高中数学人教版必修第一章集合与函数概念单元测试卷(A)

合集下载

【人教A版】高中数学必修1第一章《集合与函数概念》单元测试题

【人教A版】高中数学必修1第一章《集合与函数概念》单元测试题

必修一第一章《集合与函数概念》单元测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A ={0,1},则下列关系表示错误的是( ) A .0∈A B .{1}∈A C .∅⊆AD .{0,1}⊆A2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如下图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为()A .3B .2C .1D .03.设全集U ={1,2,3,4},M ={1,3,4},N ={2,4},P ={2},那么下列关系中正确的是( )A .P =(∁U M )∩NB .P =M ∪NC .P =M ∪(∁U N )D .P =M ∩N4.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 5.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0.则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( )A .-2B .4C .2D .-4 6.函数y =x -2x -1的图象是( )7.函数f (x )=2x +1+x 的值域是( ) A .[0,+∞) B .(-∞,0] C.⎣⎢⎡⎭⎪⎫-12,+∞ D .[1,+∞)8.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的Venn 图如图所示,则阴影部分表示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个9.已知函数f (x )=ax 3-bx -4,其中a ,b 为常数.若f (-2)=2,则f (2)的值为( )A .-2B .-4C .-6D .-1010.已知偶函数f (x )在区间[0,+∞)上是增函数,则f (-1)与f (a 2-2a +3)的大小关系是( )A .f (-1)≥f (a 2-2a +3)B .f (-1)≤f (a 2-2a +3)C .f (-1)>f (a 2-2a +3)D .f (-1)<f (a 2-2a +3)11.函数y =ax 2+bx 与y =ax +b (ab ≠0)的图象只可能是( )12.设数集M 同时满足以下条件:①M 中不含元素-1,0,1;②若a ∈M ,则1+a 1-a∈M .则下列结论正确的是( ) A .集合M 中至多有2个元素 B .集合M 中至多有3个元素 C .集合M 中有且仅有4个元素 D .集合M 中有无穷多个元素二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.用列举法表示集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪10m +1∈Z ,m ∈Z =________. 14.设函数f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0.若f (a )=4,则实数a 的值为________.15.已知全集U ={2,4,a 2-a +1},A ={a +4,4},∁U A ={7},则a =________. 16.若函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x (x ≠0),则f (x )=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)集合U =R ,集合A ={x |x 2+mx +2=0},B ={x |x 2-5x +n =0},A ∩B ≠∅,且(∁U A )∩B ={2},求集合A .18.(本小题满分12分)已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>5}.若A∩B=∅,求a的取值范围.19.(本小题满分12分)设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在区间[-3,3]上的最大值和最小值.20.(本小题满分12分)已知函数f(x)=xx-a(x≠a).(1)若a=-2,试证明f(x)在区间(-∞,-2)上单调递增;(2)若a>0,且f(x)在区间(1,+∞)上单调递减,求a的取值范围.21.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:(1)(x,y)的对应点,并确定y与x的一个函数关系式;(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?22.(本小题满分12分)已知函数f(x)=x+mx,且f(1)=2.(1)判断函数f(x)的奇偶性;(2)判断函数f(x)在(1,+∞)上的单调性,并用定义证明你的结论;(3)若f(a)>2,求实数a的取值范围.必修一第一章《集合与函数概念》单元测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A ={0,1},则下列关系表示错误的是( ) A .0∈A B .{1}∈A C .∅⊆AD .{0,1}⊆A解析:{1}与A 均为集合,而∈用于表示元素与集合的关系,所以B 错,其正确的表示应是{1}⊆A .答案:B2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如下图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为()A .3B .2C .1D .0解析:由图象可知g (2)=1,由表格可知f (1)=2,所以f (g (2))=2.答案:B3.设全集U ={1,2,3,4},M ={1,3,4},N ={2,4},P ={2},那么下列关系中正确的是( )A .P =(∁U M )∩NB .P =M ∪NC .P =M ∪(∁U N )D .P =M ∩N解析:由题意知∁U M ={2},故P =(∁U M )∩N . 答案:A4.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:对于f (2x +1),-1<2x +1<0,解得-1<x <-12,即函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.答案:B5.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0.则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( )A .-2B .4C .2D .-4 解析:∵43>0,∴f ⎝ ⎛⎭⎪⎫43=2×43=83,∵-43<0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=43, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=123=4. 答案:B6.函数y =x -2x -1的图象是( )解析:函数的定义域为{x |x ≠1},排除C 、D ,当x =2时,y =0,排除A ,故选B.答案:B7.函数f (x )=2x +1+x 的值域是( ) A .[0,+∞) B .(-∞,0] C.⎣⎢⎡⎭⎪⎫-12,+∞ D .[1,+∞)解析:令2x +1=t (t ≥0),则x =t 2-12,所以f (x )=f (t )=t 2-12+t =12(t 2+2t-1),当t ∈(-1,+∞)时,f (t )为增函数,又因为t ≥0,所以当t =0时,f (t )有最小值-12,所以函数的值域为⎣⎢⎡⎭⎪⎫-12,+∞.答案:C8.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的Venn 图如图所示,则阴影部分表示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:M ={x |-2≤x -1≤2}={x |-1≤x ≤3},N ={1,3,5,…},则M ∩N ={1,3},所以阴影部分表示的集合共有2个元素,故选B.答案:B9.已知函数f (x )=ax 3-bx -4,其中a ,b 为常数.若f (-2)=2,则f (2)的值为( )A .-2B .-4C .-6D .-10 解析:因为f (-2)=a (-2)3+b ·(-2)-4=2, 所以8a +2b =-6,所以f (2)=8a +2b -4=-10. 答案:D10.已知偶函数f (x )在区间[0,+∞)上是增函数,则f (-1)与f (a 2-2a +3)的大小关系是( )A .f (-1)≥f (a 2-2a +3)B .f (-1)≤f (a 2-2a +3)C .f (-1)>f (a 2-2a +3)D .f (-1)<f (a 2-2a +3)解析:因为a 2-2a +3=(a -1)2+2≥2,且函数f (x )是偶函数,所以f (-1)=f (1).又因为函数f (x )在区间[0,+∞)上是增函数,所以f (-1)=f (1)<f (2)≤f (a 2-2a +3).答案:D11.函数y =ax 2+bx 与y =ax +b (ab ≠0)的图象只可能是( )解析:先确定一次函数的图象,根据一次函数的图象确定a ,b 的取值,再根据a ,b 的取值确定二次函数的开口方向和对称轴即可.答案:D12.设数集M 同时满足以下条件:①M 中不含元素-1,0,1;②若a ∈M ,则1+a 1-a∈M .则下列结论正确的是( ) A .集合M 中至多有2个元素 B .集合M 中至多有3个元素 C .集合M 中有且仅有4个元素 D .集合M 中有无穷多个元素解析:因为a ∈M ,1+a1-a∈M ,所以1+1+a 1-a 1-1+a1-a=-1a ∈M ,所以1+1-a 1-1-a=a -1a +1∈M ,又因为1+a -1a +11-a -1a +1=a ,所以,集合M 中有且仅有4个元素:a ,-1a ,1+a 1-a ,a -1a +1. 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.用列举法表示集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪10m +1∈Z ,m ∈Z =________.解析:由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.答案:{-11,-6,-3,-2,0,1,4,9}14.设函数f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0.若f (a )=4,则实数a 的值为________.解析:当a ≤0时,f (a )=-a =4,所以a =-4;当a >0时,f (a )=a 2=4,所以a =2.故a =-4或a =2.答案:-4或215.已知全集U ={2,4,a 2-a +1},A ={a +4,4},∁U A ={7},则a =________. 解析:a 2-a +1=7,a 2-a -6=0,解得a =-2,a =3,检验知a =-2. 答案:-216.若函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x (x ≠0),则f (x )=________.解析:因为f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x ,①所以以1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=3x .②由①②,得f (x )=2x -x (x ≠0). 答案:2x -x (x ≠0)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)集合U =R ,集合A ={x |x 2+mx +2=0},B ={x |x 2-5x +n =0},A ∩B ≠∅,且(∁U A )∩B ={2},求集合A .解:因为(∁U A )∩B ={2}, 所以2∈B ,2∉A ,所以2是方程x 2-5x +n =0的根, 即22-5×2+n =0,所以n =6,所以B ={x |x 2-5x +6=0}={2,3}. 由A ∩B ≠∅知3∈A ,即3是方程x 2+mx +2=0的根, 所以9+3m +2=0,所以m =-113. 所以A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎭⎬⎫x 2-113x +2=0=⎩⎨⎧23,3. 18.(本小题满分12分)已知集合A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5}.若A ∩B =∅,求a 的取值范围.解:若A =∅,则A ∩B =∅, 此时2a >a +3,解得a >3.若A ≠∅,由A ∩B =∅,得⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是⎩⎨⎧⎭⎬⎫a |-12≤a ≤2或a >3.19.(本小题满分12分)设函数f (x )对任意实数x ,y 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.(1)求证f (x )是奇函数;(2)求f (x )在区间[-3,3]上的最大值和最小值. (1)证明:令x =y =0,则f (0)=0. 再令y =-x ,则f (0)=f (x )+f (-x )=0, 所以f (-x )=-f (x ).故f (x )为奇函数. (2)解:任取x 1<x 2,则x 2-x 1>0,所以f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1)<0, 所以f (x )为减函数.又f (3)=f (2+1)=f (2)+f (1)=3f (1)=-6, 所以f (-3)=-f (3)=6.故f (x )max =f (-3)=6,f (x )min =f (3)=-6. 20.(本小题满分12分)已知函数f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在区间(-∞,-2)上单调递增; (2)若a >0,且f (x )在区间(1,+∞)上单调递减,求a 的取值范围. (1)证明:任取x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2).故函数f(x)在区间(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=x1 x1-a -x2x2-a=2(x1-x2)(x1-a)(x2-a).因为a>0,x1-x2<0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,所以a≤1.故a的取值范围是(0,1].21.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:(1)(x,y)的对应点,并确定y与x的一个函数关系式;(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解:(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y =kx +b ,则⎩⎪⎨⎪⎧50k +b =0,45k +b =15,⎩⎪⎨⎪⎧k =-3,b =150.所以y =-3x +150(0≤x ≤50,且x ∈N *),经检验(30,60),(40,30)也在此直线上.所以所求函数解析式为y =-3x +150(0≤x ≤50且x ∈N *). (2)依题意P =y (x -30)=(-3x +150)(x -30)= -3(x -40)2+300.所以当x =40时,P 有最大值300,故销售单价为40元时,才能获得最大日销售利润.22.(本小题满分12分)已知函数f (x )=x +mx ,且f (1)=2. (1)判断函数f (x )的奇偶性;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义证明你的结论; (3)若f (a )>2,求实数a 的取值范围. 解:由f (1)=2,得1+m =2,m =1. 所以f (x )=x +1x .(1)f (x )=x +1x 的定义域为(-∞,0)∪(0,+∞), f (-x )=-x +1-x =-⎝ ⎛⎭⎪⎫x +1x =-f (x ).所以f (x )为奇函数.(2)f (x )=x +1x 在(1,+∞)上是增函数.证明:设任意的x 1,x 2∈(1,+∞),且x 1<x 2,则f(x1)-f(x2)=(x1-x2)-x1-x2x1x2=(x1-x2)x1x2-1x1x2,因为1<x1<x2,所以x1-x2<0,x1x2>1,x1x2-1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(1,+∞)上是增函数.(3)设任意的x1,x2∈(0,1),且x1<x2,由(2)知f(x1)-f(x2)=(x1-x2)(x1x2-1)x1x2,由于x1-x2<0,0<x1x2<1,所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(0,1)上是减函数.由f(x)在(1,+∞)上是增函数,在(0,1)上是减函数,且f(1)=2知,当a∈(0,1)时,f(a)>2=f(1)成立;当a∈(1,+∞)时,f(a)>2=f(1)成立;而当a<0时,f(a)<0,不满足题设.综上可知,实数a的取值范围为(0,1)∪(1,+∞).。

人教版高中数学必修一《集合与函数概念》单元习题课及同步测评(含答案)

人教版高中数学必修一《集合与函数概念》单元习题课及同步测评(含答案)

高一数学《集合与函数概念》单元习题课一、集合概念1. 已知全集R =U ,设函数()12lg -=x y 的定义域为集合M ,集合{}2≥=x x N ,则)(N C M U 等于.A ]221[, .B )221[, .C ]221(, .D )221(,2. 定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.已知集合{1,2},{2,3}A B ==,则集合A B ⊗的所有元素之和为________.二、函数概念 1.函数概念(1)下列各组中的两个函数是同一函数的为 ①1)5)(1(+-+=x x x y ,5-=x y ②x y =,33x y =③x y =,2x y = ④()()21log 2--=x x y ,()1log 2-=x y +()2log 2-x.A ①② .B ③④ .C ② .D ②③2.函数定义域(1)函数22()log (43)f x x x =-+的定义域为___________________(2) 函数1()f x x=的定义域为 . (3)函数)13lg(13)(2++-=x xx x f 的定义域是(A)),31(+∞- (B) )1,31(- (C))31,31(- (D) [)1,0 3.函数值域 (1) (2)(4) 函数()2x f x =在定义域A 上的值域为[]14,,则函数()()2log 2f x x =+在定义域A 上的值域为 .(5)若函数x x y 22-=的定义域为[]m ,1-,值域为[]31,-,则实数m 的取值范围是 . 4.函数解析式(1)已知1(1)232f x x -=+,()6f m =,则m 等于( )A .14 B .32-C .32 D .14-(2)三、函数性质 1.函数的单调性2.函数的最值(3)若函数2lg(1)y x =+的定义域为[a ,b ],值域为[0,1],则a + b 的最大值为( )A .3B .6C .9D .103.函数的奇偶性(1)已知4)(57-+=bx ax x f ,其中b a ,为常数,若4)3(=-f ,则)3(f 的值等于.A 8- .B 10- .C 12- .D 4-(2)设函数)(x f 为定义在R 上的偶函数,当0>x 时,x x f ln )(=,则0)(>x f 的解集为( ) A 、),1(+∞ B 、),1()1,0(+∞ C 、),1()0,1(+∞- D 、),1()1,(+∞--∞4.综合问题(1)已知2()3g x x =--,()22f x ax bx c =-+()0a ≠,()()f x g x +为R 上的奇函数.①求a ,c 的值;②若[]12x ∈-,时,()f x 的最小值为1,求()f x 解析式.(2)已知函数12(),12xxf x x R -=∈+. ①判断并证明函数()f x 的奇偶性;②求函数()f x 的值域.(3)设函数11()221xf x =-+, (Ⅰ)证明函数()f x 是奇函数;(Ⅱ)证明函数()f x 在(,)-∞+∞内是增函数; (Ⅲ)求函数()f x 在[1,2]上的值域。

人教A版数学必修一高一数学必修一第一章集合与函数概念单元测试2.docx

人教A版数学必修一高一数学必修一第一章集合与函数概念单元测试2.docx

高中数学学习材料马鸣风萧萧*整理制作高一数学必修一第一章集合与函数概念单元测试2一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于( )A. B .2 C .{2} D .N 5.设函数xy 111+=的定义域为M ,值域为N ,那么 ( )A .M={x |x ≠0},N={y |y ≠0}B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}C .M={x |x ≠0},N={y |y ∈R }D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0}6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于( )A .1B .3C .15D .308.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题(1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .4 10.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 .13.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是 . 14.已知x ∈[0,1],则函数y =x x --+12的值域是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A , C U B ,(C U A)∩(C U B),(C U A)∪(C U B),C U (A ∩B),C U (A ∪B),并指出其中相关的集合.16.(12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.17.(12分)已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ), 并写出它的定义域. 19.(14分)已知f (x)是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x)<0对一切R x ∈成立,试判断)(1x f -在(-∞,0)上的单调性,并证明你的结论.20.(14分)指出函数xx x f 1)(+=在(][)0,1,1,--∞-上的单调性,并证明之.参考答案一、DACCB DCBAD 二、11.{211≤≤-k k }; 12.[a ,-a ]; 13.[0,+∞]; 14.[3,12-] ; 三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ; C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).16. 解:由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+得x 2+(m -1)x =0 在0≤x 2≤内有解, 04)1(2≥--=∆m 即m ≥3或m ≤-1.若m ≥3,则x 1+x 2=1-m <0,x 1x 2=1,所以方程只有负根.若m ≤-1,x 1+x 2=1-m >0,x 1x 2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.因此{m ∞-<m ≤-1}.17.解: ∵ 0∈(-1,∞), ∴f (0)=32,又 32>1,∴ f (32)=(32)3+(32)-3=2+21=25,即f [f (0)]=25. 18.解:AB=2x , CD =πx ,于是AD=221x x π--, 因此,y =2x · 221x x π--+22xπ,即y =-lx x ++224π.由⎪⎩⎪⎨⎧>-->022102x x x π,得0<x <,21+π 函数的定义域为(0,21+π). 19.解:设x 1<x 2<0, 则 - x 1 > - x 2 >0, ∴f (-x 1)>f (-x 2), ∵f (x )为偶函数, ∴f (x 1)>f (x 2)又0)()()()()(1)(1)(x f 1(x) f 11221122>-=-=⎥⎦⎤⎢⎣⎡---x f x f x f x f x f x f(∵f (x 1)<0,f (x 2)<0)∴,)(x f 1)(x f 121->-∴(x)f 1-是(∞,0)上的单调递减函数. 20.解:任取x 1,x 2∈(]1,-∞- 且x 1<x 22112112212121111)()(x x x x x x x x x x x f x f -=-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=--由x 1<x 2≤—1知x 1x 2>1, ∴01121>-x x , 即)()(12x f x f >∴f(x)在(]1,-∞-上是增函数;当1≤x 1< x 2<0时,有0< x 1x 2<1,得01121<-x x ∴)()(21x f x f >∴f(x)在[)0,1-上是减函数.再利用奇偶性,给出),1(],1,0(+∞单调性,证明略.。

人教版高一数学必修1第一章集合与函数概念单元测试及答案解析

人教版高一数学必修1第一章集合与函数概念单元测试及答案解析

高一数学必修一单元测试一、 选择题1.会合 { a,b} 的子集有 ()A .2 个B .3 个C .4 个D .5 个2.设会合 Ax | 4 x 3 , Bx | x2 ,则AI B( )A . ( 4,3)B . ( 4,2]C . ( ,2]D . ( ,3)3.已知 f x 1 x 2 4 x 5 ,则 f x 的表达式是( )A . x 2 6xB . x 2 8x 7C . x 2 2x 3D . x 2 6x 104.以下对应关系:( )① A {1,4,9}, B { 3, 2, 1,1,2,3}, f : xx 的平方根② A R, B R, f : x x 的倒数 ③ A R, B R, f : x x 2 2④ A1,0,1 , B1,0,1 , f : A 中的数平方此中是 A 到 B 的映照的是A .①③B .②④C .③④D .②③5.以下四个函数:① y1x ( x 0)3 x ;② y;③ y x 2 2x 10 ;④ y1. 21 x( x 0)x此中值域为 R 的函数有 ()A .1 个B .2 个C .3 个D .4 个6.已知函数 yx 2 1 (x 0) ,使函数值为 5 的 x 的值是()2 x(x0)A .-2B .2或52C . 2 或-2D .2 或-2 或 527.以下函数中,定义域为 [0,∞)的函数是()A . y xB . y 2x 2C . y 3x 1D . y (x 1)2 8.若 x, yR ,且 f ( x y) f ( x) f ( y) ,则函数 f ( x)()A . f ( 0) 0 且 f (x) 为奇函数B . f ( 0) 0且 f (x) 为偶函数C.f ( x)为增函数且为奇函数D.f (x)为增函数且为偶函数9.以下图象中表示函数图象的是()yy y y0 0 0x 0x x x(A)(B)(C )(D)10.若H nx R, n N *,规定:H x x( x 1)(x 2) (x n 1) ,比如:()4 4( 4) ( 3) ( 2) ( 1) 24 ,则 f ( x) x H 5x 2的奇偶性为A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数二、填空题11.若A0,1,2,3 , B x | x 3a, a A ,则 A I B.12 .已知会合M={( x , y)|x + y=2} , N={( x , y)|x - y=4} ,那么会合M ∩N =.13.函数f x x 1, x 1,则 f f 4 .x 3, x 1,14.某班 50 名学生参加跳远、铅球两项测试,成绩及格人数分别为40 人和 31 人,两项测试均不及格的人数是 4 人,两项测试都及格的有人.15 .已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q,那么f(36)=.三、解答题16.已知会合 A= x1 x 7,B={x|2<x<10} ,C={x|x< a} ,全集为实数集R.(Ⅰ)求 A ∪B,(C R A)∩B;(Ⅱ)假如 A∩C≠φ,求 a 的取值范围.17.会合 A={ x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={ x|x2+2x-8=0}.(Ⅰ)若 A=B,求 a 的值;(Ⅱ)若A∩B,A∩C=,求a的值.18.已知方程x2px q 0 的两个不相等实根为,.会合A{ , } ,B{2 ,4,5,6} ,C{1 ,2,3,4} ,A ∩C=A ,A∩B=,求p, q的值?19.已知函数 f ( x) 2x21.(Ⅰ)用定义证明 f ( x) 是偶函数;(Ⅱ)用定义证明 f (x) 在 ( ,0] 上是减函数;(Ⅲ)作出函数 f (x) 的图像,并写出函数 f ( x) 当 x [ 1,2] 时的最大值与最小值.yo x20.设函数f (x)ax2bx 1(a0 、b R ),若f ( 1)0,且对随意实数 x(x R )不等式 f ( x)0 恒建立.(Ⅰ)务实数 a 、b的值;(Ⅱ )当x[ -2, 2]时,g(x) f (x) kx 是单一函数,务实数k 的取值范围.高一数学必修一单元测试题(一)参照答案一、选择题CBACB AAACB二、填空题11.0,312. {(3 ,- 1)}13. 014. 2515. 2( p q)三、解答题16.解:(Ⅰ) A∪B={x|1 ≤x<10}(C R A)∩B={x|x<1 或 x≥7} ∩{x|2<x<10}={x|7 ≤x<10}(Ⅱ)当 a>1 时知足 A∩C≠φ17.解:由已知,得 B={ 2,3},C={ 2,- 4}( Ⅰ )∵A=B 于是 2,3 是一元二次方程x2-ax+a2-19=0 的两个根,由韦达定理知:2 3 a解之得 a=5.2 3 a219(Ⅱ)由 A∩B A∩B,又A∩C=,得 3∈A,2 A,- 4 A,由 3∈A,得 32-3a+a2-19=0,解得 a=5 或 a=-2当 a=5 时, A={ x|x2-5x+6=0}={ 2,3},与 2 A 矛盾;当a=-2 时, A={x|x2+2x-15=0}={ 3,- 5},切合题意 .∴a=- 2.5又A { , },则C , C .而A ∩B = ,故 B ,B明显即属于 C 又不属于 B 的元素只有 1 和 3.不仿设 =1, =3. 关于方程 x 2px q 0 的两根 ,应用韦达定理可得 p4, q 3 .19.(Ⅰ)证明: 函数 f ( x) 的定义域为 R ,关于随意的 xR ,都有f ( x) 2( x)2 1 2x 2 1 f ( x) ,∴ f ( x) 是偶函数. (Ⅱ)证明: 在区间 ( ,0] 上任取 x , x x x12,且 12,则有f ( x 1 ) f ( x 2 ) (2 x 12 1) (2 x 2 2 1) 2( x 12 x 22 ) 2( x 1 x 2 ) ( x 1 x 2 ) , ∵ x 1, x 2 ( ,0] , x 1 x 2 ,∴ x 1 x 2 x 1 x 2 0, 即 ( x 1 x 2 ) ( x 1 x 2 ) 0∴ f ( x 1 ) f ( x 2 ) 0 ,即 f ( x) 在 ( ,0] 上是减函数.(Ⅲ)解: 最大值为 f (2)7 ,最小值为 f (0)1 .20.解:(Ⅰ) ∵ f ( 1) 0 ∴ a b 1 0∵随意实数 x 均有 f (x)a 00 建立∴b 2 4a 0解得: a 1 , b 2 (Ⅱ)由( 1)知 f (x) x 2 2x 1∴ g(x)f (x) kx x 2(2 k )x1 的对称轴为 x k 2∵当 x [ -2,2]时, g( x) 是单一函数2∴ k 22 或 k 2 2 22∴实数 k 的取值范围是 (, 2] [6,) .21.解: ( Ⅰ) 令 m n 1 得 f (1)f (1) f (1)因此 f (1) 0f (1) f (21) f (2)f ( 1) 1 f ( 1)1 ) 222因此 f ( 12( Ⅱ) 证明:任取 0x 1 x 2 ,则x 21x 1由于当 x 1时, f (x)0 ,因此 f (x 2)x 1因此 ( x 2 )( x2)( x 1 )( x2 )( x 1 )ffx1x 1ff x 1f因此 f (x) 在 0, 上是减函数.高一数学必修一单元测试题(二)一、选择题 (每题 3 分,共 36 分)1.设会合 A {1,3}, 会合 B {1,2,4,5} ,则会合A B () A .{1 ,3,1,2,4,5} B .{1} C .{1,2,3,4,5}D . {2,3,4,5}2.设会合 A { x |1 x 2}, B { x | x a}. 若 AB, 则 a 的范围是 () A . a 2B . a 1C . a 1D . a 23.与 y | x | 为同一函数的是()。

人教新课标A版高中数学必修1第一章集合与函数概念1.1集合1.1.2集合间的基本关系同步训练A卷

人教新课标A版高中数学必修1第一章集合与函数概念1.1集合1.1.2集合间的基本关系同步训练A卷

人教新课标 A 版高中数学必修 1 第一章集合与函数概念 1.1 集合 1.1.2 集合间的基本关系同步训练 A 卷姓名:________班级:________成绩:________一、 单选题 (共 15 题;共 30 分)1. (2 分) 设集合 A={1,2},则满足 A∪B={1,2,3}的集合 B 的个数是( )A.1B.2C.4D.82. (2 分) (2020·西安模拟) 已知集合 ()A.3 B.4 C.7 D.8,则集合 的子集个数为3. (2 分) (2019 高一上·鹤壁期中) 已知集合,集合,则集合 的子集个数为( )A.2B.4C.8D . 164. (2 分) (2018 高一上·西宁月考) 以下五个写法中:①{0}∈{0,1,2};②1,2}={2,0,1};④;⑤,正确的个数有( )A . 1个B . 2个C . 3个D . 4个,若 {1,2};③{0,5. (2 分) (2019 高一上·兴平月考) 已知集合 A={x|0<ax+1≤5},集合 B={x|- 则实数 a 的值为( )A.0<x≤2},若 A=B,第 1 页 共 17 页B.- C.2 D.5 6. (2 分) (2017 高一上·温州期中) 设集合 S={x||x﹣2|>3},T={x|a<x<a+8},S∪T=R,则 a 的取值范 围是( ) A . ﹣3<a<﹣1 B . ﹣3≤a≤﹣1 C . a≤﹣3 或 a≥﹣1 D . a<﹣3 或 a>﹣17. (2 分) (2020 高一上·连云港期中) 对于集合 , ,我们把集合叫做集合 与的差集,记做.例如,,,则有,.若集合,集合,且,则实数 的取值范围是( )A.B.C.D.8. (2 分) (2020 高三上·富阳月考) 定义全集 U 的子集 A 的特征函数示集合 A 在全集 U 中的补集.已知,,以下结论不正确的是( ).这里表A.若,则对于任意,都有;B . 对于任意,都有;C . 对于任意,都有;D . 对于任意,都有.9. (2 分) 函数 y=x2-2x 在区间[a,b]上的值域是[-1,3],则点(a,b)的轨迹是图中的( )第 2 页 共 17 页A . 线段 AB 和线段 AD B . 线段 AB 和线段 CD C . 线段 AD 和线段 BC D . 线段 AC 和线段 BD10. (2 分) (2020 高一上·金华期末) 已知集合 值范围是( )A. B. C. D.,集合,若,则实数 a 的取11. (2 分) (2016 高一上·荔湾期中) 设集合,,若,则 的取值范围是( ).A.B.C.D.12. (2 分) 已知集合 A={x|x2﹣4=0},则下列关系式表示正确的是( )A . ϕ∈AB . {﹣2}=AC . 2∈AD . {2,﹣2}⊊A13. (2 分) 已知集合 P={x|x2=1},Q={x|mx=1},若 Q⊆ P , 则实数 m 的数值为( )A.1B . -1C . 1 或-1D . 0,1 或-114. (2 分) 圆 C1:x2+y2=1 与圆 C2:(x﹣3)2+(y﹣4)2=16 的位置关系是( )A . 外离B . 相交C . 内切D . 外切第 3 页 共 17 页15. (2 分) (2016·城中模拟) 已知集合 M={x|=1},函数 f(x)=ln(1﹣|x|)的定义域为 N,则M∩N 为( )A.∅B . (0,3)C . (﹣1,1)D . (﹣1,0]二、 填空题 (共 5 题;共 5 分)16. (1 分) 已知集合 A={﹣1,0,1},B={z|z=x+y,x∈A,y∈A},则集合 B 的真子集的个数为________.17. (1 分) (2019 高一上·蓟县月考) 已知集合,,若则实数________.18. (1 分) (2016 高一上·蚌埠期中) 设集合 A={x|﹣3≤x≤2},B={x|2k﹣1≤x≤2k+1},且 A⊇ B,则实数 k 的取值范围是________19. (1 分) 已知:集合 P={x|x2+x﹣6=0},S={x|ax+1=0}且 S⊆ P,则 a 的取值为________. 20.(1 分)(2016 高一上·平阳期中) 已知集合 A={x|x2﹣2x+a≥0},且 1∉A,则实数 a 的取值范围是________三、 解答题 (共 5 题;共 25 分)21. (5 分) (2019 高二下·宁波期中) 已知函数,集合.(1) 若集合 中有且仅有 个整数,求实数 的取值范围;(2) 集合,若存在实数 ,使得,求实数 的取值范围.22. (5 分) (2016 高一上·景德镇期中) 已知集合 A={x|﹣2≤x≤7},B={x|m﹣1≤x≤2m+1},若 A∪B=A, 求实数 m 的取值范围.23. (5 分) (2018 高三上·扬州期中) 已知,函数.(1) 若对(0,2)恒成立,求实数 a 的取值范围;(2) 当 a=1 时,解不等式.24. (5 分) (2019 高三上·潍坊期中) 已知集合;设 要条件,求实数 的取值范围.25. (5 分) (2017·大同模拟) 已知函数 f(x)=|x﹣a|(a∈R).(1) 当 a=2 时,解不等式|x﹣ |+ f(x)≥1;,若 是 的充分不必第 4 页 共 17 页(2) 若不等式|x﹣ |+ f(x)≤x 的解集包含[ , ],求实数 a 的取值范围.第 5 页 共 17 页一、 单选题 (共 15 题;共 30 分)答案:1-1、 考点: 解析:参考答案答案:2-1、 考点:解析: 答案:3-1、 考点:第 6 页 共 17 页解析: 答案:4-1、 考点:解析: 答案:5-1、 考点: 解析:答案:6-1、 考点:第 7 页 共 17 页解析: 答案:7-1、 考点:解析: 答案:8-1、 考点: 解析:第 8 页 共 17 页答案:9-1、 考点:解析: 答案:10-1、 考点:解析: 答案:11-1、 考点:第 9 页 共 17 页解析: 答案:12-1、 考点:解析: 答案:13-1、 考点: 解析:答案:14-1、 考点:第 10 页 共 17 页解析:答案:15-1、考点:解析:二、填空题 (共5题;共5分)答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共5题;共25分)答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:。

人教新课标A版必修一第一章集合与函数的概念单元测试(带答案)

人教新课标A版必修一第一章集合与函数的概念单元测试(带答案)

新课标人教A 版第一章集合与函数的概念单元测试一、单选题(每小题5分)1. 已知集合和集合2{}B y y x ==,则A B 等于( )A.(0,1)B.[0,1]C.(0,+∞)D.{(0,1),(1,0)}2.函数()f x =的定义域为( ) A.[3,+∞) B.[3,4)∪(4,+∞) C.(3,+∞) D.[3,4)3. (2018•卷Ⅰ)已知集合2{20}A x x x =-->,则∁R A=( ) A.{12}x x -<< B.{12}x x -≤≤ C.{1}{2}x x x x <-> D.{1}{2}x x x x ≤-≥4. 函数f (x )=|x 2﹣6x+8|的单调递增区间为( )A.[3,+∞) B.(﹣∞,2)(4,+∞) C.(2,3)(4,+∞) D.(﹣∞,2][3,4]5. (2018•卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}6. 已知全集U={1,2,3,4,5,6},A={1,2,6},B={2,4,5},则(∁UA )∩B=( )A.{4,5}B.{1,2,3,4,5,6}C.{2,4,5}D.{3,4,5}7. 若函数f (x )对于任意实数x 恒有f (x )﹣2f (﹣x )=3x ﹣1,则f (x )等于( ) A.x+1 B.x ﹣1 C.2x+1 D.3x+38. 已知函数21,2()22,2x x f x x x x ⎧+>⎪=-⎨⎪+≤⎩,则f[f (1)]=( ) A.12- B.2 C.4 D.11 9. 已知集合A={x ∈N *|x ﹣3<0},则满足条件B ⊆A 的集合B 的个数为( )A.2B.3C.4D.810. 函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A.-3B.13C.7D.511. 已知函数22,1()2,1a x f x x x x x ⎧+>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( )A.[﹣1,+∞)B.(﹣1,+∞) .[﹣1,0) D.(﹣1,0)12. 下列有关集合的写法正确的是( )A.{0}{0,1,2}∈B.{0}∅=C.0∈∅D.{}∅∈∅二、填空题(每题5分)13. 非空数集A 与B 之间定义长度(,)d x y ,使得()1212d y y y y -=-,其中1y A ∈,2y B ∈,若所有的(,)d x y 中存在最小值()12','d y y ,则称()12','d y y 为集合A 与B 之间的距离,现已知集合11{21}A y a y a =≤≤-,222111{1,}B y y y y y A ==++∈,且()12','d y y =4,则a 的值为_______.14. 已知f(x)为奇函数,()()9,(2)3g x f x g =+-=,则f(2)=__________.15. 设集合A ={x|-1<x<2},集合B ={x|1<x<3},则A ∪B 等于________16. 若集合{12}M x x =-<<,2{1,}N y y x x R ==+∈,则集合M N =___三、解答题(17-22题,12分+12分+12分+12分+12分+12分+10分)17. 设集合2{40,}A x x x x R =+=∈,22{2(1)10,}B x x a x a x R =+++-=∈.(1)若A B B =,求实数a 的值;(2)若A B B =,求实数a 的范围.18. 已知函数239,2()1,211,1x x f x x x x x +≤-⎧⎪=--<<⎨⎪-+>⎩.(1)做出函数图象;(2)说明函数()f x 的单调区间(不需要证明);(3)若函数()y f x =的图象与函数y m =的图象有四个交点,求实数m 的取值范围.19. 已知函数21 ()1xf xx+=+.(1)判断函数()f x在区间[1,+)∞上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.20. 已知函数f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,且当x >0时,有f(x)>1.(1)求f(0).(2)求证:f(x)在R上为增函数.(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.21. 已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).22. 若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.(1)若m=0,写出A∪B的子集;(2)若A∩B=B,求实数m的取值范围.答案:1-5.BBBCA 6-10.AACCB 11-12.CD13. a=214. 615. {x|-1<x <3}16. [1,3)17. (1)a=1 (2)a=1或a ≤-118. (2)单调增区间(-∞,-2)和(0,1)单调减区间(-2,0)和(1,+∞) (3)(1,0)m ∈-19. (1)函数f(x)在[1,+∞)上是增函数 (2)最小值f(1)=32 最大值9(4)5f =20. (1)f(0)=1(2)略 (3)(1)-∞21. (1)5(1,]4a ∈ (2) 0(5)4t g ≤=时, 201()4t g t t<<=-时, 1()52t g t t ≥=-时, 22. (1){6,3,1}A B =--{-6}{-3}{1}{-6-3}{-6,1}{-3,A B ∅的子集:,,,,,,,,, (2)∞(-,-2]。

高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。

人教版高一数学必修一第一章单元检测试题及答案

人教版高一数学必修一第一章单元检测试题及答案

高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y 轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x ≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D.【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N 的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x 1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x )=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x 1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f (x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f (x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x 2-x1)(+x2x1+)+(x2-x 1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。

人教新课标版数学高三-高中数学必修一第一章集合与函数的概念 单元测试

人教新课标版数学高三-高中数学必修一第一章集合与函数的概念 单元测试

第一章集合与函数的概念 单元测试 一、单项选择(本大题共12小题,每小题5分,共60分)1、已知集合{}0,1A =,{},,B z z x y x A y A ==+∈∈,则B 的子集个数为( )A .8B .3C .4D .72、设集合},12|{},12|{A x y y B x x A x ∈-==>=,则()R A C B ⋂等于( )A.)2,3(B. )2,3[C. )3,0(D. )2,0(3、下列四组函数,表示同一函数的是( )A .()2f x x =,()g x x =B .()f x x =,()2x g x x =C .()24f x x =-,()22g x x x =+⋅-D .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩ 4、函数)82ln(2+--=x x y 的单调递减区间是( ) A .)1,(--∞ B .)2,1(- C .)1,4(-- D .),1(+∞-5、设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=( )(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或26、函数()a f x x x =+的图像不可能是( )7、若2211()f x x x x -=+,则()f x =( ) A.2()2f x x =+ B.2()2f x x =- C.2()(1)f x x =+ D.2()(1)f x x =-8、已知函数112)(-+=x x x f ,其定义域是[﹣8,﹣4),则下列说法正确的是( )A .f (x )有最大值,有最小值B .f (x )有最大值,无最小值C .f (x )无最大值,有最小值D .f (x )无最大值,无最小值9、若函数2()24f x ax ax =++(03a <<),且对实数12x x <,121x x a +=-,则( )A.12()()f x f x < B.12()()f x f x = C.12()()f x f x > D.1()f x 与2()f x 的大小不能确定 10、已知A={a ,b ,c},B={1,2,3},从A 到B 建立映射f ,使f (a )+f (b )+f (c )=4,则满足条件的映射共有( )A .1个B .2个C .3个D .4个11、设a ,b R ∈,定义:||(,)2a b a b M a b ++-=,||(,)2a b a b m a b +--=,下列式子错误的是( )A .(,)(,)M a b m a b a b +=+B .(||,||)||||m a b a b a b +-=-C .(||,||)||||M a b a b a b +-=+D .((,),(,))(,)m M a b m a b m a b =12、函数()f x 是定义在(0,)+∞上的单调函数,且对定义域内的任意x ,均有3(()ln )2f f x x x --=,则()f e =( )(A )31e + (B )32e + (C )31e e ++ (D )32e e ++二、填空题(本大题共4小题,每小题5分,共20分)13、函数)1-(log 21x y =的定义域为______;14、已知函数()x a x b ax x f cos sin 2-+= 为偶函数,其定义域为]2,1[a a -,则=+b a .15、若关于x 的函数()2222sin tx x t x f x x t +++=+(0t >)的最大值为M ,最小值为N ,且,6=+N M ,则实数t 的值为 .16、下列说法正确的是______________.(填序号)① 函数是其定义域到值域的映射;② 设A =B =R ,对应法则fx ∈A ,y ∈B ,满足条件的对应法则f 构成从集合A 到集合B 的函数;③ 函数y =f(x)的图象与直线x =1的交点有且只有1个;④ 映射f :{1,2,3}→{1,2,3,4}满足f(x)=x ,则这样的映射f 共有1个.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分10分)若集合{}2230A x x x =--=,{}20B x ax =-=,且A B B =,求由实数a 组成的集合C 。

人教版高一数学必修一第一章单元检测试题及答案

人教版高一数学必修一第一章单元检测试题及答案

高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y 轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x ≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D.【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N 的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x 1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x )=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x 1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f (x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f (x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x 2-x1)(+x2x1+)+(x2-x 1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。

人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)

人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)

人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。

高一数学人教版必修一第一章《集合与函数概念》习题检测(含解析)

高一数学人教版必修一第一章《集合与函数概念》习题检测(含解析)

第一章 集合与函数概念习题检测、选择题(5*12=60分) 1、 下列四个集合中, 是空集的是( ) A . {x | x 3=3} B .{(x, y) | y 2 - -x 2,x,y R} C . {x|x 2 岂 0} D .{x |x 2 —x 1 = 0, x R} 2、 若集合 A ={ -1,1} , B ={x | mx =1},且 A B = A ,则 m 的值为( )A . 1B .-1 C . 1 或-1 D . 1 或-1 或 0'x + y = 13、 方程组」22 的解集是( )X -y =9A .5,4 B . 5,4 C . f -5,4? D . f 5,-4 二4、 若全集U J 0,1,2,3?且C u A ,则集合A 的真子集共有( )A.3个 B . 5个 C . 7个 D . 8个5、 设集合 M ={x | x 仝」,k :二 Z},N ={x| x =色 丄,k 三 Z},则()2 4 4 2 A . M =N B . M-N C . N * M D .俯 N =:226、 已知函数f (x )=(m-1)x ・(m-2)x ・(m -7m 12)为偶函数,则m 的值是( )A . 1B .2 C .3 D . 47、若偶函数f (X )在-::,-1上是增函数,则下列关系式中成立的是()9、下列函数中,在区间0,1上是增函数的是( ) A . y = x B . y=3_x C .D . y__x 24x3A . f(—;) ::: f(—1) ::: f (2)C . f(2)::: f(— 3B . f (一1) :: f (一;厂:f (2)D . f(2) ::: f (-弓::&如果奇函数 f (x )在区间[3,7] 上是增函数且最大值为5,那么f (x )在区间〔- 7,-3】上是A .增函数且最小值是 - 5 B. 增函数且最大值是 -5C. 减函数且最大值是 -5 D .减函数且最小值是 -5x 2(x 乞-1)I 2 10、已知 f (x) = x (-1 ::: x :::2),若 f (x) = 3,则 x 的值是( ) 2x(x>2) C . 1, 3或-.3 2 11、为了得到函数 y =:f (-2x)的图象,可以把函数 y =f(1_2x)的图象适当平移,这个平移是 ( ) A .沿x 轴向右平移 1 C .沿x 轴向左平移 1 1个单位 B •沿x 轴向右平移个单位2 1 个单位 D •沿x 轴向左平移个单位212、设 f (x) x — 2,20)则f(5)的值为 〔f[f(x+6)],(x<10) ' 丿 A . 10 B . 11 C . 12 D . 13 二、填空题(5*4=20分) 13、某班有学生55人,其中体育爱好者 43人,音乐爱好者34人,还有4人既不爱好体育也不 爱好音乐,则该班既爱好体育又爱好音乐的人数为 __________________ 人。

【师说】高中数学 第一章 集合与函数概念质量评估检测 新人教A版必修1

【师说】高中数学 第一章 集合与函数概念质量评估检测 新人教A版必修1

【师说】2015-2016学年高中数学第一章集合与函数概念质量评估检测新人教A版必修1时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2C.0 D.0或4解析:当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.答案:A2.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=( )A.{3} B.{4}C.{3,4} D.∅解析:∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.答案:A3.衡水高一检测下列各组中的两个函数是同一函数的为( )(1)y=x+x-x+3,y=x-5.(2)y=x+1x-1,y=x+x-.(3)y=x,y=x2.(4)y=x,y=3x3.(5)y=(2x-5)2,y=2x-5. A.(1),(2) B.(2),(3) C.(3),(5) D.(4)解析:(1)中的y=x+x-x+3与y=x-5定义域不同.(2)中两个函数的定义域不同.(3)中第1个函数的定义域、值域都为R,而第2个函数的定义域是R,但值域是{y|y≥0}.(5)中两个函数的定义域不同,值域也不同.(4)中显然是同一函数.答案:D4.福州高一检测下列函数是偶函数的是( )A.y=2x2-3 B.y=x3C.y=x2,x∈[0,1] D.y=x解析:由函数奇偶性定义可知B、D均为奇函数,C定义域不关于原点对称,为非奇非偶函数,A为偶函数.答案:A5.洛阳高一检测若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是( )A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4解析:令3x+2=t,则3x=t-2,故f(t)=3(t-2)+8=3t+2.答案:B 6.大庆高一检测设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3解析:∵x ≤0时,f (x )=2x 2-x ,∴f (-1)=2-(-1)=3.又f (x )为R 上的奇函数,故f (-1)=-f (1),所以f (1)=-3.答案:A7.设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( )A .[-4,+∞) B.(-2,+∞)C .[-4,1]D .(-2,1]解析:S ∩T ={x |x >-2}∩{x |-4≤x ≤1}={x |-2<x ≤1}.答案:D8.函数f (x )=1+x +1x的定义域是( ) A .[-1,∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:要使函数有意义,需满足⎩⎪⎨⎪⎧ 1+x ≥0,x ≠0,即x ≥-1且x ≠0,故选C.答案:C9.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1解析:∵f (x )是奇函数,∴f (-1)=-f (1).又g (x )是偶函数,∴g (-1)=g (1).∵f (-1)+g (1)=2,∴g (1)-f (1)=2.①又f (1)+g (-1)=4,∴f (1)+g (1)=4.②由①②,得g (1)=3.答案:B 10.浏阳高一检测已知偶函数y =f (x )在[0,4]上是增函数,则一定有( )A .f (-3)>f (π)B .f (-3)<f (π)C .f (3)>f (-π)D .f (-3)>f (-π)解析:∵f (x )是偶函数,∴f (-3)=f (3),f (-π)=f (π).又f (x )在[0,4]上是增函数,∴f (3)<f (π).∴f (-3)<f (π).答案:B11.(2014·昆明高一检测)已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=x -x 2,则当x >0时,f (x )=( )A .x -x 2B .-x -x 2C .-x +x 2D .x +x 2解析:当x >0时,-x <0,∴f (-x )=-x -(-x )2=-x -x 2,又f (-x )=-f (x ),故f (x )=x +x 2.答案:D 12.安阳高一检测一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f (x )=x -1.若f (a )=3,则实数a =__________.解析:因为f (a )=a -1=3,所以a -1=9,即a =10.答案:1014.用列举法表示集合:A ={x |2x +1∈Z ,x ∈Z }=__________. 解析:因为x ∈Z ,所以当x =-3时,有-1∈Z ;当x =-2时,有-2∈Z ;当x =0时,有2∈Z ;当x =1时,有1∈Z ,所以A ={-3,-2,0,1}.答案:{-3,-2,0,1}15.函数f (x )=-x 2+b 在[-3,-1]上的最大值是4,则它的最小值是__________.解析:函数f (x )=-x 2+b 在[-3,-1]上是增函数,当x =-1时取最大值,所以b=5,当x =-3时,取最小值f (-3)=-9+5=-4.答案:-416.已知函数y =f (x )在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f (-2)=0,则不等式x ·f (x )<0的解集为________.解析:根据题意画出f (x )由图象可知-2<x <0或0<x 答案:(-2,0)∪(0,2)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.2014·武昌高一检测,10分已知函数f (x )=x +m x ,且f (1)=3.(1)求m ;(2)判断函数f (x )的奇偶性.解析:(1)∵f (1)=3,即1+m =3,∴m =2.4分(2)由(1)知,f (x )=x +2x,其定义域是{x |x ≠0},关于原点对称,7分 又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),所以此函数是奇函数.10分 18.杭州高一检测,12分已知集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.解析:(1)∵A ∩B ={x |3≤x <6},∴∁R (A ∩B )={x |x <3或x ≥6},∵∁R B ={x |x ≤2或x ≥9},∴(∁R B )∪A ={x |x ≤2或3≤x <6或x ≥9}.6分(2)∵C ⊆B ,∴⎩⎪⎨⎪⎧ a ≥2,a +1≤9,∴2≤a ≤8.∴实数a 的取值范围为:2≤a ≤8.12分 19.郑州高一检测,12分已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解析:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.∵x ∈[-5,5],故当x =1时,f (x )的最小值为1,当x =-5时,f (x )的最大值为37.6分(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,∴-a ≤-5或-a ≥5.即实数a 的取值范围是a ≤-5或a ≥5.12分 20.德州高一检测,12分设函数f (x )=x 2-2|x |-1(-3≤x ≤3), (1)证明:f (x )是偶函数;(2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(4)求函数的值域.解析:(1)∵f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.3分(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2,当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -2-2,0≤x ≤3,x +2-2,-3≤x <0. 根据二次函数的作图方法,可得函数图象如图.6分(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1)上为减函数,在区间[-1,0),[1,3]上为增函数.9分(4)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值f (3)=2;当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值f (-3)=2.故函数f (x )的值域为[-2,2].12分 21.临沂高一检测,12分已知函数f (x )=mx 2+23x +n 是奇函数,且f (2)=53. (1)求实数m 和n 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明.解析:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).即mx 2+2-3x +n =-mx 2+23x +n =mx 2+2-3x -n, 比较得n =-n ,n =0,又f (2)=53,∴4m +26=53,m =2, 即实数m 和n 的值分别是2和0.6分(2)函数f (x )在(-∞,-1]上为增函数.证明如下:由(1)知f (x )=2x 2+23x =2x 3+23x, 设x 1<x 2≤-1,则f (x 1)-f (x 2)=23(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2 =23(x 1-x 2)·x 1x 2-1x 1x 2, 23(x 1-x 2)<0,x 1x 2>0,x 1x 2-1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),即函数f (x )在(-∞,-1]上为增函数.12分 22.济宁高一检测,12分函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明:f (x )在(-1,1)上是增函数;(3)解不等式f (t -1)+f (t )<0.解析:(1)∵f (x )是定义在(-1,1)上的奇函数,∴f (-x )=-f (x ),即-ax +b 1+x 2=-ax -b 1+x 2. ∴b =-b ,b =0.∵f ⎝ ⎛⎭⎪⎫12=25,∴12a 1+14=25, ∴a =1.3分∴函数解析式为f (x )=x1+x 2(-1<x <1). (2)证明:任取x 1,x 2∈(-1,1),且x 1<x 2, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,(1+x 21)(1+x 22)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在(-1,1)上为增函数.6分(3)∵f (t -1)+f (t )<0,∴f (t -1)<-f (t ).∵f (-t )=-f (t ),∴f (t -1)<f (-t ).∴f (x )为(-1,1)上的增函数. ∴⎩⎪⎨⎪⎧ -1<t -1<1,-1<-t <1,t -1<-t .解得0<t <12.∴不等式的解集为{t |0<t <12}.12分。

高中数学人教版必修第一章集合与函数概念单元测试卷(A)

高中数学人教版必修第一章集合与函数概念单元测试卷(A)

第一章集合与函数概念单元测试卷(A)时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)题号123456789101112 答案一、选择题(每小题5分,共60分)1.已知集合A={1,2},B={2,4},则A∪B=()A.{2} B.{1,2,2,4}C.{1,2,4} D.∅2.设全集U=R,集合M={y|y=x2+2,x∈U},集合N={y|y=3x,x∈U},则M∩N等于()A.{1,3,2,6} B.{(1,3),(2,6)}C.M D.{3,6}3.如图1所示,阴影部分表示的集合是()A.(∁U B)∩A B.(∁U A)∩BC.∁U(A∩B) D.∁U(A∪B)图14.设全集U={x|0<x<10,x∈Z},A,B是U的两个真子集,(∁U A)∩(∁U B)={1,9},A∩B={2},(∁U A)∩B={4,6,8},则()A.5∈A,且5∉B B.5∉A,且5∉BC.5∈A,且5∈B D.5∉A,且5∈B5.下列各图中,可表示函数y=f(x)的图象的只可能是()6.下表表示y是x的函数,则函数的值域是()x 0<x<55≤x<1010≤x<1515≤x<20y 234 5 A.[2,5]C.(0,20) D.N7.图中给出的对应是从A到B的映射的是()8.已知函数f(x)=⎩⎪⎨⎪⎧x,x≥0,x2,x<0,则f[f(-2)]的值是()A.2 B.-2C.4 D.-49.函数y=x2-2x+3,-1≤x≤2的值域是()A.R B.[3,6]C.[2,6] D.[2,+∞)10.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图4所示,则不等式xf(x)<0的解集是()图4A.(-2,-1)∪(1,2) B.(-2,-1)∪(0,1)∪(2,+∞) C.(-∞,-2)∪(-1,0)∪(1,2) D.(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞) 11.定义在R上的偶函数f(x)在[0,7]上是增函数,在[7,+∞)上是减函数,f(7)=6,则f(x)()A.在[-7,0]上是增函数,且最大值是6B.在[-7,0]上是减函数,且最大值是6C.在[-7,0]上是增函数,且最小值是6D.在[-7,0]上是减函数,且最小值是612.定义在R上的偶函数f(x)满足:对任意x1,x2∈(-∞,0](x1≠x2),都有x2-x1f(x2)-f(x1)>0,则()A.f(-5)<f(4)<f(6) B.f(4)<f(-5)<f(6)C.f(6)<f(-5)<f(4) D.f(6)<f(4)<f(-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={1,2,3,4},Q={x|x+12<2,x∈R},则P-Q=________.14.函数y=x2+2x-3的单调递减区间是________.15.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是________.16.设函数f(x)=⎩⎪⎨⎪⎧|x-1|(0<x<2),2-|x-1|(x≤0,或x≥2),则函数y=f(x)与y=12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁U A)∩B;(2)若A∩C≠∅,求a的取值范围.18.(12分)设A={x|x2+2(a+1)x+a2-1=0},B={x|x(x+4)(x-12)=0,x∈Z}.若A∩B=A,求a的取值范围.19.(12分)已知函数f(x)=-2x+m,其中m为常数.(1)求证:函数f(x)在R上是减函数;(2)当函数f(x)是奇函数时,求实数m的值.20.(12分)某生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该的收益比上年度增加20%? 21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值..(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.第一章集合与函数概念单元综合测试一答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.答案:C2.解析:M=[2,+∞),N=R.答案:C3.解析:因为阴影部分既在集合∁U B中又在集合A中,所以阴影部分为(∁UB)∩A.答案:A4.解析:可借助V enn图(如图2)解决,数形结合.图2答案:A5.解析:根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系.答案:A6.答案:B7.解析:根据映射定义,A 中每一个元素在B中仅有1个元素与之对应,仅D适合.答案:D8.解析:∵x=-2,而-2<0,∴f(-2)=(-2)2=4.又4>0,∴f[f(-2)]=f(4)=4.答案:C9.解析:画出函数y=x2-2x+3,-1≤x≤2的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].图3答案:C10.解析:xf(x)<0⇔x与f(x)异号,由函数图象及奇偶性易得结论.答案:D11.解析:∵f(x)是偶函数,∴f(x)的图象关于y轴对称.∴f(x)在[-7,0]上是减函数,且最大值为6.答案:B12.解析:∵对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,∴对任意x 1,x 2∈(-∞,0],若x 1<x 2,总有f (x 1)<f (x 2),∴f (x )在(-∞,0]上是增函数.∴f (-4)>f (-5)>f (-6).又∵函数f (x )是偶函数,∴f (-6)=f (6), f (-4)=f (4),∴f (6)<f (-5)<f (4).答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:因为x ∉Q ,所以x ∈∁R Q ,又Q ={x |-12≤x <72},故∁R Q ={x |x <-12,或x ≥72},故P -Q ={4}.答案:{4}14.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3,∴函数减区间为(-∞,-3].答案:(-∞,-3]15.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ).∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0].答案:(-∞,0]16.解析:函数y =f (x )的图象如图5所示,则函数y =f (x )与y =12的图象的交点个数是4.图5 答案:4 三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8. 18.解:由B ={x |x (x +4)(x -12)=0,x ∈Z },得B ={-4,0}. 由A ∩B =A ,得A ⊆B .于是,A 有四种可能,即A =∅,A ={-4},A ={0},A ={-4,0}.以下对A 分类讨论: (1)若A =∅,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若A ={-4},则Δ=8a +8=0,解得a =-1. 此时x 2+2(a +1)x +a 2-1=0可化为x 2=0,所以x =0,这与x =-4是矛盾的; (3)若A ={0},则由(2)可知,a =-1; (4)若A ={-4,0},则⎩⎪⎨⎪⎧ Δ=8a +8>0,-2(a +1)=-4,a 2-1=0,解得a =1. 综上可知,a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0. ∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数.(2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ).∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%),解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元.21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0.∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2.∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x .(2)设h (x )=f (x )+g (x ),则h (x )=x +2x ,∴函数h (x )的定义域是(-∞,0)∪(0,+∞).∵h (-x )=-x +2-x =-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2,则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2, ∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2). ∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2. 即函数f (x )+g (x )在(0,2]上的最小值是2 2. .解:(1)由题意得⎩⎨⎧ f (0)=0,f (12)=25, 解得⎩⎪⎨⎪⎧ a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数. (3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.。

人教版高一数学必修一第一章单元检测试题及参考答案

人教版高一数学必修一第一章单元检测试题及参考答案

高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B.C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F?E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.?15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.?(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为.三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2)若,求实数的取值范围. 19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====.非减函数的性质:当时,都有.因为所以所以=. 【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F?E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)=f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象.若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x)=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解. 19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无 21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f (2)+f (x 2-1/2)=f (2x 2-1)≤0∴-1≤2x 2-1<0或0<2x 2-1≤1∴0≤x 2<1/2或<x 2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可. 【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。

高中人教A版数学必修1单元测试:第一章集合与函数概念(一)A卷

高中人教A版数学必修1单元测试:第一章集合与函数概念(一)A卷

第一章集合与函数概念(一)(集合)(时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果A={x|x>-1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A2.满足条件{0,1}∪A={0,1}的所有集合A的个数是()A.1 B.2 C.3 D.43.设A={x|1<x<2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a≥2} B.{a|a≤1}C.{a|a≥1} D.{a|a≤2}4.已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为()A.2 B.3C.0或3 D.0或2或35.已知M={y∈R|y=|x|},N={x∈R|x=m2},则下列关系中正确的是()A.M N B.M=NC.M≠N D.N M6.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是()A .A ∩B B .A ∪BC .B ∩∁U AD .A ∩∁U B7.设集合U ={1,2,3,4,5},M ={1,2,3},N ={2,5},则M ∩(∁U N )等于( )A .{2}B .{2,3}C .{3}D .{1,3}8.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .49.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-110.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .611.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =k 2+14,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4+12,k ∈Z ,x 0∈M ,则x 0与N 的关系是( )A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定12.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.用列举法表示集合:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x +1∈Z ,x ∈Z=________. 14.集合M ={x |x 2-3x -a 2+2=0,a ∈R }的子集的个数为________.15.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.16.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知全集U 为R ,集合A ={x |0<x ≤2},B ={x |x <-3或x >1}. 求:(1)A ∩B ; (2)∁U A ∩∁U B ; (3)∁U (A ∪B ).18.(本小题满分12分)已知集合M ={2,3,a 2+1},N ={a 2+a -4,2a +1,-1},且M ∩N={2},求a的值.19.(本小题满分12分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,∁U A∩B;(2)若A∩C≠∅,求a的取值范围.20.(本小题满分12分)设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},且A∩B={2}.(1)求a的值及集合A,B;(2)设全集U=A∪B,求∁U A∪∁U B;(3)写出∁U A∪∁U B的所有子集.21.(本小题满分12分)已知集合A ={x |0<x -a ≤5},B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-a 2<x ≤6.(1)若A ∩B =A ,求a 的取值范围; (2)若A ∪B =A ,求a 的取值范围.22.(本小题满分12分)若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.详解答案第一章 集合与函数概念(一)(集 合)1.D 解析:A ,B ,C 中符号“∈”“⊆”用错.2.D 解析:由题意知A ⊆{0,1},∴A 有4个. 3.A 解析:如图所示,∴a ≥2.解题技巧:由集合的基本关系确定参数的取值范围,可借助于数轴分析,但应注意端点是否能取到.4.B 解析:若m =2,则m 2-3m +2=0,与集合中元素的互异性矛盾,∴m ≠2,m 2-3m +2=2,则m =3或m =0(舍去).5.B 解析:∵M ={y ∈R |y =|x |}={y ∈R |y ≥0},N ={x ∈R |x =m 2}={x ∈R |x ≥0},∴M =N .6.C 解析:由V enn 图可知阴影部分为B ∩∁U A .7.D 解析:∁U N ={1,3,4},M ∩(∁U N )={1,2,3}∩{1,3,4}={1,3}.8.D 解析:由题意知,⎩⎪⎨⎪⎧ a =4,a 2=16或⎩⎪⎨⎪⎧a 2=4,a =16(无解).∴a =4.9.A 解析:借助数轴可知:⎩⎪⎨⎪⎧a <-1,a +8>5.∴-3<a <-1.10.D 解析:∵A *B ={0,2,4},∴所有元素之和为6. 11.A解析:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +14,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +24,k ∈Z ,对k 取值列举,得M =⎩⎨⎧⎭⎬⎫…,-34,-14,14,34,…,N ={…,-34,-12,-14,0,14,12,34,…},∴M N ,∵x 0∈M ,则x 0∈N .12.B 解析:由于a -1≤a +2,∴A ≠∅,由数轴知⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤4.13.{-3,-2,0,1} 解析:∵2x +1∈Z ,∴-2≤x +1≤2,-3≤x ≤1.当x =-3时,有-1∈Z ; 当x =-2时,有-2∈Z ; 当x =0时,有2∈Z ; 当x =1时,有1∈Z , ∴A ={-3,-2,0,1}.14.4 解析:∵Δ=9-4(2-a 2)=1+4a 2>0, ∴M 恒有2个元素,所以子集有4个.解题技巧:确定集合M 子集的个数,首先确定集合M 中元素的个数.15.m ≥2 解析:∵A ∪B =A ,即B ⊆A ,∴m ≥2. 16.2 解析:∵A ∪∁U A =U ,∴A ={x |1≤x <2}.∴a =2. 17.解:(1)在数轴上画出集合A 和B ,可知A ∩B ={x |1<x ≤2}.(2)∁U A ={x |x ≤0或x >2},∁U B ={x |-3≤x ≤1}.在数轴上画出集合∁U A 和∁U B ,可知∁U A ∩∁U B ={x |-3≤x ≤0}.(3)由(1)中数轴可知,A ∪B ={x |x <-3或x >0}. ∴∁U (A ∪B )={x |-3≤x ≤0}. 18.解:∵M ∩N ={2},∴2∈N , ∴a 2+a -4=2或2a +1=2, ∴a =2或a =-3或a =12, 经检验a =2不合题意,舍去, 故a =-3或a =12.19.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴∁U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,∴a <8,即a 的取值范围为(-∞,8).20.解:(1)由A ∩B ={2},得2是方程2x 2+ax +2=0和x 2+3x+2a =0的公共解,∴2a +10=0,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}.(2)由并集的概念,得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2. 由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以∁U A ∪∁U B =⎩⎨⎧⎭⎬⎫-5,12. (3)∁U A ∪∁U B 的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12.21.解:A ={x |a <x ≤a +5},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-a 2<x ≤6.(1)由A ∩B =A 知A ⊆B ,故⎩⎨⎧a ≥-a 2,a +5≤6,解得⎩⎪⎨⎪⎧a ≥0,a ≤1,故0≤a ≤1,即实数a 的取值范围是{a |0≤a ≤1}.(2)由A ∪B =A 知B ⊆A ,故-a2≥6或⎩⎨⎧a ≤-a 2,a +5≥6,解得a ≤-12或⎩⎪⎨⎪⎧a ≤0,a ≥1,故a ≤-12.所以实数a 的取值范围是{a |a ≤-12}. 解题技巧:A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 22.解:A ={x |x 2+x -6=0}={-3,2}, 对于x 2+x +a =0, ①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; ②当Δ=1-4a =0,即a =14时,B =⎩⎨⎧⎭⎬⎫-12,B ⊆A 不成立;③当Δ=1-4a >0, 即a <14时,若B ⊆A 成立, 则B ={-3,2}, ∴a =-3×2=-6.综上,a 的取值范围为⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a >14或a =-6.。

高中数学必修一人教A版(第一单元集合与函数)章节试卷练习(含详细解析答案)

高中数学必修一人教A版(第一单元集合与函数)章节试卷练习(含详细解析答案)

的 值 . 38、 (0 分 )( Ⅰ) 计 算 :
3
−4 3﹣ (
1)
0+
1
252;
2
( Ⅱ) 已 知 函 数 f( x) = 1 , g( x) =x 2+2, 求 f( x) 的 定 义 域 和 f( g( 2) ) 的 值 .39、 (0
1+
分 )已 知 f( x) =8+2 x﹣ x 2 , g( x) =f( 2﹣ x 2) , 试 求 g( x) 的 单 调 区 间 .

A. f(0)<f(6)
B. f(3)>f(2)
C. f(2)<f(-4)
D. f(-5)>f(-4)
14 、(0 分 )已 知 函 数 ( ) = ( + π )( > 0)的 最 小 正 周 期 为 π , 将
4
个单位长度,所得图象关于 y 轴对称,则 的一个值为(

A.
B. 3π
C.
D.
8
15、 (0 分 )函 数
28、 (0 分 )A= {1,2,3}, B= {1,2}, 定 义 集 合 间 的 运 算 + =
+B 中元素的最大值是

= 1 + 2, 1 ∈ , 2 ∈ , 则 集 合 A
19 、 (0 分 )已 知 集 合 = { | 2 > 1}, = { | = − 1}, 则 ∩ ( ) =( )
C.
|−1<
<
4 3
D. {0}
4、 (0 分 )已 知 f( x) = +1 , 则 f( 1) 等 于 (

A. 1
B. 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档