 分离方法。由于离子交换色谱法在无机离子的分 析和应用受到限制。例如,对于那些不能采用紫 外检测器的被测离子,如采用电导检测器,由于 被测离子的电导信号被强电解质流动相的高背景 电导信号掩没而无法检测。
2、 液-固吸附色谱
liquid-solid adsorption chromatography
流动相为液体,固定相为固体吸附剂
分离原理:利用溶质分子占据固定相表面吸附 活性中心能力的差异
分离前提:K不等或k不等
液—固吸附色谱
固体吸附剂主要类型: 极性的硅胶(应用最广) 氧化铝 分子筛 非极性的活性炭
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。
第二十章高效液相色谱法
φ A , φB
—每个溶剂体积分数。
例如:如何用水和乙腈配制 P ' 值为6.9二元溶剂?
' ' ' 已知: PH2O 10.2; PACN 5.8; PIPA 3.9.
' ' ' 解: PAB φ A PA φB PB ' ' φH2O PH2O φ ACN PACN ' ' φH2O PH2O (1 φH2O )PACN
φH2O 10.2 (1 φH2O ) 5.8 6.9 φH2O 0.25
水:乙腈=25:75
3. 溶剂强度参数(表20-1)
(2)溶剂强度参数 ε
*
定义:溶剂分子在单位吸附剂表面的吸附能。
ε* 2 0.8ε* 2O3 SiO Al
使用于吸附色谱或正相色谱
3. 溶剂强度参数(表20-1)
2. 进样系统
1)隔膜注射进样:使用微量注射器进样。装置简 单、死体积小。但进样量小且重现性差。 2)高压进样阀:目前最常用的为六通阀。由于进 样量可由样品管控制,因此进样准确,重复性好,
如图。
装入样品 采样环 进样
进色谱柱 泵入溶剂 出口
3. 分离系统(色谱柱)
1)柱材料:
常用内壁(抛光)光滑的优质不锈钢柱,使用前
三. 应用
由于HPLC分离分析的高 灵 敏 度 、 定量 的 准 确 性 、
适 于 非挥发性 和 热不稳定
组 分 的 分 析, 因 此 , 在工 业 、 科 学 研究 , 尤 其 是在 生 物 学 和 医学 等 方 面 应用 极 为 广 泛 。如 氨 基 酸 、蛋 白 质 、 核 酸、 烃 、 碳 水化 合 物 、 药 品、 多 糖 、 高聚
中国药典版--高效液相色谱法
色谱条件与系统适用性试验
按各品种项下的要求对仪器进行适用 性试验,即用规定的对照品对仪器进 行试验和调整,应达到规定的要求; 或规定分析状态下色谱柱的最小理论 板数、分离度、重复性和拖尾因子。
(1) 色谱柱的理论板数
色谱柱的理论板数(n) 在选定的条件下,注入 供试品溶液或各品种项下规定的内标物质溶液, 记录色谱图,量出供试品主成分或内标物质峰 的保留时间tR(以分钟或长度计,下同,但应 取相同单位)和半高峰宽(Wh/2),按 n=5.54(tR/Wh/2)<2>计算色谱柱的理论板数, 如果测得理论板数低于各品种项下规定的最小 理论板数,应改变色谱柱的某些条件(如柱长, 载体性能,色谱柱充填的优劣等),使理论板 数达到要求。
(3) 拖尾因子
为保证测量精度,特别当采用峰高 法测量时,应检查待测峰的拖尾因子 (T)是否符合各品种项下的规定,或不同 浓度进样的校正因子误差是否符合要 求。除另有规定外, (T) 应在0.95~ 1.05之间。
四重复性
取各品种下的对照溶液,连续进样5次, 除令有规定外,其峰面积测量值相对 标准偏差应不大于2.0%。也可按照规 定 配制相当于80%、100%和120%的 对照品溶液,加入规定量的内标溶液, 配成三种不同浓度的溶液,分别注样3 次,计算平均校正因子,其相对标准偏 差应不大于2.0%。
对氨基酸分离,用经典色谱法,柱长约 170cm,柱径0.9cm,流动相速度为 30cm3·h-1,需用20多小时才能分离出20 种氨基酸;而用高效液相色谱法,只需lh 之内即可完成。又如用25cm×0.46cm的 Lichrosorb-ODS(5μ)的柱,采用梯度洗 脱,可在不到0.5h内分离出尿中104个组
3.测定法
定量测定时,可根据样品的具体情 况采用峰面积法或峰高法。但用归一 法或内标法测定杂质总量时,须采用 峰面积法。
高效液相色谱法
液相色谱法固定相
(三) 离子交换色谱法固定相
1. 薄膜型离子交换树脂: 即以薄壳玻璃珠为担体, 在它的表面涂约 1% 的离子交换树脂而成。
2. 离子交换键合固定相: 用化学反应将离子交换基 团键合在惰性担体表面。
液相色谱法固定相
(四) 亲和色谱固定相
亲和色谱是一种基于分离物与配体间特异
的生物亲合作用来分离生物大分子的技术,它
五 高效液相色谱分离类型的选择
要正确地选择色谱分离方法,首先必须尽可能多的 了解样品
的有关性质,其次必须熟悉各种色谱方法的主要特点及其应
用范围。选择色谱分离方法的主要根据 是样品的相对分子质 量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度
以及化学结构等物理、化学性质。
1、相对分子质量 对于相对分子质量较低(一般在200以下),挥发性比
的作用越来越大,主要应用如下:
多环芳烃、农药、酚类、真菌毒素、异腈酸酯等
等。 特别是有机农药方面的检测。
1. 有机氯农药残留量分析
固定相:薄壳型硅胶(37 ~50m)
流动相:正己烷
流 速:1.5 mL/min 色谱柱:50cm2.5mm(内径)
检测器:差示折光检测器
可对水果、蔬菜中的农药残 留量进行分析。
极性小的组分先出柱,极性大的组分后出柱
适于分离极性组分
反相色谱——固定液极性 < 流动相极性(RLLC)
极性大的组分先出柱,极性小的组分后出柱 适于分离非极性组分
载体又称担体
(1) 全多孔型担体:
a.
HPLC早期使用的担体与GC类似,是颗粒均匀的多孔球 体,如有氧化铝、氧化硅、硅藻土等制成的 Φ 100μ m全多孔型担体。
高效液相色谱法(HPLC)简介
高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减少方法 : a 降低 p:目前商品柱多采用 降低d 目前商品柱多采用3-5µm粒径 粒径 b 降低λ:采用球形、均匀分布固定相。 降低 :采用球形、均匀分布固定相。
2. 纵 向 扩 散 项 B/u 样品分子沿流动相方向产生扩散, 样品分子沿流动相方向产生扩散,所引起 峰展宽 B=2γDm Dm ∝T/η
第12章 高效液相色谱法 章
high performance liquid chromatography HPLC
HPLC与经典 区别 与经典LC区别 与经典
经典液相色谱 固定相颗粒较大, 固定相颗粒较大,不均 匀 常压下输送流动相 柱效低 分析周期长
现代液相色谱 固定相颗粒小,均匀 固定相颗粒小, 高压下输送流动相 柱效高 分析周期短
正相键合相色谱法(NP-HPLC) 正相键合相色谱法(NP-HPLC) 4)流动相极性与k的关系: )流动相极性与 的关系 的关系: 流动相极性↑,洗脱能力 ,组分t , 流动相极性 ,洗脱能力↑,组分 R↓,k↓ 5)出柱顺序:极性小的组分先出柱 )出柱顺序: 极性大的组分后出柱
6)适用: )适用: 氰基键合相: 氰基键合相:与硅胶的柱选择性相似 氨基键合相:糖类等 氨基键合相:
流动相及其流速的选择: 2. 流动相及其流速的选择: 选粘度小、低流速的流动相——甲醇, 甲醇, 选粘度小、低流速的流动相 甲醇 1ml/min 柱温的选择: 3. 柱温的选择: 选室温25-300C左右。太低,流动相黏度增加, 左右。 选室温 左右 太低,流动相黏度增加, 太高容易产生气泡
二、柱 外 展 宽
3.离子对色谱法(IPC或PIC) 离子对色谱法(IPC或PIC)
反相色谱中,在极性流动相中加入离子对试剂, 反相色谱中,在极性流动相中加入离子对试剂,使被测组分 离子对试剂 与其中的反离子形成中性离子对 增加k和 中性离子对, 与其中的反离子形成中性离子对,增加 和tR,以改善分离
离子对试剂:烷基磺酸钠→ 1)离子对试剂:烷基磺酸钠→分析碱 四丁基季胺盐→ 四丁基季胺盐→分析酸 影响k 2)影响k的因素 的极性有关(同反相色谱) a.与m的极性有关(同反相色谱) 的链长有关:R↑长 极性↓ b.与R的链长有关:R↑长,极性↓小,tR↑,k↑ 适用:较强的有机酸、 3)适用:较强的有机酸、碱
3.洗脱方式 . 1)等度洗脱(恒组成溶剂洗脱) )等度洗脱(恒组成溶剂洗脱) 以固定配比的溶剂系统洗脱组分(一个泵) 以固定配比的溶剂系统洗脱组分(一个泵) 类似GC的等温度洗脱 类似 的等温度洗脱 2)梯度洗脱: )梯度洗脱: 在一定分析周期内不断变换流动相的种类和比例 即不断改变其极性(两个泵) 即不断改变其极性(两个泵) 适于分析极性差别较大的复杂组分 类似GC的程序升温(沸程较长样品) 的程序升温( 类似 的程序升温 沸程较长样品)
1、反相键合相色谱法(RP-HPLC) 反相键合相色谱法(RP-HPLC) 1)分离原理 ) 流动相与溶质有排斥力, 流动相与溶质有排斥力 , 促使溶质分子与键 合相的烃基发生疏水缔合,且缔合反应是可 合相的烃基发生疏水缔合, 逆的。 逆的。 k↓,组分 R↓ ,组分t
反相键合相色谱法( 反相键合相色谱法(RP-HPLC) ) 2)固定相:极性小的烷基键合相 )固定相: C8柱,C18柱(ODS柱) 柱 十八烷基键合相:常用的非极性键合相 十八烷基键合相:
2)流动相的物理性质 流动相的物理性质 流动相的 沸点bp、分子量 、密度、介电常数e 沸点 、分子量M、密度、介电常数 粘度η、折射率RI、 粘度 、折射率 、紫外吸收截止波长 溶剂强度参数ε(Al2O3)、溶解度参数 溶剂强度参数 、 δ(色散 d、取向极性 0、受质子 a 色散δ 取向极性δ 受质子δ 色散 给质子δ 、溶剂极性参数P 质子接 给质子 h)、溶剂极性参数 / (质子接 给质子x 偶极x 、 受xe、给质子 d、偶极 n)、选择性分 表面张力、 组、表面张力、离子对色谱溶剂强度 (P/+0.25e)
影响因素: 影响因素:固定相内部阻力影响
C m ∝ d / Ds
2 f
减免方法: 减免方法:减少固定相液膜厚度 ——化学键合相 ——化学键合相
6、HPLC法中分离条件的选择 HPLC法中分离条件的选择 H = A + (Cm+Csm)u 1. 固定相与装柱方法的选择: 固定相与装柱方法的选择: 选粒径小的、分布均匀的球形固定相( 选粒径小的、分布均匀的球形固定相( dp≤10µm) 首选化学键合相,匀浆法装 ) 首选化学键合相, 柱
反相键合相色谱法( 反相键合相色谱法(RP-HPLC) ) 3)流动相:极性大的甲醇-水或乙腈 水 )流动相:极性大的甲醇 水或乙腈 水或乙腈-水 流动相极性 > 固定相极性 底剂 + 有机调节剂(极性调节剂) 有机调节剂(极性调节剂) 甲醇,乙腈, 例:水 + 甲醇,乙腈,四氢呋喃
反相键合相色谱法( 反相键合相色谱法(RP-HPLC) ) 4)流动相极性与k的关系: )流动相极性与 的关系 的关系: 流动相极性↑ 洗脱能力↓ k↑,组分t 流动相极性↑,洗脱能力↓,k↑,组分tR↑ 5)出柱顺序:极性大的组分先出柱 )出柱顺序: 极性小的组分后出柱 6)适用:非极性-中等极性组分 )适用:非极性-
2 p
Dm ∝T/η
减免方法: ) 减免方法:1)减少固定相颗粒直径 2)减少流动相液体黏度(甲醇) )减少流动相液体黏度(甲醇)
静态流动相传质阻力项C 4. 静态流动相传质阻力项Csmu
原因: 原因:处于固定相颗粒 内部孔洞内静态流动相 引起
影响C 的因素与C 影响Csmu的因素与Cm相同
固定相的传质阻力项C 5. 固定相的传质阻力项Csu
Kromasil
Zobax Eclipse
Zobax Extend
min
Zobax SB
流动相的性质和选择
1、流动相的物理性质 、 1)流动相要求: 流动相要求: 流动相要求 易得易纯化,无毒不易燃。 ①易得易纯化,无毒不易燃。 检测器的适应性:如紫外检测器对 ②检测器的适应性 如紫外检测器对 溶剂的透明波长要求;示差折光不能 溶剂的透明波长要求;示差折光不能 用梯度洗脱 ③对样品有一定溶解度而不反应 纯净,低廉 低粘度(5× 低廉,低粘度 ④纯净 低廉 低粘度 ×10-4Pa.S), 低沸点(>柱温 柱温(20~50)) 低沸点 柱温
DAD1 E, Sig=275,16 Ref=off (F:\DONNA\AJX\JX0-66\JIANG035.D) mAU
Luna
20 0 0 10 20 30 DAD1 E, Sig=275,16 Ref=off (F:\DONNA\AJX\JX0-66\JIANG050.D) mAU 20 10 0 0 10 20 30 VWD1 A, Wavelength=275 nm (F:\DONNA\AJX\JX0-66\JIANG051.D) mAU 100 50 0 0 10 20 30 DAD1 E, Sig=275,16 Ref=off (F:\DONNA\AJX\JX0-66\JIANG054.D) mAU 75 50 25 0 0 10 20 30 DAD1 E, Sig=275,16 Ref=off (F:\DONNA\AJX\JX0-66\JIANG057.D) mAU 100 50 0 0 10 20 30 40 50 60 70 min 40 50 60 70 40 50 60 70 min 40 50 60 70 min 40 50 60 70 min
R1 Si OH + Cl R1 C18H37 Si O
Si
R2
Si
R2
C18H37 + HCl
键合相分类
高碳型: 高碳型:R1、R2是两个甲基 特点:载样量大, 特点:载样量大,保留能力强 中碳型: 其中一个是氢, 中碳型:R1、R2其中一个是氢,一个为氯 低碳型: 低碳型: R1、R2都是氯
表面覆盖度:参加反应的硅醇基数目, 表面覆盖度:参加反应的硅醇基数目, 占硅胶表面硅醇基总数的比例。 占硅胶表面硅醇基总数的比例。 作用:决定了键合相是分配还是吸附占 作用: 主导 封尾:为了减少残余的硅醇基, 封尾:为了减少残余的硅醇基,一般在 键合反应后, 键合反应后,用三甲基氯硅烷等小分子 进行钝化处理。 进行钝化处理。
基本理论第2节 基本理论-速率理论
一、柱内展宽
H = A + B / u + (C m + C sm + C s )u
Csm为静态流动相传质阻力系数
1. 涡 流 扩散 项 A 组分在色谱柱中运行时间不同, 组分在色谱柱中运行时间不同,导致色谱 峰展宽。 峰展宽。 影响因素: 影响因素:固定相的粒度和填充均匀程度
从进样器到检测器之间的体积称柱外死 体积,均可导致色谱展宽,柱效下降。 体积,均可导致色谱展宽,柱效下降。 减免方法: 减免方法:应尽可能减少柱外死体积
第3节
各类高效液相色谱法
吸附色谱法 化学键合相 离子对色谱法
一、吸 附 色 谱 法 1.分离原理 2.固定相:极性和非极性固定相 .固定相: 3.流动相:底剂(烷烃)+ 有机极性调节剂 .流动相:底剂(烷烃)
液相色谱中Dm比GC中小 5 比 中小10 液相色谱中 中小 u是最佳流速的 倍 是最佳流速的3-5倍 是最佳流速的
B/u忽略 忽略
3.流动的流动相传质阻力项C 3.流动的流动相传质阻力项Cmu 流动的流动相传质阻力项
流动相本身, 流动相本身,处于不 同层流的分子具有不 同流速。 同流速。
C m ∝ d / Dm
Phenomenex Luna C18(250mm×4.6mm,5µm ( × , µ )色谱柱 (Aschaffenburg, Germany)。流动相: 。流动相: (A)乙腈 乙腈-(B)0.3%醋酸水溶液进行梯度洗脱: 醋酸水溶液进行梯度洗脱: 乙腈 醋酸水溶液进行梯度洗脱 0-30min:A 28%,B 72%; : , ; 30-53min: A 28%升至 %, 72%降至 %; : %,B %降至66%; %升至34%, 53-70min: A 34%升至 %, 66%降至 %。 : %,B %降至20%。 %升至80%, 流速: 流速:1.0 ml·min-1; 检测波长: 检测波长:275 nm; 进样量: 进样量:20µl; ; 柱温: ℃ 柱温:30℃;