中考数学压轴题集锦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学冲刺复习资料:二次函数压轴题
1、(本题满分10分)
如图,在平面直角坐标系中,抛物线y =-
3
2x 2
+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2
-x 1=5.
(1)求b 、c 的值;(4分)
(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
2、如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =
ABOC 绕点O 按顺时针
方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2
y ax bx c =++过点
A E D ,,.
(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;
(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. y O 第26题图
D E
C F
A B (第25题图)
A
x
y
B
C
O
3、如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线2
23
(0)y ax x c a =-
+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;
(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;
(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.
4、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM
为
1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经
过A B ,两点.
(1)求二次函数的解析式;
(2)求切线OM 的函数解析式;
(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.
5、ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .
(1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);
(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;
(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似? 图14
y
x
O
A B M
O 1
A O x
y
B
F
C
6、已知:如图14,抛物线2
334
y x =-+与x 轴交于点A ,点B ,与直线3
4
y x b =-
+相交于点B ,点C ,直线3
4
y x b =-+与y 轴交于点E .
(1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多
少?
7、已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交
点B 的坐标;
⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线 上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在, 请求出点M 的坐标;若不存在,请说明理由.
8、如图19-1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.
(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E ,两点的坐标;
(2)如图19-2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少? (3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.
9、如图,在直角坐标系xOy 中,点P 为函数2
14
y x =
在第一象限内的图象上的任一点,点A 的坐标为(01),
,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .
(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;
②平行四边形APQR 为菱形;
(3)除P 点外,直线PH 与抛物线2
14
y x =有无其它公共点?并说明理由.
y B
C O
A
D E
y B
C O
A
D
E P
M
N
x l
Q
C P A
O B H R
y