直线与圆锥曲线的位置关系专题复习
直线与圆锥曲线的位置关系(总结归纳)
y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)
−
,两式相减得
+ −
+
−
+
=
+
−
=
− ,故
=
−
=
知识梳理·基础回归
知识点3:点差法
(2)运用类似的方法可以推出;若是双曲线
, ,则 =
= 1,①
= 1②
①-②得
1 +2 1 −2
16
+
1 +2 1 −2
12
= 0,
−
3
1
2
∵ 1 + 2 = 4,1 + 2 = 2,∴ = − = − 2,
1
∴此弦所在的直线方程为 − 1 =
【方法技巧】
点差法
3
− (
2
2
− 2),即3 + 2 − 8 = 0.
2
2
2
【解析】当 ≥ 0时,曲线 −
= 1,即 − =
9
4
9
4
3
一条渐近线方程为: = 2 ,直线与渐近线平行;
当 <
2
0时,曲线
9
−
4
=
2
1,即
9
2
+
4
画出曲线和直线的图像,如图所示:
根据图像知有2个公共点.
故选:B
1,双曲线右半部分;
= 1,椭圆的左半部分;
).
题型突破·考法探究
16
弦所在的直线方程为
2
+
12
寒假专题复习直线与圆锥曲线
寒假专题复习——直线与圆锥曲线回扣教材:复习课本选修2——1:课本第67页至第71页要求掌握的内容:①直线与圆锥曲线的位置关系 ②圆锥曲线的弦长 (一)知识梳理:1、直线与圆锥曲线的位置关系是 ., ., .。
相交时有 .个交点,相切时有 .个交点,相离时有 .个交点。
2、判断直线l 和圆锥曲线C 的位置关系,通常是将直线l 的方程0Ax By C ++=带入圆锥曲线C 的方程(,)0F x y =,消去y(也可以消去x)得到一个关于变量x (或y )的一元方程,即{0(,)0Ax By C F x y ++==,消去y 得ax 2+bx+c=0(此方程称为消元方程)。
当a ≠0时,若有∆>0,直线l 和圆锥曲线C ;∆<0,直线l 和圆锥曲线C当a=0时,得到的是一个一元一次方程则直线l 和圆锥曲线C 相交,且只有一个交点,此时,若C 是双曲线,则直线l 与双曲线的 平行;若C 是抛物线,则直线l 与抛物线的 平行。
3、连接圆锥曲线两个点的线段成为圆锥曲线的弦设直线l 的方程f (,)0x y =,圆锥曲线C 的方程(,)0F x y =,直线l 与圆锥曲线C 的两个不同交点为1,12,2(,)0()(),(,)0f x y A x y x y F x y =⎧⎨=⎩、B 联立,消去y 得ax 2+bx+c=0,则1,2x x 是它两个不等实根.(1)由根与系数的关系有1212x x x x +==( ),( )(2)设直线l 的斜率为k,A,B 两点之间的距离若消去x,则 A,B 两点之间的距离|AB|=4、在给定的圆锥曲线f (,)0x y =中,求中点(m,n )的弦AB 所在的直两种处理方法:(1)由根与系数的关系法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解。
(2)点差法:若直线l 与圆锥曲线C 的两个不同的交点A ,B ,首先设出交点坐标1,12,2()(),A x y x y 、B 代入曲线C的方程,通过作差,构造出12121212,,,x x y y x x y y ++--,从而建立中点坐标与斜率的关系。
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
高考第一轮复习数学直线与圆锥曲线的位置关系
例3在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围.
剖析:设B、C两点关于直线y=kx+3对称,易得直线BC:x=-ky+m,由B、C两点关于直线y=kx+3对称可得m与k的关系式,
答案:
5.求过点0,2的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.
解:设直线方程为y=kx+2,
把它代入x2+2y2=2,
整理得2k2+1x2+8kx+6=0.
要使直线和椭圆有两个不同交点,则Δ>0,即k<- 或k> .
设直线与椭圆两个交点为Ax1,y1、Bx2,y2,中点坐标为Cx,y,则
2.涉及直线与圆锥曲线相交弦的问题,主要有这样几个方面:相交弦的长,有弦长公式|AB|= |x2-x1|;弦所在直线的方程如中点弦、相交弦等、弦的中点的轨迹等,这可以利用“设点代点、设而不求”的方法设交点坐标,将交点坐标代入曲线方程,并不具体求出坐标,而是利用坐标应满足的关系直接导致问题的解决.
3.涉及到圆锥曲线焦点弦的问题,还可以利用圆锥曲线的焦半径公式即圆锥曲线的第二定义,应掌握求焦半径以及利用焦半径解题的方法.
条条条条
解析:数形结合法,同时注意点在曲线上的情况.
答案:B
2.已知双曲线C:x2- =1,过点P1,1作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有
条条条条
解析:数形结合法,与渐近线平行、相切.
答案:D
3.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点异于顶点,则直线PF的斜率的变化范围是
高中数学直线和圆锥曲线常考题型汇总及例题解析
高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
九年级数学圆锥曲线期末复习3
高 二 数 学 期 末 复 习 三(圆锥曲线综合问题)一、知识回顾1.直线与圆锥曲线的位置关系:在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.注意:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“0∆>”,尤其是在应用韦达定理解决问题时,必须先有“0∆>”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.2.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则22|||AB x x -,若12,y y 分别为A 、B 的纵坐标,则12|||AB y y =-=,若弦AB 所在直线方程设为x ky b =+,则AB 12y -。
注意:焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和,或统一(第二)定义求解。
3.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k -=;在双曲线22221x y a b-=中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k =;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率)0(00≠=y y pk 。
注意:如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法等), 以及如何利用曲线的方程讨论曲线的几何性质,这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.二、典型例题例1.(1)椭圆284722=+y x 上的点到直线01623=--y x 的最短距离为13138; (2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知ΔABO 重心的横坐标为3(O 为坐标原点),则|AB|=___10____(3*)已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,则此椭圆的离心率为22(4*)若椭圆11022=+m y x 与双曲线122=-b y x 有相同的焦点,且),310(y P 椭圆与双曲线的一个交点,则椭圆与双曲线的方程分别为,11022=+y x 1822=-y x 。
直线与圆锥曲线的位置关系专题复习
联系了中点和直线的斜率,借用中点P公A式R即T 可1求得斜率. 2.根与系数的关系:
即联立直线与圆锥曲线的方程得到方程组,化为一元二次 方程后由根与系数的关系求解.
01
添加标题
遇到弦中点,两式减一减; 若要求弦长,韦达来帮忙.
线 段 的 中 点 , 求 直 线 L 的 方 程 .
探究三 圆锥曲线中弦的中点问题
变 式 : 求 直 线 L:x+2y-8=0被 椭 圆 x2y21所 截 得 的 36 9
线 段 的 中 点 P的 坐 标 .
处理中点弦问题常用的求解方法
1.点差法: 即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相
y=kx+2, 联立方程组x92+y2=1, 解得 x2+9(kx+2)2=9, 即(1+9k2)x2+36kx+27=0.
∵直线 m 与椭圆交于 A、B 两点,
∴Δ=(36k)2-4×27(1+9k2)>0,即
9k2-3>0,∴k>
33或
k<-
3 3 .(*)
设 A、B 两点的坐标是 A(x1,y1),B(x2,y2), 则 x1+x2=-1+369k2,x1·x2=1+279k2. 由于以 AB 为直径的圆过原点,∴x1x2+y1y2=0, 即 x1x2+(kx1+2)(kx2+2)=0.
y(12=)若2p直x线: 与对称轴平行或重合,则相交且只有一个交点.
(2)若直线与对称轴相交,
由
y=kx+ my2=2p
得:
故①△>0 相交 ②△=0 x 相切 A③x△2+<B0x+C相=离0
yy
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
直线与圆锥曲线的位置关系知识梳理
直线与圆锥曲线的位置关系知识梳理1.直线与圆锥曲线的位置关系的判定(1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2+bx +c =0.说明:(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 2-y 1|=1+1k2(y 1+y 2)2-4y 1y 2, |x 2-x 1|=||a ∆,|y 2-y 1|=||a ∆ 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解.(1)点差法设而不求,借用中点公式即可求得斜率.(2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0; 在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0; 在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. 典型例题题型一 直线与圆锥曲线的位置关系的判断及应用例1 若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( )条变式训练 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.题型二 中点弦问题例2 过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.变式训练 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为N (-12,-15),则E 的方程为____________.题型三 弦长问题例3 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________.课堂练习1.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.2.已知F 1、F 2为椭圆x 225+y 2169=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=30,则|AB |=________.3. 已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为________.4.(四川文)过双曲线x 2-y 23=1的右焦点与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.5.(课标全国I )已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.课下作业1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.2.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为________.3.已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为________.4.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为________.5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有________.6.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是________.7.已知斜率为-12的直线l 交椭圆C :x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,若点P (2,1)是AB 的中点,则C 的离心率等于________.8.直线l :y =x +3与曲线y 29-x ·|x |4=1交点的个数为________. 9.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A 、B 两点,且A 、B 两点的横坐标之和为3,则抛物线的方程为________.10.已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是________.11.已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,-2),则直线l 的方程为________.12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的短半轴长b =1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4 2. (1)求椭圆M 的方程;(2)设直线l :x =my +t 与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求t 的值.13.(陕西文)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.。
直线与圆锥曲线的位置关系总结归纳(1)
直线与圆锥曲线的位置关系总结归纳(1)直线与圆锥曲线的位置关系总结归纳直线和圆锥曲线是几何学中常见的两种基本图形,它们的位置关系十分复杂。
在学习和研究数学问题时,了解它们的位置关系具有重要意义。
下面将总结归纳直线和圆锥曲线的位置关系。
一、直线与椭圆的位置关系1. 直线不经过椭圆:直线与椭圆没有交点,此时直线和椭圆之间没有任何位置关系。
2. 直线与椭圆相切于一点:直线与椭圆相切于一点,此时直线与椭圆的位置关系为切线。
3. 直线与椭圆相交于两点:直线与椭圆相交于两个点,此时直线与椭圆的位置关系是两个交点的连线。
4. 直线穿过椭圆:直线与椭圆相交于四个点,此时直线与椭圆的位置关系是四个交点的连线。
二、直线与双曲线的位置关系1. 直线不经过双曲线:直线与双曲线没有交点,此时直线和双曲线之间没有任何位置关系。
2. 直线与双曲线相切于一点:直线与双曲线相切于一点,此时直线与双曲线的位置关系为切线。
3. 直线与双曲线相交于两点:直线与双曲线相交于两个点,此时直线与双曲线的位置关系是两个交点的连线。
4. 直线穿过双曲线:直线与双曲线相交于四个点,此时直线与双曲线的位置关系是四个交点的连线。
三、直线与抛物线的位置关系1. 直线不经过抛物线:直线与抛物线没有交点,此时直线和抛物线之间没有任何位置关系。
2. 直线与抛物线相切于一点:直线与抛物线相切于一点,此时直线与抛物线的位置关系为切线。
3. 直线与抛物线相交于一个点:直线与抛物线相交于一个点,此时直线与抛物线的位置关系为交点。
4. 直线穿过抛物线:直线与抛物线相交于两个点,此时直线与抛物线的位置关系是两个交点的连线。
通过以上总结,我们可以看出,直线和圆锥曲线的位置关系与它们之间的交点有关,交点的个数和位置决定了它们的位置关系。
这对于学习和研究圆锥曲线成立方程、性质等问题非常有帮助。
直线与圆锥曲线的位置关系课件-2024届高考数学一轮复习
2
2
2. 椭圆 E : 2 + 2 =1( a > b >0)的左焦点为 F , P 为椭圆上一点,
直线 PF 的倾斜角为θ.当点 P 在 x 轴上方时,| PF |=
;当
−
点 P 在 x 轴下方时,| PF |=
+
得 y 2-8 ty +16=0.由Δ=(-8 t )2-64<0,得 t 2<1.联立
= − ,
消去 x 、整理,得( t 2+2) y 2-4 ty -4=0.设 A ( x 1, yຫໍສະໝຸດ + = ,
1),B'( x 2, y 2),则 y 1+ y 2= + , y 1 y 2=- + .所以|AB'|=
+
= ,
消去 y 、整理,
得(3+4 k 2) x 2-8 k 2 x +4 k 2-12=0.所以 x 1+ x 2=
, x 1 x 2=
+
+)
−
(
+ | x - x |=
.所以|
AB
|=
.同理,可得|
1
2
+
+
+
( +)
的离心率为( C )
A. 3
B.
6
2
C.
21
3
D. 7
返回目录
4. (多选)(RA选一P136练习第4题改编)已知抛物线 C : y 2=2 px
( p >0)与圆 O : x 2+ y 2=5交于 A , B 两点,且| AB |=4,直线 l 过
人教版数学选择性必修第一册综合复习:直线与圆锥曲线的位置关系课件
到关于y的一元二次方程),通过一元二次方程解的情况判断关系,见下表:
方程ax2+bx+c=0的解
l与P的关系
b=0
无解(含l是双曲线的渐近线)
无公共点
b≠0
有一解(含l与抛物线的对称轴或
与双曲线的渐近线平行)
一个交点
关系是( A )
A.相交
B.相切
C.相离
D.以上均有可能
基础点二
圆锥曲线的弦长
• 连接圆锥曲线上两个点的线段称为圆锥曲线的弦.
• 设直线l的方程为f(x,y)=0,圆锥曲线C的方程为F(x,y)=0,直线l与圆锥曲线
C的两个不同交点为A(x1,y1),B(x2,y2),联立f(x,y)=0, F(x,y)=0消去y得
证明:| |,| |,| |成等差数列,并求该数列的公差.
处理中点弦问题常用的求解方法方 Nhomakorabea法
总
结
(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方
程,并将两式相减,式中含有x1+x2,y1+y2,
1 −2
1 −2
三个
未知量,这样就直接联系了中点和直线的斜率,借用中点
公式即可求得斜率.
(1)求椭圆C的方程;
4
3
(2)若|AB|= ,求直线l的倾斜角.
2
2
,过左顶点A的直
考点三
中点弦问题(高考热度:)
[例3] 已知斜率为k的直线l与椭圆C:
2
4
+
2
3
=1交于A,B
两点,线段AB的中点为M(1,m)(m>0).
专题练 第26练 直线与圆锥曲线的位置关系
第26练 直线与圆锥曲线的位置关系1.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( )A .2B .2 2C .3D .3 2 答案 B解析 方法一 由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2). 不妨取A (1,2), 则|AB |=(1-3)2+(2-0)2=8=2 2.方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴, 所以|AB |=22+22=8=2 2.2.(2020·全国Ⅰ)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( ) A.72 B .3 C.52 D .2 答案 B解析 方法一 由题意知a =1,b =3,c =2, F 1(-2,0),F 2(2,0),如图,因为|OF 1|=|OF 2|=|OP |=2,所以点P 在以F 1F 2为直径的圆上, 故PF 1⊥PF 2,则|PF 1|2+|PF 2|2=(2c )2=16.由双曲线的定义知||PF 1|-|PF 2||=2a =2, 所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4, 所以|PF 1||PF 2|=6,所以△PF 1F 2的面积为12|PF 1||PF 2|=3.方法二 由双曲线的方程可知,双曲线的焦点F 1,F 2在x 轴上, 且|F 1F 2|=21+3=4.设点P 的坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧x 20-y 203=1,x 20+y 20=2,解得|y 0|=32.所以△PF 1F 2的面积为 12|F 1F 2|·|y 0|=12×4×32=3. 方法三 由二级结论焦点△PF 1F 2的面积 S =b 2tan θ2=3tan 45°=3.3.(2014·全国Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94答案 D解析 由已知得焦点坐标为F ⎝⎛⎭⎫34,0, 因此直线AB 的方程为y =33⎝⎛⎭⎫x -34, 即4x -43y -3=0.方法一 联立抛物线方程化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立抛物线方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94.4.(2013·全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1, ②由①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2,又k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1.5.(多选)(2022·新高考全国Ⅰ)已知O 为坐标原点,点A (1,1)在抛物线C :x 2=2py (p >0)上,过点B (0,-1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =-1 B .直线AB 与C 相切 C .|OP |·|OQ |>|OA |2 D .|BP |·|BQ |>|BA |2 答案 BCD解析 如图,因为抛物线C 过点A (1,1),所以1=2p ,解得p =12,所以C :x 2=y 的准线为y=-14,所以A 错误;因为x 2=y ,所以y ′=2x ,所以y ′|x =1=2,所以C 在点A 处的切线方程为y -1=2(x -1),即y =2x -1,又点B (0,-1)在直线y =2x -1上,所以直线AB 与C 相切,所以B 正确;设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 2=y 得x 2-kx +1=0,所以x 1+x 2=k ,x 1x 2=1,且Δ=k 2-4>0,得k >2或k <-2, 所以|OP |·|OQ |=x 21+y 21·x 22+y 22=(x 21+x 41)(x 22+x 42)=(1+x 21)(1+x 22)·x 1x 2=1+(x 1+x 2)2-2x 1x 2+x 21x 22=k 2>2=|OA |2,所以C 正确;|BP |·|BQ |=x 21+(y 1+1)2·x 22+(y 2+1)2=x 21+(x 21+1)2·x 22+(x 22+1)2 =(x 41+3x 21+1)(x 42+3x 22+1)=x 41x 42+(3x 21x 22+3)(x 21+x 22)+x 41+x 42+9x 21x 22+1 =6(x 21+x 22)+x 41+x 42+11 =6(x 21+x 22)+(x 21+x 22)2+9=6(k 2-2)+(k 2-2)2+9 =(k 2+1)2=k 2+1>5=|BA |2,所以D 正确.6.(2015·全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 答案 12 6解析 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时11APF AF F F PF S S S ==△△△- 7.(2019·全国Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝⎛⎭⎫34,0, 故|AF |+|BF |=x 1+x 2+32,由题设可得x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 令Δ>0,得t <12,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2, 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得y 2-2y +2t =0, 所以y 1+y 2=2,从而-3y 2+y 2=2, 故y 2=-1,y 1=3,代入C 的方程得x 1=3,x 2=13,即A (3,3),B ⎝⎛⎭⎫13,-1, 故|AB |=4133. 8.(2022·新高考全国Ⅰ)已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan ∠P AQ =22,求△P AQ 的面积.解 (1)将点A 的坐标代入双曲线方程得4a 2-1a 2-1=1,化简得a 4-4a 2+4=0,得a 2=2, 故双曲线C 的方程为x 22-y 2=1.由题易知直线l 的斜率存在, 设直线l 的方程为y =kx +m , P (x 1,y 1),Q (x 2,y 2),联立直线l 与双曲线C 的方程,消y 整理得 (2k 2-1)x 2+4kmx +2m 2+2=0, 故x 1+x 2=-4km2k 2-1,x 1x 2=2m 2+22k 2-1.k AP +k AQ =y 1-1x 1-2+y 2-1x 2-2=kx 1+m -1x 1-2+kx 2+m -1x 2-2=0,化简得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0, 故2k (2m 2+2)2k 2-1+(m -1-2k )⎝ ⎛⎭⎪⎫-4km 2k 2-1-4(m -1)=0, 整理得(k +1)(m +2k -1)=0, 又直线l 不过点A ,即m +2k -1≠0, 故k =-1.(2)不妨设直线P A 的倾斜角为θ⎝⎛⎭⎫0<θ<π2, 由题意知∠P AQ =π-2θ, 所以tan ∠P AQ =-tan 2θ=2tan θtan 2θ-1=22,解得tan θ=2或tan θ=-22(舍去). 由⎩⎪⎨⎪⎧y 1-1x 1-2=2,x 212-y 21=1,得x 1=10-423,所以|AP |=3|x 1-2|=43(2-1)3,同理得x 2=10+423,所以|AQ |=3|x 2-2|=43(2+1)3.因为tan ∠P AQ =22, 所以sin ∠P AQ =223,故S △P AQ =12|AP ||AQ |sin ∠P AQ=12×43(2-1)3×43(2+1)3×223=1629.9.(2022·赤峰模拟)若椭圆x 216+y 29=1的弦被点(2,1)平分,则这条弦所在的直线方程是( )A .x -2y =0B .3x +y -7=0C .x +2y -4=0D .9x +8y -26=0答案 D解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2).则x 2116+y 219=1,x 2216+y 229=1, 两式作差可得(x 1-x 2)(x 1+x 2)16=-(y 1-y 2)(y 1+y 2)9,所以y 1-y 2x 1-x 2=-9(x 1+x 2)16(y 1+y 2)=-9×416×2=-98=k AB.即弦所在直线的斜率为-98,直线方程为y-1=-98(x-2),整理得9x+8y-26=0.10.抛物线y2=4x的焦点弦被焦点分为长是m和n的两部分,则m与n的关系是() A.m+n=mn B.m+n=4C.mn=4 D.无法确定答案 A解析抛物线的焦点F(1,0),准线x=-1,设焦点弦所在直线方程为y=k(x-1),把它代入y2=4x得k2x2-2(k2+2)x+k2=0,设焦点弦与抛物线交点分别为A(x1,y1),B(x2,y2),则x1x2=1,由抛物线定义得|AF|=x1+1,|BF|=x2+1,∴m+n=(x1+1)+(x2+1)=(x1+x2)+2,mn=(x1+1)(x2+1)=x1x2+(x1+x2)+1=(x1+x2)+2,∴m+n=mn.11.(多选)(2022·茂名模拟)已知抛物线C:x2=4y的焦点为F,准线为l,P是抛物线C上第一象限的点,|PF|=5,直线PF与抛物线C的另一个交点为Q,则下列选项正确的是() A.点P的坐标为(4,4)B.|QF|=5 4C.S△OPQ=10 3D.过点M(x0,-1)作抛物线C的两条切线MA,MB,其中A,B为切点,则直线AB的方程为x0x-2y+2=0答案ABD解析对于A,因为|PF|=5,所以由抛物线的定义得y P+1=5,即y P=4,所以x2P=4y P=16,且点P在第一象限,所以坐标为(4,4),则A正确;对于B ,l PF 的直线方程为y =34x +1,由y =34x +1与x 2=4y 联立得,Q ⎝⎛⎭⎫-1,14, 由两点间的距离公式得|QF |=54,则B 正确;对于C ,S △OPQ =12|OF ||x P -x Q |=12×1×5=52,则C 错误;对于D ,设A (x 1,y 1),B (x 2,y 2), 由x 2=4y得,y =x 24,则y ′=x2,MA 的切线方程为y -y 1=x 12(x -x 1),即y -y 1=x 12x -x 212,由x 21=4y 1得,y =x 12x -y 1, 把点M (x 0,-1)代入y =x 12x -y 1得,x 0x 1-2y 1+2=0, 同理x 0x 2-2y 2+2=0,即A (x 1,y 1),B (x 2,y 2)两点满足方程x 0x -2y +2=0, 所以AB 的方程为x 0x -2y +2=0,则D 正确.12.(2022·玉林模拟)抛物线y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线l 交抛物线于A ,B 两点,则|AF |·|BF |的最小值是( ) A .2 B. 2 C .4 D .2 2 答案 C解析 由题意知p =2,∵1|AF |+1|BF |=2p =1,∴1=1|AF |+1|BF |≥21|AF |·1|BF |, 得|AF |·|BF |≥4.13.(2022·杭州模拟)已知双曲线H 的两条渐近线互相垂直,过H 的右焦点F 且斜率为3的直线与H 交于A ,B 两点,与H 的渐近线交于C ,D 两点.若|AB |=5,则|CD |=______. 答案 3 5解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则其渐近线方程为y =±bax ,因为双曲线H 的两条渐近线互相垂直, 所以a =b ,所以渐近线方程为y =±x , 所以双曲线方程为x 2a 2-y 2a 2=1(a >0),则右焦点F (2a ,0),所以直线方程为y =3(x -2a ), 设A (x 1,y 1),B (x 2,y 2),将y =3(x -2a )代入x 2a 2-y 2a 2=1(a >0)化简得,8x 2-182ax +19a 2=0,所以x 1+x 2=92a 4,x 1x 2=19a 28,所以|AB |=1+9·(x 1+x 2)2-4x 1x 2 =10×10a 216=5,解得a 2=4,即a =2, 所以直线方程为y =3(x -22),由⎩⎪⎨⎪⎧ y =x ,y =3(x -22),得⎩⎪⎨⎪⎧x =32,y =32,由⎩⎪⎨⎪⎧y =-x ,y =3(x -22),得⎩⎨⎧x =322,y =-322,所以|CD |=⎝⎛⎭⎫32-3222+⎝⎛⎭⎫32+3222 =3 5.14.(2022·贵港模拟)已知斜率为k (k >0)的直线过抛物线C :y 2=4x 的焦点F 且与抛物线C 相交于A ,B 两点,过A ,B 分别作该抛物线准线的垂线,垂足分别为A 1,B 1,若△A 1BB 1与△ABA 1的面积之比为2,则k 的值为________. 答案 2 2解析 由抛物线C :y 2=4x 得F (1,0),直线AB 的方程为y =k (x -1), 设点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k 2+4)x +k 2=0, Δ=(2k 2+4)2-4k 4=16(k 2+1)>0,由根与系数的关系可得x 1x 2=1,x 1+x 2=2k 2+4k2,由已知和抛物线定义知111A BB ABA S S △△=12|BB 1|·|A 1B 1|12|AA 1|·|A 1B 1|=|BB 1||AA 1|=|BF ||AF |=2, 所以|BF |=2|AF |,故由焦半径公式得x 2+1=2(x 1+1), 即x 2=2x 1+1,故⎩⎪⎨⎪⎧x 2=2x 1+1,x 1x 2=1,x 1+x 2=2k 2+4k2,k >0,解得⎩⎪⎨⎪⎧x 1=12,x 2=2,k =22(负值舍去).所以k 的值为2 2.15.(2022·无锡模拟)如图,A 1,A 2是双曲线x 29-y 23=1的左、右顶点,B 1,B 2是该双曲线上关于x 轴对称的两点,直线A 1B 1与A 2B 2的交点为E .(1)求点E 的轨迹Γ的方程;(2)设点Q (1,-1),过点Q 的两条直线分别与轨迹Γ交于点A ,C 和点B ,D .若AB ∥CD ,求直线AB 的斜率.解 (1)由题意知,A 1(-3,0),A 2(3,0). 设B 1(x 0,y 0),B 2(x 0,-y 0)(x 0≠±3),则x 209-y 203=1, 则直线A 1B 1的方程为y =y 03+x 0(x +3),直线A 2B 2的方程为y =y 03-x 0(x -3),两式相乘得y 2=y 209-x 2(x 2-9), 即y 2=-13(x 2-9),所以点E 的轨迹Γ的方程为 x 29+y 23=1(x ≠±3,x ≠0). (2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 设AQ →=λQC →,则⎩⎪⎨⎪⎧1-x 1=λ(x 3-1),-1-y 1=λ(y 3+1),即⎩⎪⎨⎪⎧x 3=1+λ-x 1λ,y 3=-(1+λ)-y 1λ,代入椭圆方程,得[(1+λ)-x 1]29λ2+[(1+λ)+y 1]23λ2=1,即4(1+λ)29λ2-2(1+λ)λ2⎝⎛⎭⎫x 19-y 13+1λ2⎝⎛⎭⎫x 219+y 213 =1,即4(1+λ)29-2(1+λ)⎝⎛⎭⎫x 19-y 13=λ2-1,① 同理可得4(1+λ)29-2(1+λ)⎝⎛⎭⎫x 29-y 23=λ2-1,② 由②-①,得x 19-y 13=x 29-y 23,所以3(y 1-y 2)=x 1-x 2,所以直线AB 的斜率k =y 1-y 2x 1-x 2=13.16.(2022·玉林模拟)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)过M ⎝⎛⎭⎫1,32,N ⎝⎛⎭⎫3,12两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →?若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,请说明理由. 解 (1)将M ,N 的坐标代入椭圆E 的方程得⎩⎨⎧1a 2+34b 2=1,3a 2+14b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以椭圆E 的方程为x 24+y 2=1.(2)假设满足题意的圆存在,其方程为x 2+y 2=R 2,其中0<R <1, 设该圆的任意一条切线AB 和椭圆E 交于A (x 1,y 1),B (x 2,y 2)两点, 当直线AB 的斜率存在时,设直线AB 的方程为 y =kx +m ,①将其代入椭圆E 的方程并整理得(4k 2+1)x 2+8kmx +4m 2-4=0, 由根与系数的关系得x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,②因为OA →⊥OB →, 所以x 1x 2+y 1y 2=0,③将①代入③并整理得(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0, 联立②得m 2=45(1+k 2),④因为直线AB 和圆相切, 因此R =|m |1+k 2,由④得R =255,所以存在圆x 2+y 2=45满足题意.当直线AB 的斜率不存在时,易得x 21=x 22=45, 由椭圆方程得y 21=y 22=45,显然OA →⊥OB →, 综上所述,存在圆x 2+y 2=45满足题意.当直线AB 的斜率存在时,由①②④得 |AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2(x 1-x 2)2 =1+k 2(x 1+x 2)2-4x 1x 2=1+k 2⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1 =1+k 216+64k 2-16m 2(1+4k 2)2=455(1+k 2)(1+16k 2)(1+4k 2)2=45516k 4+17k 2+116k 4+8k 2+1=4551+9k 216k 4+8k 2+1 =4551+916k 2+1k2+8,由16k 2+1k 2≥8,得1<1+916k 2+1k2+8≤54,即455<|AB |≤5, 当直线AB 的斜率不存在时,易得|AB |=455, 所以455≤|AB |≤ 5.综上所述,存在圆心在原点的圆x 2+y 2=45满足题意,且455≤|AB |≤ 5.[考情分析] 直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查,难度为高档.一、弦长、面积问题 核心提炼判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断. 弦长公式:|AB |=1+k 2|x 1-x 2|, 或|AB |=1+1k2|y 1-y 2|. 练后反馈题目 1 5 6 8 11 13 15 16 正误错题整理:二、中点弦问题 核心提炼解决圆锥曲线“中点弦”问题的方法1.根与系数的关系法:联立直线与圆锥曲线的方程得到方程组,消元得到一元二次方程后,由根与系数的关系及中点坐标公式求解.2.点差法:设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1),B(x2,y2),将这两点坐标代入圆锥曲线的方程,并对所得两式作差,得到一个与弦AB的中点和直线AB的斜率有关的式子,可以大大减少计算量.练后反馈题目49正误错题整理:三、圆锥曲线中二级结论的应用核心提炼1.椭圆焦点三角形面积为b2tan α2(α为|F1F2|的对角).2.双曲线焦点三角形面积为b2tan α2(α为|F1F2|的对角).3.抛物线的有关性质:已知抛物线y2=2px(p>0)的焦点为F,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),则(1)|AB|=x1+x2+p=2psin2α(α为直线l的倾斜角).(2)以AB为直径的圆与抛物线的准线相切.(3)1|AF|+1|BF|=2p.练后反馈题目2371012 正误错题整理:1.[T2补偿](2022·亳州模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若△ABF 的面积为2a 2,则双曲线的离心率为( )A. 2B. 3 C .2 D. 5 答案 B解析 如图所示,设双曲线的左焦点为F ′,连接AF ′,BF ′,因为以AB 为直径的圆恰好经过双曲线的右焦点F (c ,0), 所以S △AF ′F =2a 2,且∠F ′AF =π2,根据双曲线焦点三角形面积公式12PF F S △=b 2tan θ2得2a 2=b 2, 结合c 2=a 2+b 2,得2a 2=c 2-a 2⇒c 2=3a 2⇒e 2=3⇒e = 3.2.[T3补偿](2022·新乡模拟)已知抛物线C :y 2=2px (p >0)的准线x =-1与x 轴交于点A ,F 为C 的焦点,B 是C 上第一象限内的点,则|AB ||BF |取得最大值时,△ABF 的面积为( )A .2B .3C .4D .6 答案 A解析 由题意可知,-p2=-1,所以p =2,则y 2=4x ,A (-1,0),F (1,0).过点B 作准线x =-1的垂线,垂足为D ,如图,由抛物线的定义可知,|AB ||BF |=|AB ||BD |=1sin ∠BAD,要使|AB ||BF |取得最大值,则sin ∠BAD 取得最小值,需直线AB 与C 相切. 由题意知,直线AB 的斜率一定存在, 故设直线AB 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y 可得,k 2x 2+(2k 2-4)x +k 2=0,所以Δ=(2k 2-4)2-4k 4=0,解得k =±1, 因为B 是C 上第一象限内的点,所以k =1, 此时k 2x 2+(2k 2-4)x +k 2=0为x 2-2x +1=0, 则x =1,故B (1,2),故S △ABF =12×|AF |×|y B |=12×2×2=2.3.[T4补偿](多选)(2022·梅州模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,且PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143,过点M (-2,1)的直线l 交椭圆于A ,B 两点,且A ,B 关于点M 对称,则下列结论正确的有( ) A .椭圆的方程为x 29+y 24=1B .椭圆的焦距为 5C .椭圆上存在2个点Q ,使得QF 1―→·QF 2―→=0 D .直线l 的方程为8x -9y +25=0 答案 AD解析 因为PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143,所以c =12|PF 2|2-|PF 1|2=5,a =12(|PF 1|+|PF 2|)=3,则b =2, 所以椭圆的方程为x 29+y 24=1,椭圆的焦距为25,故A 正确,B 错误; 由QF 1―→·QF 2―→=0知∠F 1QF 2=90°, 所以点Q 在以F 1F 2为直径的圆上,因为c >b ,所以圆与椭圆有4个交点,故C 错误;因为过点M (-2,1)的直线交椭圆于A ,B 两点,且A ,B 关于点M 对称, 所以点M (-2,1)为弦AB 的中点, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 219+y 214=1,x 229+y224=1,两式相减得(x 1+x 2)(x 1-x 2)9=-(y 1+y 2)(y 1-y 2)4,则k AB =y 1-y 2x 1-x 2=-49·x 1+x 2y 1+y 2=89,所以直线l 的方程为y -1=89(x +2),即8x -9y +25=0,故D 正确.4.[T9补偿](2022·运城模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,直线x -2y +b =0与椭圆交于P ,Q 两点,且PQ 的中点为E ,O 为原点,则直线OE 的斜率是________. 答案 -43解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,所以e =ca =1-b 2a 2=33, 所以b 2a 2=23,设P (x 1,y 1),Q (x 2,y 2),所以k PQ =y 1-y 2x 1-x 2=12,E ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 因为P ,Q 在椭圆上,所以⎩⎨⎧ x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式作差得x 21-x 22a 2+y 21-y 22b 2=0, 即y 21-y 22x 21-x 22=-b 2a 2, 即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-23, 即k PQ ·k OE =-23, 所以k OE =-43. 5.[T16补偿](2022·重庆模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,焦距为4. (1)求椭圆的标准方程;(2)过椭圆右焦点F 的动直线l 交椭圆于A ,B 两点,P 为直线x =3上的一点,是否存在直线l 与点P ,使得△ABP 恰好为等边三角形,若存在,求出△ABP 的面积;若不存在,请说明理由.解 (1)依题意得c a =63,c =2, 又∵a 2=b 2+c 2,∴a 2=6,b 2=2,∴椭圆的标准方程为x 26+y 22=1. (2)当直线l 的斜率不存在时,等边△ABP 不存在,故直线l 的斜率存在.设直线l :y =k (x -2),联立椭圆方程整理得(3k 2+1)x 2-12k 2x +12k 2-6=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12k 23k 2+1,x 1x 2=12k 2-63k 2+1, ∴|AB |=1+k 2|x 1-x 2|=263k 2+1(k 2+1). 记线段AB 的中点为M (x 0,y 0),则x 0=6k 23k 2+1,y 0=-2k 3k 2+1, 又x P =3,k MP =-1k, ∴|MP |=1+1k2|x 0-x P | =k 2+1k 2·3(k 2+1)3k 2+1, 要满足题目要求,则需要|MP |=32|AB |, 即k 2+1k 2·3(k 2+1)3k 2+1=32·263k 2+1(k 2+1), ∴k =±1,经检验k =±1均符合题意. ∴|AB |=6,S △ABP =332.。
高考数学总复习直线和圆锥曲线的位置关系
高考数学总复习:直线和圆锥曲线的位置关系知识网络目标认知考试大纲要求:使学生能灵活应用圆锥曲线的有关知识解决相关问题,培养数学理解能力及分析问题、解决问题的能力;重点:直线与圆锥曲线的三种位置关系的判断及直线与圆锥曲线相交有两个交点时弦长公式的应用。
难点:直线与圆锥曲线的位置关系的综合应用.知识要点梳理知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离。
判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系。
一般利用二次方程判别式来判断有无解,有几个解。
1.直线Ax+By+C=0和椭圆的位置关系:将直线的方程与椭圆的方程联立成方程组,消元转化为关于x或y一元二次方程,其判别式为Δ.(1)Δ>0直线和椭圆相交直线和椭圆有两个交点(或两个公共点);(2)Δ=0直线和椭圆相切直线和椭圆有一个切点(或一个公共点);(3)Δ<0直线和椭圆相离直线和椭圆无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线的方程与双曲线的方程联立成方程组,消元转化为关于x或y的方程。
(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:(1)Δ>0直线与双曲线相交,但直线与双曲线相交不一定有Δ>0,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ>0是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,Δ=0直线与抛物线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线外一点的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x或y方程。
直线与圆锥曲线的位置关系专题训练
直线与圆锥曲线的位置关系专题训练一、选择题1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2), 则x 1x 2=( )A .-2B .-12C .-4D .-1162.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 33.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 4.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( )A .3 2B .2 3 C.303 D.3265.已知双曲线x 24-y 2b2=1(b >0)的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .56.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]7.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆(x +4)2+y 2=1和 (x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11 C .8,12 D .10,128.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该双曲线交于A ,B 两点,若OA →+OB →与向量n =(-3,-1)共线,则双曲线C 的离心率为( )A. 3B.233C.43D .39.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A.2613 B.22613 C.21313 D.4131310.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在该双曲线的右支上,且|PF 1|+|PF 2|=10a ,PF 1→·PF 2→=-6a 2,则双曲线的离心率为( )A .2B .4 C. 2 D. 6 二、填空题11.设过椭圆x 22+y 2=1的右焦点F 的直线交椭圆于A ,B 两点,AB 的中点为P ,O 为坐标原点,则OP →·PF→的取值范围为________. 12.已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,在抛物线AOB 这段曲线上有一点P ,则△APB 的面积的最大值为________.13.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 14.设P 为直线l :x +y =4上任意一点,椭圆x 212+y 24=1的两个焦点为F 1,F 2,则l 与椭圆的位置关系是______,|PF 1|+|PF 2|的最小值是________.三、解答题15.已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O ,F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.16.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4 2.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.直线与圆锥曲线的位置关系专题训练答案一、选择题1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2), 则x 1x 2=( )A .-2B .-12C .-4D .-116解析:由y =2x 2,得x 2=12y .其焦点坐标为F (0,18),取直线y =18,则其与y =2x 2交于A (-14,18),B (14,18),∴x 1x 2=⎝ ⎛⎭⎪⎫-14·⎝ ⎛⎭⎪⎫14=-116.答案:D2.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 3解析:根据已知条件得c =16-m 2,则点⎝ ⎛⎭⎪⎪⎫16-m 2,2216-m 2在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =22(m =-22舍). 答案:B3.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l的条数为( )A .4B .3C .2D .1 解析:①斜率不存在时,方程为x =1符合.②设斜率为k ,y -1=k (x -1),kx -y -k +1=0.⎩⎪⎨⎪⎧4x 2-y 2=4,y =kx -k +1,(4-k 2)x 2+(2k 2-2k )x -k 2+2k -5=0.当4-k 2=0,k =±2时符合;当4-k 2≠0,Δ=0,亦有一个答案,∴共4条. 答案:A4.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( )A .3 2B .2 3 C.303 D.32 6解析:设y -1=k (x -1),∴y =kx +1-k . 代入椭圆方程,得x 2+2(kx +1-k )2=4. ∴(2k 2+1)x 2+4k (1-k )x +2(1-k )2-4=0. 由x 1+x 2=4kk -12k 2+1=2,得k =-12,x 1x 2=13.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4-43=83.∴|AB |=1+14·263=303.答案:C5.已知双曲线x 24-y 2b2=1(b >0)的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .5解析:由题,易得抛物线的焦点为(3,0),∴双曲线的右焦点为(3,0),∴b 2=c 2-a 2=9-4=5,∴双曲线的一条渐近线方程为y =52x ,即5x -2y =0,∴所求距离为d =|35|5+4= 5.答案:A6.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4] 解析:设直线方程为y =k (x +2),与抛物线联立方程组,整理,得ky 2-8y +16k 2=0.当k =0时,直线与抛物线有一个交点,当k ≠0时,由Δ=64-64k 2≥0,解得-1≤k ≤1且k ≠0,综上-1≤k ≤1.答案:C 8.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆(x +4)2+y 2=1和 (x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11 C .8,12 D .10,12解析:如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA |+|PB |=2a =10,连接PA ,PB 分别与圆相交于M ,N 两点,此时|PM |+|PN |最小,最小值为|PA |+|PB |-2R =8;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时|PM |+|PN |最大,最大值为|PA |+|PB |+2R =12,即最小值和最大值分别为8,12.答案:C8.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该双曲线交于A ,B 两点,若OA →+OB →与向量n =(-3,-1)共线,则双曲线C 的离心率为( )A. 3B.233C.43D .3解析:由题意得直线方程为y =x +c ,代入双曲线的方程并整理可得(b 2-a 2)x 2-2a 2cx -a 2c 2-a 2b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a 2c b 2-a 2,y 1+y 2=x 1+x 2+2c =2b 2c b 2-a 2,∴OA →+OB →=⎝ ⎛⎭⎪⎫2a 2c b 2-a 2,2b 2c b 2-a 2,又∵OA →+OB →与向量n =(-3,-1)共线,∴2a 2c b 2-a 2=3·2b 2c b 2-a 2,∴a 2=3b 2,又c 2=a 2+b 2,∴e =c a =233.故选B.答案:B9.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A.2613 B.22613 C.21313 D.41313解析:由题意可知,c =2,由e =c a =2a.可知e 最大时需a 最小.由椭圆的定义|PA |+|PB |=2a ,即使得|PA |+|PB |最小,设A (-2,0)关于直线y =x +3的对称点D (x ,y ),由⎩⎪⎨⎪⎧y -0x +2·1=-1,0+y 2=-2+x2+3,可知D (-3,1).所以|PA |+|PB |=|PD |+|PB |≥|DB |=12+52=26,即2a ≥26.所以a ≥262,则e =c a ≤2262=22613.故选B.答案:B10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在该双曲线的右支上,且|PF 1|+|PF 2|=10a ,PF 1→·PF 2→=-6a 2,则双曲线的离心率为( )A .2B .4 C. 2 D. 6解析:由双曲线的定义及已知可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=10a ,即⎩⎪⎨⎪⎧|PF 1|=6a ,|PF 2|=4a ,则cos ∠F 1PF 2=PF1→·PF 2→|PF 1→|·|PF 2→|=-6a 26a ·4a =-14,设双曲线的焦距为2c (c >0),由余弦定理可得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos ∠F 1PF 2,即4c 2=36a 2+16a 2-2×6a ×4a ×(-14),所以c 2=16a 2,故双曲线的离心率为c a=4.故选B.答案:B 二、填空题11.设过椭圆x 22+y 2=1的右焦点F 的直线交椭圆于A ,B 两点,AB 的中点为P ,O 为坐标原点,则OP →·PF→的取值范围为________. 解析:椭圆x 22+y 2=1的右焦点为F (1,0),当直线AB 的斜率存在时,设AB 的方程为y =k (x -1),代入椭圆方程x 22+y 2=1中,得(1+2k 2)x 2-4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 1+x 2=4k 21+2k 2,所以x 0=2k 21+2k 2,y 0=k (x 0-1)=-k1+2k 2,OP →=⎝⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,PF →=⎝ ⎛⎭⎪⎫11+2k 2,k 1+2k 2,所以OP →·PF→=2k 21+2k 22-k 21+2k 22=k 21+2k 22=k 21+4k 2+4k4,当k =0时,OP →·PF →=0,当k ≠0时,OP →·PF →=k 21+4k 2+4k4=14+1k2+4k 2≤18,当且仅当k 2=12时等号成立,且OP →·PF →>0.当直线AB 的斜率不存在时,F 与P 重合,所以OP→·PF →=0. 综上,OP →·PF →的取值范围为⎣⎢⎡⎦⎥⎤0,18.答案:⎣⎢⎡⎦⎥⎤0,1812.已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,在抛物线AOB 这段曲线上有一点P ,则△APB 的面积的最大值为________.解析:由弦长公式知|AB |=35,只需点P 到直线AB 距离最大就可保证△APB 的面积最大.设与l 平行的直线y =2x +b 与抛物线相切,解得b =12.∴d =9510,∴(S △APB )max =12×35×9510=274.答案:27413.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.解析:∵椭圆C 1:x 2m +2-y 2n =1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+nm +2.∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n .由题意可得m+2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0,得m +2>2.∴0<1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12. 而0<e 1<1,∴22<e 1<1.答案:22<e 1<114.设P 为直线l :x +y =4上任意一点,椭圆x 212+y 24=1的两个焦点为F 1,F 2,则l 与椭圆的位置关系是______,|PF 1|+|PF 2|的最小值是________.解析:把x =4-y 代入椭圆方程并整理,得y 2-2y +1=0,它有两个相等的根,∴l 与椭圆相切.如图,连接PF 1,与椭圆交于Q (由于P 在椭圆外,则Q 在P ,F 1之间), 连接QF 2,则|PF 1|+|PF 2|=|QF 1|+|PQ |+|PF 2|≥|QF 1|+|QF 2|=2a =43,当且仅当Q 在线段PF 2上,即P 在椭圆上时取等号,∴|PF 1|+|PF 2|的最小值是4 3.答案:相切 4 3 三、解答题15.已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O ,F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.解:(1)∵a 2=2,b 2=1,∴c =1,F (-1,0). ∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M (-12,t ),则圆半径r =|(-12)-(-2)|=32.由|OM |=r ,得⎝ ⎛⎭⎪⎫-122+t 2=32,解得t =± 2.∴所求圆的方程为(x +12)2+(y ±2)2=94.(2)设直线AB 的方程为y =k (x +1)(k ≠0), 代入x 22+y 2=1.整理,得(1+2k 2)x 2+4k 2x +2k 2-2=0. ∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根,如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0).则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1. ∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0),令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.∵k ≠0,∴-12<x G <0.∴点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.16.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4 2.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.解:(1)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+42,所以2a +2c =6+42,又椭圆的离心率为223,即c a =223,所以c =223a ,所以a =3,c =22,故b 2=a 2-c 2=1.椭圆M 的方程为x 29+y 2=1.(2)方法1:不妨设直线BC 的方程为y =n (x -3),(n >0). 则直线AC 的方程为y =-1n(x -3).由⎩⎪⎨⎪⎧y =n x -3,x29+y 2=1,得(19+n 2)x 2-6n 2x +9n 2-1=0.设A (x 1,y 1),B (x 2,y 2).因为3x 2=81n 2-99n 2+1,所以x 2=27n 2-39n 2+1.同理可得x 1=27-3n 29+n 2.所以|BC |=1+n 269n 2+1,|AC |=1+n 2n 6n29+n 2,S △ABC =12|BC ||AC |=2n +1nn +1n2+649.设t =n +1n≥2,则S =2t t 2+649=2t +649t≤38,当且仅当t =83时取等号.所以△ABC 面积的最大值为38.方法2:不妨设直线AB 的方程x =ky +m (m ≠3).由⎩⎪⎨⎪⎧x =ky +m ,x29+y 2=1,消去x ,得(k 2+9)y 2+2kmy +m 2-9=0. 设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=-2km k 2+9,y 1y 2=m 2-9k 2+9.①因为以AB 为直径的圆过点C (3,0),所以CA →·CB →=0. 由CA →=(x 1-3,y 1),CB →=(x 2-3,y 2), 得(x 1-3)(x 2-3)+y 1y 2=0.将x 1=ky 1+m ,x 2=ky 2+m 代入上式. 得(k 2+1)y 1y 2+k (m -3)(y 1+y 2)+(m -3)2=0. 将①代入上式,解得m =125或m =3(舍).所以m =125(此时直线AB 经过定点D (125,0),与椭圆有两个交点),所以S △ABC =12|DC ||y 1-y 2|=12×35y 1+y 22-4y 1y 2=9525k 2+9-14425k 2+92.设t =1k 2+9,0<t ≤19,则S△ABC=95-14425·t2+t.所以当t=25288∈⎝⎛⎦⎥⎤0,19时,S△ABC取得最大值38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆锥曲线的位置关系
一.知识网络结构:
2. 直线与圆锥曲线的位置关系:
⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax2 bx c 0。
① .若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;
当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
② .若a 0,设b2 4ac。
a . 0时,直线和圆锥曲线相交于不同两点,相交。
b. 0时,直线和圆锥曲线相切于一点,相切。
c. 0时,直线和圆锥曲线没有公共点,相离。
二.常考题型解读:题型一:直线与椭圆的位置关系:
2 2
例1.椭圆—J 1上的点到直线X 2y .2 0的最大距离是()
16 4
A.3
B. ,11
C. 2 2
D. . 10
2 2
例2.如果椭圆—y 1的弦被点(4,2)平分,则这条弦所在的直线方程是()
36 9
A. x 2y 0
B. x 2y 4 0
C. 2x 3y 12 0
D. x 2y 8 0
题型二:直线与双曲线的位置关系:
例3.已知直线L:y kx 1与双曲线C:x2 y2=4。
⑴若直线L与双曲线C无公共点,求k的范围;⑵若直线L与双曲线C有两个公共点,求k 的范围;
⑶若直线L与双曲线C有一个公共点,求k的范围;⑷若直线L与双曲线C的右支有两个公共点,求k的范围;⑸若直线L与双曲线C的两支各有一个公共点,求k的范围。
题型三:直线与抛物线的位置关系:
例4.在抛物线y2 2x上求一点P,使P到焦点F与P到点A(3,2)的距离之和最小。
题型四:弦长问题:
直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求, 根据根与系数的关系,进行整体代入。
即当直线
斜率为k 与圆锥曲线交于点A x i ,y i , 可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关 系得到两根之和,两根之积的代数式,然后再进行整体带入求解
1的右焦点F 2,倾斜角为300的直线交双曲线于A 、B 两点,求AB 题型五:中点弦问题: 求以某定点为中点的圆锥曲线的弦的方程的几种方
法:
⑴•点差法:将弦的两个端点坐标代入曲线方程,两式相减,即可确定弦的斜率,然后由点 斜式得出弦的方程;
⑵.设弦的点斜式方程,将弦的方程与曲线方程联立,消元后得到关于
x (或y )的一元二 次方程,用根与系数的关系求出中点坐标,从而确定弦的斜率 k ,然后写出弦的方程; ⑶•设弦的两个端点分别为X i ,y i ,X 2,y 2,则这两点坐标分别满足曲线方程,又
竺 空,上准 为弦的中点,从而得到四个方程,由这四个方程可以解出两个端点,从 2 2
而求出弦的方程。
例6.已知双曲线方程2x 2 y 2=2。
⑴求以A 2,1为中点的双曲线的弦所在的直线方程; ⑵过点1,1能否作直线L ,使L 与双曲线交于Q i , Q 2两点,且Q i ,Q 2两点的中点为1,1如 果存在,求出直线L 的方程;如果不存在,说明理由。
题型六:圆锥曲线上的点到直线的距离问题:
例7.在抛物线y 2 64x 上求一点,使它到直线 L : 4x 3y 46 0的距离最短,并求这个 最短距离。
练习 题
B x 2, y 2 时,则 AB k 2 % x 2 二昴
k 2 ; Xi 2 X 2 4x 1x 2
2
例5.过双曲线—
3
k 12「厂y 2 L 4y i y 2
A %,y 2 ,
B X 2,y 2 (为 x ?)两点,且 AB 9 .⑴求该抛物线的方程;⑵O 为坐标原点, 1. (09上海)过点A (1,0)作倾斜角为一的直线,与抛物线 y 2 2x 交于M 、N 两点,则
4
MN = _______
写出所涉及到的公式:
2. (09海南)已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于
A, B 两点,
若P 2,2为AB 的中点,则抛物线C 的方程为 _________ 。
2 2
3. ( 08宁夏海南)过椭圆— 壬1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,
5 4
O 为坐标 原点,则△ OAB 的面积为
4. ( 11全国)已知直线L 过抛物线C 的焦点,且与C 的对称轴垂直,L 与C 交于A, B 两点,
|AB| 12,
P 为C 的准线上一点,贝U ABP 的面积为(
) A. 18
B. 24
C. △ OAF (O 为坐标原点)的面积为4,则抛物线方程为(
2
7. (10全国)设F 1 , F 2分别是椭圆E : x 2+^=1 (0< b < 1)的左、右焦点,过F 1的直线
b
L 与E 相交于A 、B 两点,且|AF 2,| AB ,BF ?成等差数列。
⑴求|AB ⑵若直线L 的斜率为 1,求b 的值。
8. ( 11江西)已知过抛物线 y 2 2px p 0的焦点,斜率为 2、2的直线交抛物线于
5. (09山东)设斜率为2的直线I 过抛物线y 2
ax (a 0)的焦点F,且和y 轴交于点A,若 36 D. 48 2 2 A. y 4x B. y 8x
C. y 2 4x
D. 8x
6. (09山东)设双曲线 2 x 2 a 2 y_ b 2
1的一条渐近线与抛物线 y=x 2 +1只有一个公共点,则双
曲线的离心率为().A.
B. 5
C.
C为抛物线上一点,若OC OA OB,求的值.。