2020学年中考数学模拟试题(四)

合集下载

2020-2021学年江苏省无锡市九年级四模数学试题及答案解析

2020-2021学年江苏省无锡市九年级四模数学试题及答案解析

中考数学模拟试题注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的姓名、准考证号填写在答题纸相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好.3.所有的试题都必须在专用的“答题纸”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.............)1.-5的相反数是(▲)A.15B.15C.5 D.-52.下列运算正确的是(▲)A.(-2x2)3=-6x6B.(y+x)(-y+x)=y2-x2 C.2x+2y=4xy D.x4÷x2=x23.下列各式中,是3a2b的同类项的是(▲)A.2x2y B.―2ab2C.a2b D.3ab4.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是 ( ▲ ) A .15,15 B .15,15.5 C .15,16D .16,155.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=25°,则∠1的度数是 ( ▲ ) A .155° B .135° C .125° D .115°6.若双曲线y =m 2―2m x 过点(2,6),则该双曲线一定过点 ( ▲ )A .(―3,―4)B .(4,―3)C .(―6,2)D .(4,4)7.如图,△ABC 中,AB =6,AC =8,BC =10,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是 ( ▲ ) A .相切 B .相交C .相离D .无法确定8.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,abC DEF1 2 (第5题)(第8题)(第7题)A BCD B ′(第10题)则任两个螺丝间的距离的最大值为 ( ▲ ) A .6 B .7 C .8 D .109.若A(x 1,y 1)、B(x 2,y 2)是一次函数y =ax +x ―2图像上的不同的两点,记m =(x 1―x 2)( y 1―y 2),则当m <0时,a 的取值范围是 ( ▲ ) A .a <0 B .a >0 C .a <―1 D .a >―110.如图,在△ABC 中,已知AB =2a ,∠A =30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14,有如下结论:①BC 的边长等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠前的△ABC 的面积可以等于33a 2;④折叠后,以A 、B 为端点的线段与中线CD 一定平行且相等,其中正确的结论是 ( ▲ )A .①③B .①②④C .①③④D .①②③④二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........处) 11.16的平方根是 ▲ .12.国家提倡“低碳减排”,某公司计划建风能发电站,电站年均发电量约为213000000度,将数据213000000用科学记数法表示为 ▲ . 13.函数23y x =+中自变量x 的取值范围是 ▲ . 14.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为▲ .15.已知圆柱体的底面圆周长是6πcm ,母线长为5cm ,则该圆柱体的全面积为 ▲ cm 2.16.如图,BD 为⊙O 的直径,点A 为¼BDC的中点,∠ABD =35º,则∠DBC= ▲ º.17.如图,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则这个正方形的面积为 ▲ .18.如图,等腰梯形ABCD ,AB ∥CD ,AB =32,DC =2,对角线AC ⊥BD ,平行于线段BD 的直线MN 、RQ 分别以1个单位/秒、2个单位/秒的速度同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时两直线同时停止运动.记等腰梯形ABCD 被直线MN 扫过的面积为S 1,被直线RQ 扫过的面积为S 2,若S 2=mS 1,则m 的最小值是 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:22cos4523-︒--+;(2)化简:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20. (本题满分8分)(1)解方程:111=+-x x x ; (2)解不等式组:12,5 1.2x x x+≤⎧⎪⎨->⎪⎩.21.(本题满分8分)如图,在□ABCD 中,点E 、F 分别是AD 、BC 的中点,分别连接BE 、DF 、BD . (1)求证:△AEB ≌△CFD ;(2)若四边形EBFD 是菱形,求∠ABD 的度数.22.(本题满分8分)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有 ▲人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是 ▲ 度; (3)在条形统计图中,“非常了解”所对应的学生人数是 ▲ 人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?ABCDFE(第21题)23.(本题满分6分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图或列表法,表示某个同学抽签的各种可能情况;(2)小张同学对物理的①、②和化学的b、c的号实验准备得较好,他同时抽到两科都准备较好的实验题目的概率是多少?24.(本题8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30º,在A、C之间选择一点B (A、B、得塔顶D的仰角为75º,且AB间距离为40m.(1)求点B到AD的距离;(第24题)(2)求塔高CD(结果用根号表示).25.(本题满分10分)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m 元;(二)职工个人当年治病花费的医疗费年底按表1的办法分段处理:表1分段方式处理办法 不超过150元(含150元)全部由个人承担超过150元,不超过10000元(不含150元,含10000元)的部分个人承担n%,剩余部分由公司承担超过10000元(不含10000元)的部分全部由公司承担 设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m 元)为y 元.(1)由表1可知,当0150x ≤≤时,y x m =+;那么,当15010000x <≤时,y = ▲ ; (用含m 、n 、x 的方式表示)(2)该公司职工小陈和大李2013年治病花费的医疗费和他们个人实际承担的费用如表2:职工 治病花费的医疗费x (元)个人实际承担的费用y (元)小陈 300 280 大李500320请根据表2中的信息,求m 、n 的值,并求出当15010000x <≤时,y 关于x 函数解析式; (3)该公司职工个人一年因病实际承担费用最多只需要多少元?26.(本题满分10分)如图,矩形OABC (4,―2).抛物线2y x bx c =++经过A ,B 两点.yABCO(1)求抛物线的解析式;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.①当△APQ的面积恰好被AC平分时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,直接写出点H的纵坐标的取值范围.27.(本题满分10分)如图,在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A 、C 、Q 、D 为顶点的四边形是平行四边形?若存在,试求出这时tan ∠ABC 的值;若不存在,试说明理由.28.(本题满分8分)已知正方形ABCD 的边长AB =k (k 是正整数),正△PAE 的顶点P 在正方形内,顶点E 在边AB 上,且AE =1. 将△PAE 在正方形内按图1中所示的方式,沿着正方形的边AB 、BC 、CD 、DA 、AB 、……连续地翻转n 次,使顶点..P .第一次回到原来的起始位置. (1)如果我们把正方形ABCD 的边展开在一直线上,那么这一翻转过 程可以看作是△PAE 在直线上作连续的翻转运动. 图2是k =1时,△PAE 沿正方形的边连续翻转过程的展开示意图. 请你探索:若k =1,则△PAE 沿正方形的边连续翻转的次数n = ▲ 时,顶点..P .第一次回到原来的起始位置.P (图1)(图2)yxOQPABDC yxOQPAB(2)若k=2,则n=▲时,顶点P.第一次回到原来的起始位置;若k=3,则..n=▲时,顶点P.第一次回到原来的起始位置...(3)请你猜测:使顶点P.第一次回到原来的起始位置的n值与k之间的关系(请用含k的代..数式表示n).中考模拟考试(二)数 学 参 考 答 案三、解答题:本大题共10小题,共84分.19. (本题满分8分,每题4分)(1)原式= 2122329'⨯-+L L (2)221(1)=2a a a a--'÷原式L L =149'L L =141a a +'-L L 20. (本题满分8分,每题4分)(1)21(1)2x x x x '+-=-L L (2)解①得:x ≥1……1′ 132x '=L L 解②得:x <3……2′ 检验……4′ ∴1≤x <3……4′21. (本题满分8分)(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AB =CD .……………2分 ∵点E 、F 分别是AD 、BC 的中点,∴AE =12AD ,FC =12B C .∴AE =CF .……………………3分∴△AE B≌△CFD.4分(2)解:∵四边形EBFD是菱形,∴BE=DE.……………………………5分∴∠EBD=∠EDB.……………………6分∵AE=DE,∴BE=AE.∴∠A=∠ABE.……………………7分∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=12×180°=90°.………………8分22. (本题满分8分)(1)400;………2分(2)135;………4分(3)62;…………6分(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).…………8分23. (本题满分6分)解:(1)画树状图得:∴某个同学抽签的所有等可能情况有16种;………………………………………4分(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情况,∴他同时抽到两科都准备的较好的实验题目的概率是=.………………6分25.(本题满分10分)解:(1)()150150%y m x n =++- ………………………(2分) (2)由表2知,小陈和大李的医疗费超过150元而小于10000元,因此有:()()150300150%28010020150500150%320,m n m n m n ++-=⎧=⎧⎪⎨⎨=++-=⎩⎪⎩g g 解得: ………………………(6分) ()()1150********%220150100005y x x x ∴=++-=+≤p …………(8分) (3)个人实际承担的费用最多只需2220元. …………………………………(10分)26.(本题满分10分)解:(1)抛物线242y x x =--…………………………3分(2)①当1<t ≤97时,如图1.若AC 平分△APQ 面积,则M 为PQ 中点, 作PN ⊥AB 交AC 于点N ,则AQ=PN=7(t-1) 由△APN ∽△ABC ,解得t=1413. …………………4分当97<t ≤137时,如图2. 若AC 平分△APQ 面积,则M 为PQ 中点, ∴AP=CQ=t ,7(t-1)+t=6,解得t=138. …………………5分当137<t ≤157时,AC 不可能平分△APQ 的面积.…………………6分 ∴当t=1413或138时,△APQ 的面积被AC 平分.②当H 2y <-或H 1423y >时,∠HOQ >∠POQ .……………………10分(各2分)27.(本题满分10分)(图2)解:(1)Q ⎪⎭⎫⎝⎛3,425或()3,4 …………2分(少一解扣1分)(2)点E 为AB 的中点.……3分 理由.………5分(3)①当点C 在线段PQ 上时,延长BQ 与AC 的延长线交于点F ,过点F 作FH ⊥x 轴,垂足为H ; ∵ AC ⊥AB∴HA OB F A ∽△△∴FH AO FA AB = 即345=FA∴415=FA∵ DQ ∥AC ,DQ =AC ,且D 为BC 中点∴ F C =2DQ =2AC ,∴45=AC ,在Rt △BAC 中, tan ∠ABC =41………8分②当点C 在PQ 的延长线上时,tan ∠ABC =49.……………………………………10分28.(本题满分8分)(1)12次 ………………2分 (2)24次;12次;……………………4分(3)当k 是3的倍数时,n =4k ;当k 不是3的倍数时,n =12k. …………8分DCyxOQPABF。

贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .5.若22)30x y -+-=(,则x-y 的正确结果是( ) A .-1B .1C .-5D .56.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .08.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°9.二次函数y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.910.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)11.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=kx的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B.212C.454D.1512.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)14.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.16.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.17.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.18.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.20.(6分)如图,反比例函数y=kx(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.21.(6分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元. 22.(8分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:»»BD CD;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.23.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P 与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x 轴的交点坐标.24.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,AB =5,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使AE =4,连接OA ,OE ; (2)在BC 边上取点F ,使BF =______,连接OF ; (3)在CD 边上取点G ,使CG =______,连接OG ;(4)在DA 边上取点H ,使DH =______,连接OH .由于AE =______+______=______+______=______+______=______.可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .25.(10分)如图,已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B 两点,顶点为D .(1)求抛物线的解析式;(2)将OAB ∆绕点A 顺时针旋转90︒后,点B 落在点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.26.(12分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x <… 1922x <… 2225x <… 2528x <… 2831x <… 3134x <…频数7 932b2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.27.(12分)如图,点C 、E 、B 、F 在同一直线上,AC ∥DF ,AC =DF ,BC =EF , 求证:AB=DE参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.2.D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图3.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.5.A【解析】 由题意,得 x-2=0,1-y=0, 解得x=2,y=1. x-y=2-1=-1, 故选:A . 6.C 【解析】 【分析】先求出x=7时y 的值,再将x=4、y=-1代入y=2x+b 可得答案. 【详解】∵当x=7时,y=6-7=-1, ∴当x=4时,y=2×4+b=-1, 解得:b=-9, 故选C . 【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法. 7.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 8.D 【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD ∥BC ,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.9.D【解析】【分析】直接利用配方法得出二次函数的顶点式进而得出答案.【详解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x2﹣4x+5的最大值是9,故选D.【点睛】此题主要考查了二次函数的最值,正确配方是解题关键.10.D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=232⨯=3,∴BD=2ABBC=223()=1.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.11.C【解析】【分析】A ,C 之间的距离为6,点Q 与点P 的水平距离为3,进而得到A ,B 之间的水平距离为1,且k=6,根据四边形PDEQ 的面积为()6 1.534524+⨯=,即可得到四边形PDEQ 的面积.【详解】A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点B 离x 轴的距离相同, 在y=4x+2中,当y=6时,x=1,即点P 离x 轴的距离为6, ∴m=6,2020﹣2017=3,故点Q 与点P 的水平距离为3, ∵6,1k =解得k=6, 双曲线6,y x= 1+3=4,63,42y == 即点Q 离x 轴的距离为32, ∴32n =,∵四边形PDEQ 的面积是()6 1.534524+⨯=.故选:C . 【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大. 12.D 【解析】 【分析】根据中心对称图形的概念求解. 【详解】解:A .不是中心对称图形,本选项错误; B .不是中心对称图形,本选项错误; C .不是中心对称图形,本选项错误; D .是中心对称图形,本选项正确. 故选D . 【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.14. 2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=12AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 15.S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)×1=12;n=4时,S=1+(4-2)×1=18;…;所以,S 与n 的关系是:S=1+(n-2)×1=1n-1. 故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.-1【解析】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k1yx+=,得:k121+=-,解得:k=-1.17.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.18.1.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672-.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°. 故答案为:1此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)1【解析】【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC 即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵EAO FCOAO COAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x.∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.20.(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=kx即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入kyx=,得62k=,解得:k=11;(1)由(1)得:12yx =,∵点B为此反比例函数图象上一点,其纵坐标为2,∴123yx==,解得x= 4,∴B(4,2),∵CB∥OA,∴设直线BC的解析式为y=2x+b,把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直线BC的解析式为y=2x﹣9,当y=0时,2x﹣9=0,解得:x=2,∴C(2,0).21.15元.【解析】【分析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元,根据题意列出一元一次方程进行求解. 【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元.根据题意,列方程得:200=120(25)x x-,解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)证明见解析;(1)证明见解析;(3)1.【解析】【分析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,∵∠BAD和∠BOD是»BD所对的圆周角和圆心角,∠CAD和∠COD是»CD所对的圆周角和圆心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴»BD=»CD;(1)如图1,过点O作OM⊥AD于点M,∴∠OMA=90°,AM=DM,∵BE⊥AD于点E,CF⊥AD于点F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴OC FM OB EM,∵OB=OC,∴OC FMOB EM=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延长EO交AB于点H,连接CG,连接OA.∵BC为⊙O直径,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四边形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=12×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=CFAC,即sin45°=2CF,∴CF=1×222,∴2,∴2,∴2,在Rt△AEB中,∠AEB=90°,∴AB=cos452AE=︒,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC ∴△HBO∽△ABC,∴26 HO ACHB AB==,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.23.(1)(﹣2,,(﹣10,16﹣,(2a,b);(2)见解析;(3)直线PP'与x轴的交,0)【解析】【分析】(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,,即可得出结论;②当P'(-5,16)时,确定出P'A=10,PA=PA'=10,得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP,即可得出结论.【详解】解:(1)如图1,①当P (﹣4,2)时,∵PA ⊥y 轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt △P'AH 中,P'H=12P'A=2, ∴AH=3P'H=23,∴OH=OA+AH=2+23,∴P'(﹣2,2+23),②当P'(﹣5,16)时,在Rt △P'AH 中,∠P'AH=30°,P'H=5,∴P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH ﹣AH=16﹣53,∴P (﹣10,16﹣53),③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣3a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y轴,PA⊥y轴,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)设y PP'=kx+b',由题意知,k=3,∵直线经过点(3,6),∴b'=3,∴y PP'=3x+3,令y=0,∴x=3∴直线PP'与x30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.24.(1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.【详解】(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=3,连接OF;(3)在CD边上取点G,使CG=2,连接OG;(4)在DA边上取点H,使DH=1,连接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.25.(1)抛物线的解析式为232y x x =-+.(2)平移后的抛物线解析式为:231y x x =-+.(3)点N 的坐标为(1,1)-或(3,1).【解析】分析:(1)利用待定系数法,将点A ,B 的坐标代入解析式即可求得;(2)根据旋转的知识可得:A (1,0),B (0,2),∴OA=1,OB=2,可得旋转后C 点的坐标为(3,1),当x=3时,由y=x 2-3x+2得y=2,可知抛物线y=x 2-3x+2过点(3,2)∴将原抛物线沿y 轴向下平移1个单位后过点C .∴平移后的抛物线解析式为:y=x 2-3x+1;(3)首先求得B 1,D 1的坐标,根据图形分别求得即可,要注意利用方程思想.详解: (1)已知抛物线2y x bx c =++经过()1,0A ,()0,2B , ∴01200b c c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩, ∴所求抛物线的解析式为232y x x =-+.(2)∵()1,0A ,()0,2B ,∴1OA =,2OB =,可得旋转后C 点的坐标为()3,1.当3x =时,由232y x x =-+得2y =,可知抛物线232y x x =-+过点()3,2. ∴将原抛物线沿y 轴向下平移1个单位长度后过点C .∴平移后的抛物线解析式为:231y x x =-+.(3)∵点N 在231y x x =-+上,可设N 点坐标为()2000,31x x x -+, 将231y x x =-+配方得23524y x ⎛⎫=-- ⎪⎝⎭,∴其对称轴为32x =.由题得B1(0,1). ①当0302x <<时,如图①,∵112NBB NDD S S ∆∆=, ∴00113121222x x ⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭, ∴01x =,此时200311x x -+=-,∴N 点的坐标为()1,1-.②当032x >时,如图②,同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭, ∴03x =,此时200311x x -+=,∴N 点的坐标为()3,1.综上,点N 的坐标为()1,1-或()3,1.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.26. (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】【分析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <…范围内的数据有3个,在2831x <…范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.27.证明见解析.【解析】证明:∵AC//DF ∴在和中 ∴△ABC ≌△DEF (SAS )。

【苏科版】江苏省淮安市盱眙县2024届中考四模数学试题含解析

【苏科版】江苏省淮安市盱眙县2024届中考四模数学试题含解析

江苏省淮安市盱眙县2024学年中考四模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C 的度数为()A.48°B.40°C.30°D.24°2.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.3.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m4.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A .2cm 2B .3cm 2C .4cm 2D .5cm 25.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ) A .平均数B .中位数C .众数D .方差6.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π8.下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2 C .a (a+b )=a 2+b D .6ab 2÷2ab=3b9.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°10.若不等式组236x mx x <⎧⎨-<-⎩无解,那么m 的取值范围是( )A .m ≤2B .m ≥2C .m <2D .m >211.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点12.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:-2x 2y +8xy -6y =__________.14.若关于x 的方程x 2-mx+m=0有两个相等实数根,则代数式2m 2-8m+3的值为__________.15.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .16.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1. 17.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是______.18.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则tan ∠AEF 的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在△OAB 中,OA =OB ,⊙O 经过AB 的中点C ,与OB 交于点D ,且与BO 的延长线交于点E ,连接EC ,CD .(1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若tan E =12,⊙O 的半径为3,求OA 的长.20.(6分)如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且AF FC CB ==,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D . (1)求证:CD 是⊙O 的切线; (2)若CD=23,求⊙O 的半径.21.(6分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:7.5(04)510(414)x x y x x ≤≤⎧=⎨+<≤⎩工人甲第几天生产的产品数量为70件?设第x 天生产的产品成本为P 元/件,P 与x 的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 的函数关系式,并求出第几天时利润最大,最大利润是多少?22.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=mx(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.24.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC 边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.25.(10分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n 的值.=,连结BO并延长线交O于点D,过点C 26.(12分)如图,AC是O的直径,点B是O内一点,且BA BC∠.作O的切线CE,且BC平分DBE()1求证:BE CE=;()2若O的直径长8,4∠=,求BE的长.sin BCE527.(12分)“春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅(B)、菜馅(C)、三丁馅(D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人;(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有8000人,请估计爱吃D汤圆的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2、D【解题分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【题目详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB22AE BE=5,∴四边形ABCD 的四条边之比为1:3:5:5, D 选项中,四条边之比为1:3:5:5,且对应角相等, 故选D . 【题目点拨】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键. 3、A 【解题分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可. 【题目详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【题目点拨】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 4、C 【解题分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC 的面积. 【题目详解】 延长AP 交BC 于E .∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90°. 在△APB 和△EPB 中,∵,∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP =PE ,∴△APC 和△CPE等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE S △ABC =4cm 1.故选C .【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.5、B【解题分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【题目详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.6、C【解题分析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【题目详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【题目点拨】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.7、B【解题分析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B8、D【解题分析】各项计算得到结果,即可作出判断.【题目详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9、C【解题分析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.【解题分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【题目详解】236x m x x <⎧⎨-<-⎩①② 由①得,x <m ,由②得,x >1,又因为不等式组无解,所以m ≤1.故选A .【题目点拨】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.11、B【解题分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【题目详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧故选B.【题目点拨】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.12、A【解题分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【题目详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩,【题目点拨】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-2 y (x -1)( x -3)【解题分析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式()2243,y x x =--+ ()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.14、1.【解题分析】根据方程的系数结合根的判别式即可得出△=m 2﹣4m =0,将其代入2m 2﹣8m +1中即可得出结论.【题目详解】∵关于x 的方程x 2﹣mx +m =0有两个相等实数根,∴△=(﹣m )2﹣4m =m 2﹣4m =0,∴2m 2﹣8m +1=2(m 2﹣4m )+1=1.故答案为1.【题目点拨】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.15、16π【解题分析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr 2=π×2×6+π×22=16π(cm 2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.【解题分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【题目详解】解:如图,在菱形ABCD 中,BD =2.∵菱形的周长为10,BD =2,∴AB =5,BO =3, ∴22534AO =-=, AC =3.∴面积168242S =⨯⨯=. 故答案为 14.【题目点拨】此题考查了菱形的性质及面积求法,难度不大.17、1-.【解题分析】试题分析:∵关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,∴()2241a 0a 1∆=-⋅⋅-=⇒=-. 考点:一元二次方程根的判别式.18、1.【解题分析】连接AF ,由E 是CD 的中点、FC=2BF 以及AB=2、AD=3可知AB=FC ,BF=CE ,则可证△ABF ≌△FCE ,进一步可得到△AFE 是等腰直角三角形,则∠AEF=45°. 【题目详解】解:连接AF ,∵E是CD的中点,∴CE=112CD ,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,FC=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案为:1.【题目点拨】本题结合三角形全等考查了三角函数的知识.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解题分析】(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.【题目详解】解:(1)AB与⊙O的位置关系是相切,证明:如图,连接OC.∵OA=OB,C为AB的中点,∴OC⊥AB.∴AB是⊙O的切线;(2)∵ED是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴BC BD CD BE BC EC==.∴BC2=BD•BE.∵1 tan2E∠=,∴12 CDEC=.∴12 BD CDBC EC==.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【题目点拨】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(2)1【解题分析】试题分析:(1)连结OC,由FC=BC,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC ,由AB 为直径得∠ACB=90°,由AF =FC =BC ,得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt △ADC 中,利用含30°的直角三角形三边的关系得Rt △ACB 中,利用含30°的直角三角形三边的关系得,AB=2BC=8,所以⊙O 的半径为1. 试题解析:(1)证明:连结OC ,如图,∵FC =BC∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC ∥AF∵CD ⊥AF∴OC ⊥CD∴CD 是⊙O 的切线(2)解:连结BC ,如图∵AB 为直径∴∠ACB=90°∵AF =FC =BC∴∠BOC=13×180°=60° ∴∠BAC=30°∴∠DAC=30°在Rt △ADC 中,∴在Rt △ACB 中,BC=3AC=3×∴AB=2BC=8∴⊙O 的半径为1.考点:圆周角定理, 切线的判定定理,30°的直角三角形三边的关系21、(1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.【解题分析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.本题解析:解:(1)若7.5x=70,得x=>4,不符合题意;则5x+10=70,解得x=12.答:工人甲第12天生产的产品数量为70件.(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得解得∴P=x+36.①当0≤x≤4时,W=(60-40)·7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600;②当4<x≤14时,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴当x=11时,W最大=845.∵845>600,∴当x=11时,W取得最大值845元.答:第11天时,利润最大,最大利润是845元.点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.22、(1)见解析(2)5 4【解题分析】(1)连接OE,BE,因为DE=EF,所以DE=FE,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55OE rOA r==-从而可求出r的值.【题目详解】解:(1)连接OE,BE,∵DE=EF,∴DE=FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8 r=∴15552.84 AF=-⨯=【题目点拨】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.23、(1)反比例函数的解析式为y=﹣6x;一次函数的解析式为y=﹣12x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.【解题分析】(1)把A(﹣2,3)代入y=mx,可得m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣6x;把点B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得23 61k bk b-+=⎧⎨+=-⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+2;(2)∵y=﹣12x+2,令y=0,则x=4,∴C(4,0),即OC=4,∴△AOB的面积=12×4×(3+1)=8;(3)∵反比例函数y=﹣6x的图象位于二、四象限,∴在每个象限内,y随x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴点M、N在第二象限,或点M、N在第四象限.【题目点拨】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.24、(1)见解析;(2)2π.【解题分析】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴AD的长度=12032180ππ⨯⨯=.【题目点拨】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.25、(1)C (2,0),A (1,4),B (1,9);(2)12<t <5;(2),∴. 【解题分析】 分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C 的坐标,联立抛物线与直线的解析式即可求出A 、B 的坐标. (Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t ,1),然后求出直线AC 的解析式后,将点E 的坐标分别代入直线AC 与AD 的解析式中即可求出t 的值,从而可知新抛物线的顶点E 在△DAC 内,求t 的取值范围.(Ⅲ)直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N ,交DB 于点G ,由直线y =x +2与x 轴交于点D ,与y 轴交于点F ,得D (﹣2,0),F (0,2),易得CF ⊥AB ,△PAB 的面积是△ABC 面积的2倍,所以12AB •PM =12AB •CF ,PM =2CF ,从而可求出PG =3,利用点G 在直线y =x +2上,P (m ,n ),所以G (m ,m +2),所以PG =n ﹣(m +2),所以n =m +4,由于P (m ,n )在抛物线y =x 2﹣1x +9上,联立方程从而可求出m 、n 的值.详解:(I )∵y =x 2﹣1x +9=(x ﹣2)2,∴顶点坐标为(2,0).联立2693y x x y x ⎧=-+⎨=+⎩,解得:14x y =⎧⎨=⎩或69x y =⎧⎨=⎩; (II )由题意可知:新抛物线的顶点坐标为(2﹣t ,1),设直线AC 的解析式为y =kx +b将A (1,4),C (2,0)代入y =kx +b 中,∴430k b k b +=⎧⎨+=⎩, 解得:26k b =-⎧⎨=⎩, ∴直线AC 的解析式为y =﹣2x +1.当点E 在直线AC 上时,﹣2(2﹣t )+1=1,解得:t =12. 当点E 在直线AD 上时,(2﹣t )+2=1,解得:t =5,∴当点E 在△DAC 内时,12<t <5; (III )如图,直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N ,交DB 于点G . 由直线y =x +2与x 轴交于点D ,与y 轴交于点F ,得D (﹣2,0),F (0,2),∴OD =OF =2.∵∠FOD =90°,∴∠OFD =∠ODF =45°.∵OC =OF =2,∠FOC =90°,∴CF=22OC OF+=22,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面积是△ABC面积的2倍,∴12AB•PM=12AB•CF,∴PM=2CF=12.∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=PMPG,∴PG=45PMsin︒=6222=3.∵点G在直线y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在抛物线y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=7732±.∵﹣2<m<1,∴m=7732+不合题意,舍去,∴m=7732-,∴n=m+4=37732-.点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.26、(1)证明见解析;(2)25 BE6=.【解题分析】()1先利用等腰三角形的性质得到BD AC⊥,利用切线的性质得CE AC⊥,则CE∥BD,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【题目详解】()1证明:BA BC =,AO CO =,BD AC ∴⊥,CE 是O 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=.BC 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE =,15BF BC 22∴==, 在Rt BEF 中,EF 4sin 3sin 1BE 5∠∠=== 设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==.故答案为(1)证明见解析;(2)256BE .【题目点拨】本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.27、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人【解题分析】试题分析:(1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);试题解析:(1)本次参加抽样调查的居民的人数是:60÷10%=600(人);故答案为600;(2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;将两幅统计图补充完整如下所示:(3)根据题意得:360°×30%=108°,∴图②中表示“A”的圆心角的度数108°;(4)8000×40%=3200(人),即爱吃D汤圆的人数约为3200人.。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

数学模拟试卷(四)(满分:120分,时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·云南)某地区2021年元旦的最高气温为9 ℃,最低气温为-2 ℃,那么该地区这天的最低气温比最高气温低()A .7 ℃B .-7 ℃C .11 ℃D .-11 ℃2.(2022·安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A .B .C .D .3.(2022·安徽)据统计,2021年我省出版期刊总印数3 400万册,其中3 400万用科学记数法表示为()A .3.4×108B .0.34×108C .3.4×107D .34×1064.下列说法正确的是()A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 2甲=0.4,s 2乙=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式5.(2022·吉林长春)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A .a >0B .a <bC .b -1<0D .ab >06. 二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位7.(2022·河池)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中错误的是()A .AB =AD B .AC ⊥BD C .AC =BD D .∠DAC = ∠BAC第7题图 第8题图 第9题图8.(2022·海南)如图,直线m ∥n ,△ABC 是等边三角形,顶点B 在直线n 上,直线m 交AB于点E ,交AC 于点F ,若∠1=140°,则∠2的度数是()A .80°B .100°C .120°D .140°9.(2022·海南)如图,在△ABC 中,AB =AC ,以点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠ABC 的内部相交于点P ,画射线BP ,交AC 于点D ,若AD =BD ,则∠A 的度数是()A .36°B .54°C .72°D .108°10.(2022·陕西)在同一平面直角坐标系中,直线y =-x +4与y =2x +m 相交于点P (3,n ),则关于x ,y 的方程组⎩⎨⎧x +y -4=0,2x -y +m =0的解为() A .⎩⎨⎧x =-1,y =5 B .⎩⎨⎧x =1,y =3C .⎩⎨⎧x =3,y =1 D .⎩⎨⎧x =9,y =-5二、填空题:本大题共5小题,每小题3分,共15分.11.(2022·河池)若二次根式a -1有意义,则a 的取值范围是____.12.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要_____元.(用含m 的代数式表示)13.(2022·长春)若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为____.14.(2022·海南)如图,射线AB 与⊙O 相切于点B ,经过圆心O 的射线AC 与⊙O 相交于点D ,C ,连接BC ,若∠A =40°,则∠ACB =____°.第14题图 第15题图15.(2022·陕西)如图,在菱形ABCD 中,AB =4,BD =7.若M ,N 分别是边AD ,BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E ,F ,则ME +NF 的值为______.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(1)计算:(-3)2×3-1+(-5+2)+||-2;(2)解方程组:⎩⎨⎧2x -y =3, ①x +y =6. ②17.(2022·吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.18.(原创)解方程:(1)x(x-2)=2x-4; (2)x-2 0232-1=0.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(2022·江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.20.(2022·河池)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是____,圆心角β=____度;(2)补全条形统计图;(3)已知红星中学共有1 200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A ,B ,C ,D 四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A ,C 两人同时参赛的概率.21.(2022·滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(2021·湘潭)如图,四边形ABCD 为矩形,E 为BC 边中点,连接AE ,以AD 为直径的⊙O交AE 于点F ,连接OC ,FC ,OC 交⊙O 于点G .(1)若∠COD =60°,AD =6,求DG ︵的长;(2)求证:四边形AOCE 是平行四边形;(3)求证:CF 是⊙O 的切线.23.(2022·牡丹江、鸡西)如图,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题:①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案(考试时间120分钟,总分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种零件的直径尺寸在图纸上是(单位:mm),它表示这种零件的标准尺寸是20mm,则加工要求尺寸最大不超过()A.0.03mm B.0.02nn C.20.03mm D.19.98mm2.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>84.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为()A.20°B.70°C.110°D.160°5.在下列图形中是轴对称图形的是()A.B.C.D.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.任意一个五边形的外角和等于540°C.某个数的相反数等于它本身D.长分别为3,4,6的三条线段能围成一个三角形7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9 B.12 C.24 D.3210.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC12.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x个月,则根据题意可列方程中错误的是()A.+=1 B.++=1 C.+=1 D.+2(+)=1 13.如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.2414.下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A.B.C.D.15.有编号为Ⅰ,Ⅱ,Ⅲ的3个信封,现将编号为Ⅰ,Ⅱ的两封信,随机地放入其中两个信封里,则信封与信编号都相同的概率为()A. B.C.D.16.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF 上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤120二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17如图,边长为1的正方形网格中,AB3.(填“>”,“=”或“<”)18.若,则x2+2x+1=.19.已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x 轴于点C,以AC为对角线作正方形ABCD。

2023年中考数学综合模拟试题四(含答案)

2023年中考数学综合模拟试题四(含答案)

2023年中考数学综合模拟试题四一、选择题(每题3分,共30分) 1、-2 023的相反数等于( ) A .2 023 B .-2 023C. 12023D .-120232、下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )3、下列运算正确的是( )A .(-m 2n)3=-m 6n 3B .m 5-m 3=m 2C .(m +2)2=m 2+4D .(12m 4-3m)÷3m=4m 34、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是( )个. A.4 B.5 C.6 D.75、关于x 的一元二次方程(a +2)x 2-3x +1=0有实数根,则a 的取值范围是( )A .a <14且a≠-2B .a≤14C .a≤14且a≠-2D .a <146、我国古代某数学著作中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A.{3(y −2)=x 2y −9=x B.{3(y +2)=x 2y +9=x C.{3(y −2)=x 2y +9=x D.{3(y +2)=x2y −9=x7、如图,D ,E ,F 分别是△ABC 各边中点,则以下说法错误的是( ) A .△BDE 和△DCF 的面积相等 B .四边形AEDF 是平行四边形 C .若AB =BC ,则四边形AEDF 是菱形D .若∠A=90°,则四边形AEDF 是矩形 ( 第7题图)8、关于x 的不等式组{x −m <0,3x −1>2(x −1)无解,那么m 的取值范围为( )A. m ≤-1B.m<-1C.-1<m ≤0D.-1≤m<09、如图所示,已知点A,B 分别在反比例函数y= 1x (x>0), y=- 4x (x>0))的图象上,且OA ⊥OB,则OBOA 的值为( ) A.√2 B.4 C.√3 D.2( 第9题图)10、如图所示,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是 △ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设 BD=x,△BDP 的面积为y,则下列能大致反映y 与x 函数关系图象的是( )二、填空题(每题3分,共24分)11、我国某探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 km.12、一组数据5,2,x,6,4的平均数是4,这组数据的方差_____.13、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a 只,则现年20岁的这种动物活到25岁的概率是 ________.14、如图所示,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作射线AP,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD的周长为. (第14题图)15、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.16、如图,在矩形ABCD中,AB=3,AD=4,E,F分别是边BC,CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=________时,△AEC′是以AE 为腰的等腰三角形.(第16题图)(第17题图)(第18题图)17、如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF=∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为 ________________.18、如图,△ABC是边长为2的等边三角形,AD是BC边上的高,CE是AB边上的高.将△ADC绕点D顺时针旋转得到,其中点A的对应点为点,点C的对应点为点.在旋转过程中,当点落在直线EC上时,的长为______.三、解答题(共9小题,计66分)19、(5分)(12)-1-√−83+|√3-2|+2sin 60°.A DC''A'C'A'A C'20、(5分)先化简,再求值:(3a+1-a+1)÷a 2−4a 2+2a+1,其中a 从-1,2,3中取一个你认为合适的数代入求值.21、(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m ,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n ,组成一数对(m ,n). (1)请写出(m ,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.22、(6分)如图所示,某测量小组为了测量山BC 的高度,在地面A 处测得山顶B 的仰角为45°,然后沿着坡度为1∶3的坡面AD 走了200 m 达到D 处,此时在D 处测得山顶B 的仰角为60°,求山BC 的高度.(结果保留根号)23、(6分))某校从全体学生中随机抽取部分学生,调查他们平均每周的劳动时间t(单位:h),按劳动时间分为四组:A 组“t<5”,B 组“5≤t<7”,C 组“7≤t<9”,D 组“t ≥9”.将收集的数据整理后,绘制成如图所示的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请估计该校平均每周劳动时间不少于7 h的学生人数.24、(8分)某乡镇对河道进行整治,由甲乙两工程队合做 20天可完成.已知甲工程队单独整治需60天完成.(1)乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a 的代数式表示)可完成河道整治任务;(3)如果甲工程队每天施工费为5 000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合做,剩余工程由甲工程队单独完成,要使支付两工程队费用最少,并且确保河道在40天内(含 40天)整治完毕,问需支付两工程队费用最少多少万元?25、(8分)如图所示,在Rt△ABC中,∠ABC=90°,以AB 为直径作⊙O,点D 为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.26.(10分)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC =6时,求DE的长.27.(12分)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.参考答案二.填空题第11题:3.2×108 第12题:2 第13题: 58第14题:15 第15题:30 第16题:78 或 43第17题:3√13−3 第18题:√11−√32或√11+√32三.解答题第19题:原式=8第20题:化简,可得,原式=−a −1,因为a ≠−1且a ≠2,所以,当a =3时,原式=−4第21题:(1) 所有可能出现的结果为:(1,1) 、(1,2) 、(1,3) 、(2,1) 、(2,2) 、(2,3) 、(3,1) 、(3,2) 、(3,3) 。

2024年广东省惠州市中考数学模拟试题(四)

2024年广东省惠州市中考数学模拟试题(四)

2024年广东省惠州市中考数学模拟试题(四)一、单选题1.若 12024a =-,则 a -=( ) A .2024 B .2024- C .12024- D .120242.我国古代数学家祖冲之推算出圆周率(π)的近似值为355113.这一密率值是世界上最早提 出的,比欧洲早1000多年,所以有人主张叫它“祖率”也就是圆周率的祖先.它与π的 误差小于0.0000003,将0.0000003用科学记数法可以表示为( )A .6310-⨯B .6310⨯C .7310-⨯D .7310⨯ 3.每个人都有最初的梦想,最初的梦想是一种寄望与希望,以下是摘自《最初的梦想》简 谱的部分旋律,当中出现的音符的众数是( )A .1B .2C .3D .44.下列运算正确的是( )A .2246a a a +=B .()2222a a -= C .()()2122a a a -+=- D .221124a a a ⎛⎫-=-+ ⎪⎝⎭ 5.近年来,市交通运输局配合相关部门积极推广清洁能源车辆,有力地推动了全市发展绿 色交通体系、促进节能减排、打赢蓝天保卫战.以下新能源车的车标既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.如图,在Rt ABC △中,已知9030BAC C ∠=︒∠=︒,,将ABC V 绕点A 顺时针旋转70︒得到AB C ''△,则CAC '∠的度数是( )A .60︒B .70︒C .80︒D .90︒7.如图,摆放两根矩形直尺,其中128∠=︒,那么2∠的度 数 为( )A .132︒B .142︒C .152︒D .162︒8.在函数y x 的取值范围是( )A .4x ≤B .4x <C .4x ≥D .4x >9.如图,已知AB 是O e 的直径,C 是圆上一点,点D 是 弧AC 中 点,若70DAB ∠=︒.则C A B ∠为 ( )A .40︒B .45︒C .50︒D .60︒10.如图,在平面直角坐标系中,AOB ∠的顶点与原点O 重合,角的一边OB 与 x 轴正方向重合,反比例函数4y x =与OA 相交于点M , 以 M 为圆心2OM 为半径作弧,交 反比例函数4y x=于点N , 分别过点M 、N 作x 轴和y 轴平行线,两线相交于点C ,连接OC 、MN 相交于点D , 过 点M 作ME x ⊥轴,垂足为E , 与OC 相交点F , 则下列结论:①2EOM S =V :②OF MF =:③2AOC BOC ∠=∠:④ 当90OMN ∠=︒时,OEF MEO ∽VV : 其中一定正确的是( )A .①②③B .①②④C .①③④D .②③④二、填空题11.计算: ()02023-=.12.如果关于x 的一元二次方程210+-=ax bx 的一个解是1x =,则2024a b --=. 13.石油的提取物中含有稠环芳香烃,它的同系物的分子结构中有 一种物质叫释迦牟尼分子,它的分子式是2CH (部分结构是正六边形和矩形构成),其中1∠的度数为14.谢尔宾斯基三角形是一种具有非凡美学和分形特性的数学图形,它在几何、数学和计算机图形学等领域都有广泛应用.如图1叫做谢尔宾斯基地毯,是这样制作出来的:把一个正三角形分为全等的4小正三角形,挖去中间的一个小三角形:对剩下的3个小正三角形再分别重复以上做法……如2图是谢尔宾斯基三角形的一部分,已知4AB =,则AD 为.15.如图,已知正方形ABCD 的边长为4,点E 是AB 边上的中点,F 是AB 延长线上一点,以BF 为长作正方形BFGH 如图所示,连接CE AG 、交于点M , 若45AME ∠=︒时,则BF 的长为 .三、解答题16.(1)化简:22121339x x x x x x -+⎛⎫-÷ ⎪---⎝⎭(2)已知一次函数31y x =-与7y x =-+的图象在同一个平面直角坐标系中相交于点A , 求交点A 的坐标.17.如图,将ABCD Y 沿对角线BD 对折得BDE V ,BE 与AD 相交于点F ,求证:AF EF =.18.在创建全国文明城市中,我市需要在丁香花园外侧修建一条900米的亲水栈道将江滨公 园与南岸公园的绿道连通,构建清远市“万里绿道”.由于工期缩短,工程队改进了施 工方式,实际每天修建的长度是原计划的1.5倍,结果提前了3天完成这一工程,求实 际每天修建栈道多少米19.某学校七年级为丰富第二课堂内容,计划新增悦动思维、听说达人、心灵奇旅、“篮” 舍难分、Python 编程五门兴趣课程.为了了解学生对这五门课程的喜好情况,随机抽 取了部分学生进行了问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制 成如下两幅不完整的统计图.根据图中信息,完成下列问题:(1)本次调查共抽取了 名学生.(2)补全条形统计图:并求出扇形统计图中,悦动思维课程的圆心角是 ;(3)甲、乙两位同学都参与了这次的调查,请用列表或画树状图的方法求出两位同学选中同一个课程的概率.20.如图,已知等腰ABC V 中 ,AB AC =,D 是BC 上中点.(1)实践与操作:作AB 的垂直平分线分别交AB 、AC 于 点E 、F (要求:尺规作图,保留作图痕迹,不写作法)(2)连接DE ,若50BAC ∠=︒, 求DEF ∠的度数.21.定义运算:max a b ,,当a b ≥时 ,max a b a =,; 当a b <时 ,max a b b =,.例如:max 353-=,;根据以上材料,解决下列问题.(1)max =;(2)若max 533x x x +-+=-+,,求x 的取值范围. (3)如图1y k x b =+和2k y x=在同一平面直角坐标系中,当211max ,k k x b k x b x +=+,结合图象,直接写出x 的取值范围.22.综合探究如图1,已知Rt ABC △,90ACB ∠=︒,30CAB ∠=︒,2BC =,ABC V 沿AB 对折得到ABD △, 点O 是线段AB 上动点,过点O 作OE AC ⊥交于点E ,以 O 为圆心,OE 为半径作圆(1)求 证 :AD 是O e 的切线:(2)如图2,连接CD 交AB 于点F ,当O e 与CD 相切时,求O e 的半径:(3)如图3,当点O 运动到点B 时,延长CO 与O e 交 于 点G ,连 接AG 与O e 交于点H ,求FH 的长 .23.综合运用如图1,已知抛物线2=+43y x x --与y 轴交于点A ,与x 轴交于点B (点B 在对称轴左侧).(1)求点A 与点B 坐标:(2)以AB 为边作矩形ABCD ,使点C 落在抛物线上,分别求点C 和点D 的坐标:(3)如图2,在(2)的条件下,连接AC ,点P 是直线AC 上方抛物线上的一点动点,在抛物线内部作APCQ Y ,求APCQ Y 面积的最大值.。

2024年陕西师范大学附属中学中考四模数学试题(解析版)

2024年陕西师范大学附属中学中考四模数学试题(解析版)

陕西师大附中2023-2024学年度初三年级第四次适应性训练数学试题一、选择题(共7小题,每小题3分,计21分.每小题只有一个选项是符合题意的)1.的倒数是( )A. 3B. C. D. 【答案】B 【解析】【分析】本题考查的是一个数的倒数,根据两个数乘积为1,则这两个数互为倒数即可得到答案.【详解】解:的倒数是,故选:B .2. 如图是由8个相同的小正方体组成的几何体,其主视图是( )A. B.C. D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层最左边两个小正方形,第三层最左边一个小正方13-3-1313-13-3-形,故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3. 如图,将含30°角的直角三角板ABC 放在平行线α和b 上,∠C =90°,∠A =30°,若∠1=20°,则∠2的度数等于( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】根据三角形外角的性质和对顶角相等可得∠4,再根据两直线平行,同位角相等即可得出结论.【详解】解:∵∠A =30°,∠1=20°,∴∠ 1= ∠ 3,∠4 = ∠3 + ∠A =20°+30°=50°,∵a ∥b ,∴∠2 =∠ 4=50° .故选 B .【点睛】本题考查平行线的性质、三角形外角的性质.能正确识图是解题关键.4. 在平面直角坐标系中,将直线向上平移2个单位长度,平移后的直线与两坐标轴围成的三角形面积是()21y x =+A. B. C. D. 2【答案】B【解析】【分析】先根据图形平移的性质得出平移后的解析式,再求出此直线与x 、y 轴的交点,利用三角形的面积公式即可求解.【详解】解:将直线的图象向上平移2个单位,得到,令,得,令,得,∴平移后的直线与两坐标轴围成的三角形面积是,故选:B .【点睛】本题考查的是一次函数的图象与几何变换,解答此题的关键是求出平移后直线的解析式及与两坐标轴的交点.5. 如图,在菱形中,对角线,相交于点O ,若,则的值为( )A. B. C. D. 【答案】C【解析】【分析】此题考查了菱形的性质、勾股定理以及锐角三角函数的定义等知识;先由菱形的性质得,,再由勾股定理求出,然后由锐角三角函数的定义即可得出答案.熟练掌握菱形的性质和锐角三角函数的定义是解题的关键.【详解】解:∵四边形是菱形,且,设,,∴,,34943221y x =+23y x =+0x =3y =0y =32x =-1393224⨯⨯=ABCD AC BD :2:3AB BD =cos BAC ∠34351322OB BD x ==AC BD ⊥OA =ABCD :2:3AB BD =2AB x =3BD x =1322OB BD x ==AC BD ⊥∴,∴,故选:C .6. 如图,内接于,是的直径,过点C 作的切线交的延长线于点E .若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】连接、,则,根据切线的性质可得,进而得出,根据等腰三角形的性质得出,最后根据圆的内接四边形对角互补,即可求解.【详解】解:连接、,则,∵与相切于点C ,∴,∴,∵,∴,∴,∴,故选:B ..【点睛】本题主要考查了切线的定义,等腰三角形的性质,圆的内接四边形的性质,解题的关键是掌握圆的切线经过半径外端且垂直于半径,圆的内接四边形对角互补,等腰三角形等边对等角.OA x ===cos OA BAC AB ∠==ABC O AD O O AD 40E ∠=︒ABC ∠110︒115︒120︒125︒OC DC OC OD =90OCE ∠=︒9050COE E ∠=︒-∠=︒65ADC OCD ∠=∠=︒OC DC OC OD =CE O CE OC ⊥90OCE ∠=︒40E ∠=︒90904050COE E ∠=︒-∠=︒-︒=︒()118050652ADC OCD ∠=∠=⨯︒-︒=︒180********ABC ADC ∠=︒-∠=︒-︒=︒7. 抛物线与x 轴交于点A (-1,0),点B (3,0),交y 轴于点C ,直线经过点C ,点B (3,0),它们的图象如图所示,有以下结论:①抛物线对称轴是直线;②;③时,;④若,则.其中正确的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】根据题意易得点A 、B 关于对称轴对称,则有抛物线的对称轴为直线,把点A 代入抛物线解析式可判断②,然后由函数图形可判断③,进而把,点A (-1,0),点B (3,0)代入可求抛物线解析式,然后可得点C 的坐标,最后可判断④.【详解】解:由题意得:点A 、B 关于对称轴对称,则抛物线的对称轴为直线,故①正确;把点A (-1,0)代入解析式得:,故②正确;由图象可知当时,,故③正确;由,点A (-1,0),点B (3,0)可设二次函数解析式为,∴,∴当x =0时,则,∴点,把点B 、C 的坐标代入一次函数解析式得:,2y ax bx c =++y kx m =+1x =0a b c -+=13x -<<20ax bx c ++>1a =-1k =-1x =1a =-1312x -+==0a b c -+=13x -<<20ax bx c ++>1a =-()()13y x x =-+-223y x x =-++3y =()0,3C 303k m m +=⎧⎨=⎩解得:,故④正确;综上所述:正确的个数有4个,故选:D .【点睛】本题主要考查二次函数的图象与性质及一次函数,熟练掌握二次函数的图象与性质及一次函数是解题的关键.二、填空题(共7小题,每小题3分,共21分)8. 比较大小:(填“>”“<”或“=”).【答案】【解析】【分析】先求出【详解】解:∵16<20,∴.故答案为:<.【点睛】本题考查实数大小比较,解题的关键是掌握比较有理数和根号形式无理数的大小的方法.9. 计算:______.【答案】【解析】【分析】本题考查单项式乘以单项式,直接利用相关法则计算即可.【详解】解:;故答案为:.10. 如图,分别以等边三角形的顶点A ,B ,C 为圆心,以长为半径画弧,我们把这三条弧组成的封闭图形就叫做圆弧三角形.若,则圆弧三角形的周长为______.【答案】【解析】【分析】本题考查了等边三角形的性质,弧长公式,根据弧长公式计算出每段弧的长度,即可求出圆弧三的13k m =-⎧⎨=⎩<4=4=4<()2x x -⋅=22x -()222x x x -⋅=-22x -AB 5AB =5π角形的周长.理解题意求出一段弧的长度是解题的关键.【详解】解:∵为等边三角形,∴,∵半径都为的长,∴这三段弧的长度相等,∴每段弧的长度为:,∴圆弧三角形的周长为,故答案为:.11. 如图,点A 在双曲线y=上,点B 在双曲线y=(k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.【答案】12【解析】【详解】解:设点A 的坐标为(a ,),则点B 的坐标为(,),∵AB ∥x 轴,AC=2CD ,∴∠BAC=∠ODC ,∵∠ACB=∠DCO ,∴△ACB ∽△DCO ,∴,∵OD=a ,则AB=2a ,∴点B 的横坐标是3a ,∴3a=,解得:k=12.故答案为12.ABC 60∠=∠=∠=︒A B C AB 60551803ππ⨯=5353ππ⨯=5π4xk x 4a ak 44a AB AC 2DA CD 1==ak 412. 如图,在正方形中,,延长至E ,使,连接平分交于F ,连接,则长为_______.【解析】【分析】此题主要考查了正方形的判定及性质,相似三角形的判定和性质,勾股定理等,解题的关键是过点作于,作于点N ,首先证明为正方形,再设,则,然后证明,由相似三角形的性质求出a ,进而在中由勾股定理即可求出.【详解】如图,过点 作于,作于点N .∵四边形为正方形,,,∴四边形为矩形,又∵平分,,∴四边形为正方形,,设,则,,,,的ABCD 3AB =BC 2CE =AE CF ,DCE ∠AE DF DF F FM CE ⊥M FN CD ⊥CMFN CM a =FM FN CN a ===EFM EAB ∽Rt DFN DF F FM CE ⊥M FN CD ⊥ABCD 3AB =,90,3B DCB BC AB CD ∴∠=∠=︒===,,18090FM CE FN CD DCE DCB ⊥⊥∠=︒-∠=︒ CMFN CF DCE ∠FM FN ∴=CMFN FM FN CM CN ∴===CM a =FM FN CN a ===2CE = 5,BE BC CE EM CE ∴=+==-2CM a =-90,B FM CE ∠=︒⊥,,,即,解得 , ,,在中, ,由勾股定理得,三、解答题(共13小题,计84分.解答应写出过程)13..【解析】【分析】本题考查了实数的混合运算,特殊角的三角函数值.代入特殊角的三角函数值,根据实数的混合运算的法则计算即可求解..14. 解关于x 的不等式组【答案】-2<x <-1【解析】【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.FM AB ∴EFM EAB ∴∽FM MEAB BE ∴=235a a -=34a =FN CN ∴==3439344DN CD CN ∴=-=-=Rt DFN 9,4DN =34FN =DF ==tan 60︒1-tan 60︒1=+--1=-34423x x x x >-⎧⎪+⎨>+⎪⎩【详解】解:,解①得:x >-2,解②得:x <-1,∴-2<x <-1.【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.15. 先化简.再求值:,其中.【答案】;【解析】【分析】本题考查了分式化简求值,先根据分式的乘法进行计算,然后计算减法,最后将字母的值代入求解.解题关键是熟练运用分式运算法则进行求解.【详解】解: ;当时,原式.16. 如图,已知在中,.请用尺规作图法,在边上求作一点D ,使得的周长等于.(保留作图痕迹,不写作法)34423x x x x >-⎧⎪⎨+>+⎪⎩①②221422211a a a a a a --⋅---+-13a =1a a -12-221422211a a a a a a --⋅---+-()()()22212211a a a a a a +--=⋅----2211a a a +=---1a a =-13a =13113=-12=-ABC 90ACB ∠=︒AB BCD △AB BC +【答案】见解析【解析】【分析】本题考查作图—复杂作图、线段垂直平分线的性质,作线段的垂直平分线,交于点,连接,则点即为所求.熟练掌握线段垂直平分线的性质是解答本题的关键.【详解】解:如图,作线段的垂直平分线,交于点,连接,则,∴的周长为,则点即为所求.17. 如图,在四边形中,,,,.求证:.【答案】见解析【解析】【分析】本题主要考查了全等三角形的判定和性质,根据线段之间和差关系,角度之间和差关系证得,,利用即可证明,熟练掌握全等三角形的判定和性质定理是解题的关键.【详解】证明:∵,,则,AC AB D CD D AC AB D CD CD AD =BCD △BC BD CD BC BD AD BC AB ++=++=+D ABCD BC CD =CE CF =BAF DAE ∠=∠B D ∠=∠AE AF =BE DF =BAE DAF ∠=∠AAS BC CD =CE CF =BC CE CD CF -=-∴,∵,则,∴,在和中,,∴,∴.18. 如图,正方形网格中,在平面直角坐标系中,的三个顶点为、、.(1)将向下平移5个单位长度得到,请画出;(2)画出绕点逆时针旋转后得到的,并写出点的坐标;(3)连接,,,求的面积.【答案】(1)图见解析(2)图见解析,点的坐标为 (3)2【解析】【分析】本题考查平移作图、旋转作图、利用网格求三角形面积:(1)将三个顶点分别下平移5个单位长度,得到对应点,顺次连接即可;(2)将和分别绕点逆时针旋转,得到对应点,顺次连接即可;(3)利用三角形面积公式求解.BE DF =BAF DAE ∠=∠BAF EAF DAE EAF ∠∠∠∠-=-BAE DAF ∠=∠ABE ADF △BAE DAF B D BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABE ADF ≌△△AE AF =ABC ()1,2A ()3,1B ()2,3C ABC 111A B C △111A B C △111A B C △1C 90︒221A B C △2A 12A A 12A B 22A B 122A A B 2A ()33-,ABC 1A 1B 1C 90︒【小问1详解】解:如图,即为所求;【小问2详解】解:如图,即为所求,点的坐标为;【小问3详解】解:如图,,即的面积为2.19. 不透明的袋子里装有2个标有数字的小球,1个标有数字0的小球和若干个标有数字2的小球,这111A B C △221A B C △2A ()33-,12212222A AB S =⨯⨯= 122A A B 1-些球除颜色外都相同,从中任意摸出1个球,是标有数字的概率为.(1)袋子里标有数字2的小球有 个;(2)丽丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标、再将此球放回、摇匀,然后由静静再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M 落在坐标轴上的概率.【答案】(1)2 (2)【解析】【分析】本题考查已知概率求数量,列表或画树状图法求概率:(1)根据标有数字的小球的个数及概率求出总数,即可求解;(2)通过列表列出所有等可能的情况,从中找出满足条件的情况,再利用概率公式求解.【小问1详解】解:袋子里小球的总数为:(个),袋子里标有数字2的小球有:(个),故答案为:2;小问2详解】解:由题意列表如下: 丽丽静静02222由表可知,共有25种等可能的情况,其中,,,,在坐标轴上,共有9种情况,【1-259251-2255÷=5212--=1-1-1-()1,1--()1,1--()01-,()21-,()21-,1-()1,1--()1,1--()01-,()21-,()21-,()10-,()10-,()00,()20,()20,()12-,()12-,()02,()22,()22,()12-,()12-,()02,()22,()22,()10-,()00,()20,()01-,()02,因此出点M 落在坐标轴上的概率为.20. 某“综合与实践”小组开展测量某建筑物高度的活动,他们制订了测量方案,测量报告如下.建筑物正前方有一根高度是17米的旗杆,从办公大楼顶端A 测得旗杆顶端E 的俯角为,旗杆底端D 到大楼前梯坎底边的距离是20米,梯坎坡长是9米,梯坎坡度.请根据以上测量结果,求建筑物的高度.【答案】建筑物的高度约为37.7米【解析】【分析】本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,如图,过点作,垂足为,延长交于点,由题意得:,,米,,,从而可得,再根据已知可设米,则米,然后在中,利用勾股定理进行计算可求出和的长,从而求出的长,最后在中,利用锐角三角函数的定义求出的长,从而利用线段的和差关系进行计算,即可解答.根据题目的已知925AB AB ED 45︒DC BC 25i =:AB AB E EG AB ⊥G AB DC H AH DH ⊥EG DH =17ED GH ==45FAE ∠=︒AF EG ∥45FAE AEG ∠=∠=︒2BH x =CH =Rt BCH △BH CH DH Rt AEG △AG条件并结合图形添加适当的辅助线是解题的关键.【详解】解:如图,过点作,垂足为,延长交于点,由题意得:,,米,,,∴,∵梯坎坡度∴∴设米,则米,在中,(米),∵米,∴,解得:,∴米,米,∵米,∴米,在中,米,∴(米),∴建筑物的高度约为37.7米.21. 某工厂生产一种正方形的合金薄板(其厚度忽略不计),每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了如下表格中的数据.E EGAB ⊥G AB DC H AH DH ⊥EG DH =17ED GH ==45FAE ∠=︒AF EG ∥45FAE AEG ∠=∠=︒BC 2i=BH CH =2BH x =CH =RtBCH △3BC x ===9BC =39x =3x =6BH =CH =20DC =(20EG DH CH DC ==+=+Rt AEG △(tan 4520AG EG =⋅︒=+2017637.7AB AG GH BH =+-=++-≈AB薄板的边长x ()2030出厂价y (元/张)4565(1)求每张游板的出厂价y 与边长x 之间满足的函数关系式;(2)在营销过程中,已知出售一张边长为的薄板工厂可获得利润26元,求这张薄板的成本价.【答案】(1) (2)59元【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式.(1)根据题意和表格中的数据,可以求出每张薄板的出厂价y 与边长x 之间满足的函数关系式;(2)将代入(1)中的函数关系式,求出出厂价,然后用出厂价减利润,即可得到成本价.【小问1详解】解:每张游板的边长为,基础价为元,浮动价为元,则出厂价,由表格可得,,解得,即每张游板的出厂价y 与边长x 之间满足的函数关系式;【小问2详解】当时,,(元),答:这张薄板得成本价是59元.22. 某校为了解九年级同学的中考体育考试准备情况,随机抽查该年级部分学生进行体育模拟测试,根据测试成绩(单位:分)分为四个类别:,,,,将分类结果制成如下两幅统计图(尚不完整).cm 40cm 25y x =+40x =x b kx y kx b =+20453065k b k b +=⎧⎨+=⎩25k b =⎧⎨=⎩25y x =+40x =240585y =⨯+=852659-=()5860A t ≤≤()5458B t ≤<()5054C t ≤<()50D t ≤根据以上信息,回答下列问题:(1)本次抽样的样本容量为 ;(2)补全条形统计图;(3)扇形统计图中a 的值为 ,圆心角的度数为 ;(4)若九年级有612名学生,估计测试成绩少于54分的学生有多少名?【答案】(1)60 (2)图见解析(3)20, (4)306名【解析】【分析】本题主要考查条形统计图与扇形统计图的综合应用,利用样本估计总体等,能看懂统计图是解题的关键.(1)根据D 组的人数和百分比即可求出样本容量;(2)根据C 组所占的百分比即可求出C 组的人数;(3)根据A 组的人数即可求出A 组所占的百分比,根据C 组所占的百分比即可求出对应的圆心角;(4)算出成绩少于54分的学生的比例,利用样本估计总体.【小问1详解】解:D 组的人数为6,占比,故本次抽样的样本容量为:,故答案为:60;【小问2详解】解:C 组的人数为:,补全后的条形统计图如下所示:β72︒10%610%60÷=6040%24⨯=【小问3详解】解:扇形统计图中a 的值为:,圆心角的度数为:,故答案为:20,;【小问4详解】解:(名)答:估计测试成绩少于54分的学生有306名.23. 如图,是的直径,弦于点E ,点F 为上一点,连接,交于点P ,连接,若.(1)求证:;(2)延长交延长线于点G ,若,,求的长.【答案】(1)见解析 (2)10【解析】【分析】(1)连接,易得,进而得到,垂径定理得到,圆周角定理,得到,,即可得出结论;126010020÷⨯=β20%36072⨯︒=︒72︒24661230660+⨯=AB O CD AB ⊥AD CF AB ,AC AF PE BE =2BAF BAC ∠=∠CD AF 6AB=CD =GF BC BC CP =BCD FCD ∠=∠ BCBD =BAC DCB ∠=∠FAB FCB ∠=∠(2)连接,等弧对等弦,得到,圆周角定理结合勾股定理求出的长,垂径定理,求出的长,证明,列出比例式求出的长,进而求出的长,根据,求出的长,再用求出的长即可.【小问1详解】证明:连接,∵,∴,∴,∵为直径,,∴,∴,∴,∵,∴;【小问2详解】连接,BF BF CD =AF CE AEC CEB ∽BE AE cos AE AFFAB AG AB∠==AG AG AF -FG BC ,CE BP PE BE ⊥=BC CP =12FCD DCB FCB ∠=∠=∠AB AB CD ⊥ BCBD =BAC DCB ∠=∠22FCB DCB BAC ∠=∠=∠FAB FCB ∠=∠2FAB BAC ∠=∠BF由(1)可知:,∴,∴,∵为直径,,∴,,,∴,,∴,∴,∴,解得:或(不合题意,舍去);∴,∴,∵,∴,∴,∴.BCBD DF ==»»CDBF =BF CD ==AB AB CD ⊥90AFB ACB ∠=∠=︒12CE CD ==90CEA CEB ∠=∠=︒2AF ==90CAB BCE ACE ∠=∠=︒-∠AEC CEB ∽AE CE CE BE=()26CE AE BE BE BE =⋅=-⋅2BE =4BE =2BE =4AE =cos AE AF FAB AG AB∠==426AG =12AG =10GF AG AF =-=【点睛】本题考查圆周角定理,垂径定理,弧,弦,角之间的关系,相似三角形的判定和性质,解直角三角形等知识点,综合性强,难度较大,熟练掌握相关知识点,并灵活运用,是解题的关键.24. 已知抛物线与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点,对称轴为直线.(1)求此二次函数表达式和点A 、点B 的坐标;(2)点P 为第四象限内抛物线上一动点,将抛物线平移得到抛物线,使得抛物线的顶点为点P ,抛物线与y 轴交于点E ,过点P 作y 轴的垂线交y 轴于点D .是否存在这样的点P ,使得以点P 、D 、E 为顶点的三角形与相似,请你写出平移过程,并说明理由.【答案】(1),(2)存在,先向左平移个单位,再向上平移个单位【解析】【分析】(1)根据对称轴公式求出的值,将代入求出的值,进而求出抛物线的解析式,令,求出的坐标即可;(2)设,顶点式写出的解析式,进而求出点坐标,分,两种情况,进行求解即可.【小问1详解】∵抛物线的对称轴为直线,∴,把代入解析式,得:,∴抛物线的解析式为:,令,解得:,∴;【小问2详解】存在,设, ∵平移,抛物线的开口方向和大小不发生改变,∴,21:L y x bx c =++()0,3C -1x =1L 1L 2L 2L 2L AOC 2=23y x x --()()1,0,3,0A B -2349b ()0,3C-c 0y =,A B ()()2,2303P m m m m --<<2L ,D E PDE AOC △∽△EDP AOC ∽12b x =-=2b =-()0,3C -3c =-2=23y x x --2230y x x =--=123,1x x ==-()()1,0,3,0A B -()()2,2303P m m m m --<<()222:23L y x m m m =-+--∴当时,,∴,∵过点P 作y 轴的垂线交y 轴于点D ,∴,,∴,,∵,∴,当点P 、D 、E 为顶点的三角形与相似时,分两种情况,①当时,则:,即:,解得:(舍去)或(舍去);②当时,则:,即:,解得:(舍去)或;∴,∵,∴顶点坐标为,∴平移方向为:先向左平移个单位长度,再向上平移个单位长度.【点睛】本题考查二次函数的综合应用,涉及待定系数法求函数解析式,二次函数的性质,相似三角形的判定和性质,二次函数图象的平移,综合性强,难度较大,掌握相关知识点,利用数形结合,分类讨论的思想,进行求解是解题的关键.25. (1)如图1,已知半径是4,A 是上一动点,,则的最大值是 .(2)如图2,在中,,,,点D 是边上一动点,连接DB ,过点A 作于点F ,连接,求最小值.(3)如图3,某景区有一片油菜花地,形状由和以为直径的半圆两部分构成,已知米,,,为了方便游客游览,该景区计划对油菜花地进行改造,根据设计要的0x =2223y m m =--()20,223E m m --()20,23D m m --90PDE AOC ∠=︒=∠22222323DE m m m m m =---++=PD m =()(),1,00,3A C -1,3OA OC ==AOC PDE AOC △∽△PD DE OA OC =213m m =0m =3m =EDP AOC ∽PD DE OC OA =231m m =0m =13m =132,39P ⎛⎫- ⎪⎝⎭()221:2314L y x x x =--=--()1,4-12133-=324499-=O O 9OP =PA ABC 90ABC ∠=︒6AB =8BC =AC AF BD ⊥CF CF ABC BC 60BC =90ABC ∠=︒60ACB ∠=︒求,在半圆上区确定一点E ,沿修建小路,并在中点F 处修建一个凉亭,沿修建仿古长廊,由于仿古长廊造价高达1100元/米,为了控制成本,景区要求仿古长廊的长度尽可能短,在不考虑其他因素的前提下,请求出建造仿古长廊的最低费用.【答案】(1)13;(2;(3)元【解析】【分析】(1)点A 位于直线与的左侧交点时,取最大值;(2)根据可得点F 在以为直径的半圆上,设的中点为E ,连接,与点F 的运动轨迹交于点,则的长度即为的最小值;(3)连接,,取中点为M ,中点为N ,连接,,,证明,推出点F 在以为直径的左侧半圆上,连接,与点F 的运动轨迹交于点,则的长度即为的最小值.【详解】解:(1)如图,当点A 位于直线与的左侧交点时,取最大值,最大值为:,故答案为:13;(2),,点F 在以为直径的半圆上,如图,设的中点为E ,连接,与点F 的运动轨迹交于点,则的长度即为的最小值.AE AE CF CF 3-()16500-OP O PA AF BD ⊥AB AB CE F 'CF 'CF EC EB AC AB MN MF FN 90MFN CEB ︒∠=∠=MN CO F 'CF 'CF OP O PA 4913OA OP +=+= AF BD ⊥∴90AFB ∠=︒∴AB AB CE F 'CF 'CF,中点为E ,,又,,,,即.(3),,,,,.如图,连接,,取中点为M ,中点为N ,连接,,,点E 在以为直径的半圆上,,中点为M ,中点为F ,中点为N ,为的中位线,为的中位线,为的中位线,,,,,,, 6AB =∴132EB AB == 90ABC ∠=︒8BC =∴CE ===∴3CF CE EF ''=-=-CF 3- 60BC =90ABC ∠=︒60ACB ∠=︒∴30CAB ∠=︒∴2120AC BC ==∴AB ===EC EB AC AB MN MF FN BC ∴90CEB ∠=︒ AC AE AB ∴MF ACE △FN ABE MN ABC ∴MF EC ∥NF EB ∥MN BC ∥1302MN BC ==∴MFA CEA ∠=∠NFA BEA ∠=∠,,点F 在以为直径的左侧半圆上,取中点为O ,作于点K ,得矩形,连接,与点F 的运动轨迹交于点,则的长度即为的最小值.,中点O ,中点为N ,,,,,在中,,,又,,的最小值为.仿古长廊造价高达1100元/米,(元),建造仿古长廊的最低费用为元.【点睛】本题考查圆外一点到圆上点距离的最值,圆周角定理,中位线定理,勾股定理,矩形的判定和性质等,第三问有一定难度,通过作辅助线判断出点F 的运动轨迹是解题的关键.为∴MFA NFA CEA BEA ∠+∠=∠+∠∴90MFN CEB ︒∠=∠=∴MN MN OKBC ⊥ONBK CO F 'CF 'CF 1302MN BC ==MN AB =AB ∴1152ON MN ==12BN AB ==∴15KB ON ==OK BN==∴601545CK BC KB =-=-=Rt CKO222CK OK OC +=∴OC === 15OF ON '==∴15CF OC OF ''=-=∴CF 15 ()151********⨯=-∴()16500。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共10个小题,每小题3分,共30分)1.与-2的乘积等于1的数是( D )A.21B.2 C.-2 D.-212.2016年1月24日,“贵广大庙会”在贵阳观山湖区正式面向市民开放,第一天就有近 5.6×104人到场购置年货, 5.6×104表示这一天到场人数为( D )A.12 B.9 C.4 D.38.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10-x[来源:学,科,网]对于不同的x,下列关于年龄的统计量不会发生改变的是( B )A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差9.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c =0根的情况是( B )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为010.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下四个结论:①abc =0;②a +b +c>0;③a>b ;④4ac -b 2<0.其中,正确的结论有( C )A .1个B .2个C .3个D .4个二、填空题(本大题共5个小题,每小题4分,共20分) 11.计算:28=__2__.12.化简:x2-4x +4x +3÷(x -2)2x2+3x =__x 1__.13.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为51,那么口袋中小球共有__15__个.14.如图,在△ABC 中,∠ACB =90°,M ,N 分别是AB ,AC 的中点,延长BC 至点D ,使CD =31BD ,连接DM ,DN ,MN.若AB =6,则DN =__3__.15.在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为__126或66__cm 2.三、解答题(本大题共10个小题,共100分)16.(6分)先化简,再求值:已知[4(xy -1)2-(xy +2)(2-xy)]÷41xy ,其中x =-2,y =0.5.解:原式=[4(x 2y 2-2xy +1)-(4-x 2y 2)]÷41xy =[4x 2y 2-8xy +4-4+x2y2]÷41xy=(5x2y2-8xy)÷41xy=20xy-32;当x=-2,y=0.5时,原式=-52.17.(10分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在________等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.解:(1)补全的两幅统计图如图所示;(2)良好;(3)650×26%=169(人),∴该年级女生中1分钟“仰卧起坐”个数达到优秀的人数为169人.18.(10分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC 上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠B=∠D=90°,由折叠的性质可知:∠BAE=∠CAE=21∠BAC,∠DCF=∠ACF=21∠ACD.∵AB ∥CD ,∴∠BAC =∠ACD ,∴∠BAE =∠DCF.在△BAE 和△DCF 中.∵∠BAE =∠DCF ,AB =CD ,∴△BAE ≌△DCF ,∴AE =CF.又∵∠EAC =∠FCA ,∴AE ∥CF ,∴四边形AECF 是平行四边形;(2)在Rt △ABC 中,BC ===8.设CE =x ,由折叠可知:BE =EM =8-x ,AB =AM =6,∴CM =AC -AM =10-6=4,在Rt △CEM 中.∵EM 2+CM 2=CE 2,∴(8-x)2+42=x 2,解得x =5,∴CE =5,∴S?AECF =AB ×CE =6×5=30. 19.(10分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.解:(1)列表如下:甲口袋乙口袋1 2 3 4(1,4) (2,4) (3,4) 5(1,5) (2,5) (3,5) 或画树状图如下:可能出现的结果共有6种,他们出现的可能性相同;(2)两个数字之和能被3整除的情况有2种可能:(1,5),(2,4),∴P(两个数字之和能被3整除)=62=31. 20.(10分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引伸出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为 2 m,两拉索底端距离AD为20 m,请求出立柱BH的长.(结果精确到0.1 m,≈1.732)解:设DH=x m,在Rt△CDH中,tan60°=DH CH=,∴CH=DH=x.在Rt△AHB中.∵∠A=30°,∴∠B=60°,∴AH=BH,∴20+x=(2+x),∴x=10-,∴CH=x=(10-)=10-3,∴BH=BC+CH=2+10-3=10-1≈10×1.732-1≈17.32-1≈16.3(m),∴立柱BH的长约为16.3 m.21.(10分)如图,在四边形ABCD中,AD=BC,AB∥CD,现将四边形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数y=x k(k≠0)的图象经过点 C.(1)求C点坐标和反比例函数的表达式;(2)将四边形ABCD向上平移m个单位长度后,使点B恰好落在双曲线上,求m的值.解:(1)过点C作CE⊥AB于点 E.∵AD=BC,AB∥CD.又∵DO⊥AB,E C,∴AO=BE=2.∵BO=6,∴DC CE⊥AB,∴DO=CE=3,∴△AOD≌△B=OE=4,∴C(4,3).∵y=x k(k≠0),∴3=4k,解得k=12,∴反比例函数的表达式为y=x12;(2)将四边形ABCD向上平移m个单位长度后得到四边形B′(6,m).∵点B′(6,m)恰好落在双曲线y=x12上,∴当x=6 A′B′C′D′,∴点时,m=612=2,即m=2.22.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点 D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)解:(1)直线BC与⊙O相切;理由:连接OD,∵OA=OD,∴∠OAD=∠OD A.∵∠BAC的平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD =∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切;(2)①设OA=OD=r,在Rt△BDO 中,∠B=30°,∴OB=2r.在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3rS扇形ODE=32=6,解得r=2;②在Rt△OBD中,∠B=30°.∴∠BOD=60°.∴π.S△ODB=21DB·OD=21×2×2=2,∴所求图形面积为:S阴影=S△BOD-S扇形2π.ODE=2-323.(10分)在“绿满贵阳”行动中,某社区计划对面积为 1 800 m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数表达式;[来源:学+科+网Z+X+X+K](3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲、乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.解:(1)设乙工程队每天能完成绿化的面积是x m2,则甲队每天绿化2x m2,根据题意得:x400-2x400=4,解得x=50,经检验,x=50是原方程的根,∴2x=100.答:甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)根据题意,得:100x+50y=1 800,∴y与x的函数表达式为y =36-2x ;(3)∵甲乙两队施工的总天数不超过26天,∴x +y ≤26,∴x +36-2x ≤26.解得x ≥10.设施工总费用为w 万元,依题意,得:w =0.6x +0.25y =0.6x +0.25×(36-2x)=0.1x +9.∵k =0.1>0,∴w随x 增大而增大,当x =10时,w 的最小值为10.此时y =36-20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.最低费用为10万元.24.(12分)如图,点C 为线段AB 上一点,△ACM ,△CBN 是等边三角形,直线AN ,MC 交于点E ,直线BM ,NC 交于点F ,连接EF.(1)求证:AN =BM ;(2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图②中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立.(不要求证明) 证明:(1)∵△ACM ,△CBN 是等边三角形,∴CM =CA ,CN =CB ,∠MCA =∠NCB =60°,∴∠MCA +∠MCN =∠NCB +∠MCN ,即∠MCB =∠ACN ,在△BCM 和△NCA 中,CM =CA ,∠MCB =∠ACN ,∴△BCM ≌△NCA(SAS ),∴BM =NA ;(2)∵△ACM ,△CBN 是等边三角形,∴AC =MC ,∠MCA =∠NCB =60°,∴∠MCN =180°-∠MCA -∠NCB =180°-60°-60°=60°=∠MCA.又由(1)△BCM ≌△NCA ,∴∠NAC =∠BMC ,在△ACE和△MCF 中,∠ACE =∠MCF ,AC =MC ,∴△ACE ≌△MCF(ASA ),∴CE =CF ,∴△CEF 为等边三角形;(3)连接BM 交AC 于点F ,连接AN 交BC 于点E.此时第(1)小题的结论仍然成立,第(2)小题的结论不成立.25.(12分)如图,已知抛物线y =31x 2+bx +c 经过△ABC 的三个顶点,其中点A(0,1),点B(-9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的表达式;(2)过点P 且与y 轴平行的直线l 与直线AB ,AC 分别交于点E ,F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C ,P ,Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标;若不存在,请说明理由.解:(1)把点A(0,1),B(-9,10)的坐标代入y =31x 2+bx +c ,得×(-9)2-9b +c.1解得c =1.b =2,∴抛物线的表达式是y =31x 2+2x +1;(2)∵AC ∥x轴,A(0,1),由31x 2+2x +1=1,解得x 1=-6,x 2=0,∴C(-6,1),设直线AB 的表达式是y =kx +b(k ≠0),由10=-9k +b.1=b ,解得b =1.k =-1,则直线AB 的表达式是y =-x +1.设点P 的坐标为(m ,31m 2+2m +1),则点E 的坐标为(m ,-m +1).则EP =-m +1-(31m 2+2m +1)=-31m 2-3m.∵AC ⊥EP ,AC =6,∴S四边形AECP =S △AEC +S △APC =21AC ·EF +21AC ·PF =21AC ·(EF +PF)=21AC ·EP =21×6×(-31m 2-3m)=-m 2-9m =-(m +29)2+481.又∵-6<m<0,则当m =-49时,四边形AECP 面积的最大值是481,此时点P 的坐标是(-29,-45);(3)由y =31x 2+2x +1=31(x +3)2-2,得顶点P 的坐标是(-3,-2),此时PF =y F -y P =3,CF =x F -x C =3,则在Rt △CFP 中,PF =CF ,∴∠PCF =45°,同理可求∠EAF =45°,∴∠PCF =∠EAF ,∴在直线AC 上存在满足条件的点Q 1,Q 2,使△CPQ 1∽△ABC 或△CQ 2P ∽△ABC.可求AB =9,AC =6,CP =3,①当△CPQ 1∽△ABC 时,设Q 1(t 1,1),由AC CQ1=AB CP ,得6t1+6=22,解得t 1=-4.②当△CQ 2P ∽△ABC 时,设Q 2(t 2,1),由AB CQ2=AC CP ,得2t2+6=26,解得t 2=3.综上,满足条件的点Q有两个,坐标分别是Q 1(-4,1)或Q 2(3,1).。

相关文档
最新文档