专题三-直线、圆、圆锥曲线测试题(文科)解析
2024年高考数学一模好题分类汇编:直线与圆、圆锥曲线(解析版)
直线与圆、圆锥曲线题型01 直线与圆题型02 椭圆题型03 双曲线题型04 抛物线题型01 直线与圆1(2024·浙江·校联考一模)圆C :x 2+y 2-2x +4y =0的圆心C 坐标和半径r 分别为()A.C 1,-2 ,r =5B.C 1,-2 ,r =5C.C -1,2 ,r =5D.C -1,2 ,r =5【答案】A【详解】圆C :x 2+y 2-2x +4y =0,即C :x -1 2+y +2 2=5,它的圆心C 坐标和半径r 分别为C 1,-2 ,r = 5.故选:A .2(2024·河南郑州·郑州市宇华实验学校校考一模)“a ≤-5或a ≥5”是“圆C 1:x 2+y 2=1与圆C 2:(x +a )2+(y -2a )2=36存在公切线”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C【详解】圆C 1的圆心为0,0 ,半径r 1=1,圆C 2的圆心为-a ,2a ,半径r 2=6,所以两圆的圆心距为d =C 1C 2 =a 2+4a 2=5a 2,两圆内含时,即5a 2<6-1 ,解得-5<a <5,所以当两圆有公切线时,a ≥5或a ≤-5,所以“a ≤-5或a ≥5”是“圆C 1:x 2+y 2=1与圆C 2:(x +a )2+(y -2a )2=36存在公切线”的充要条件.故选:C .3(2024·黑龙江齐齐哈尔·统考一模)已知圆C 1:(x -3)2+y 2=1,C 2:x 2+(y -a )2=16,则下列结论正确的有()A.若圆C 1和圆C 2外离,则a >4B.若圆C 1和圆C 2外切,则a =±4C.当a =0时,圆C 1和圆C 2有且仅有一条公切线D.当a =-2时,圆C 1和圆C 2相交【答案】BCD【详解】C 13,0 ,C 20,a ,C 1C 2 =9+a 2,r 1=1,r 2=4.若C1和C 2外离,则C 1C 2 =9+a 2>r 1+r 2=5,解得a >4或a <-4,故A 错误;若C 和C 外切,C C =9+a 2=5,解得a =±4,故B 正确;当a =0时,C 1C 2 =3=r 2-r 1,C 1和C 2内切,故C 正确;当a =-2时,3<C 1C 2 =13<5,C 1和C 2相交,故D 正确.故选:BCD4(2024·河南郑州·郑州市宇华实验学校校考一模)在直角坐标系xOy 中,直线l 1的参数方程为x =3ty =4t -1 (t 为参数),直线l 2的参数方程为x =12s y =32s(s 为参数).(1)求这两条直线的普通方程(结果用直线的一般式方程表示);(2)若这两条直线与圆C :(x -3)2+(y -4)2=m 2都相离,求m 的取值范围.【答案】(1)l 1:4x -3y -3=0,l 2:3x -y =0(2)4-332<m <33-42【详解】(1)直线l 1的参数方程为x =3t y =4t -1 ,则4x =12t3y =12t -3 ,两式相减得4x -3y -3=0直线l 2的参数方程为x =12sy =32s ,则s =2x 代入y =32s ,得y =3x ,3x -y =0;(2)圆C 的圆心为3,4 ,半径为m ,若l 1,l 2与圆C :(x -3)2+(y -4)2=m 2相离,所以12-12-35>m33-42>m,即35>m 33-42>m,解得4-332<m <33-42.5(2024·重庆·统考一模)过点P 作圆C :x 2+y 2-4x -43y +15=0的两条切线,切点分别为A ,B ,若△PAB 为直角三角形,O 为坐标原点,则OP 的取值范围为()A.2-2,2+2B.4-2,4+2C.2-2,2+2D.4-2,4+2【答案】D【详解】圆C :(x -2)2+(y -23)2=1的圆心C (2,23),半径r =1,由PA ,PB 切圆C 于点A ,B ,且△PAB 为直角三角形,得∠APB =90°,|PA |=|PB |,连接AC ,BC ,则∠CAP =∠CBP =90°,即四边形APBC 是正方形,|PC |=2,因此点P 在以点C 为圆心,2为半径的圆上,而|OC |=22+(23)2=4,于是|OP |max =4+2,|OP |min =4-2,所以OP 的取值范围为4-2,4+2 .故选:D6(2024·江西吉安·吉安一中校考一模)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3),则下列说法正确的是()A.直线kx -y -2k +1=0与圆C 始终有两个交点B.若M 是圆C 上任一点,则|MQ |的取值范围为22,62C.若点P (m ,m +1)在圆C 上,则直线PQ 的斜率为14D.圆C 与x 轴相切【答案】B【详解】依题意,圆C :(x -2)2+(y -7)2=8,圆心C (2,7),半径r =22,对于A ,直线kx -y -2k +1=0恒过定点(2,1),而点(2,1)在圆C 外,则过点(2,1)的直线与圆C 可能相离,故A 不正确;对于B ,|CQ |=42,点Q 在圆C 外,由CQ -r ≤MQ ≤CQ +r 得:22≤MQ ≤62,故B 正确.对于C ,点P (m ,m +1)在圆C 上,则(m -2)2+(m -6)2=8,解得m =4,而点Q (-2,3),则直线PQ 的斜率为m -2m +2=13,故C 不正确;对于D ,点C (2,7)到x 轴距离为7,大于圆C 的半径,则圆C 与x 轴相离,即圆C 与x 轴不相切,故D 不正确;故选:B7(2024·河北·校联考一模)已知圆C :x 2+2x +y 2-1=0,直线mx +n y -1 =0与圆C 交于A ,B 两点.若△ABC 为直角三角形,则()A.mn =0B.m -n =0C.m +n =0D.m 2-3n 2=0【答案】A【详解】因为圆C :x 2+2x +y 2-1=0,圆心为C -1,0 ,半径为r =2,即CA =CB =2因为△ABC 为直角三角形,所以AB =CB2+CA 2=2,设圆心C -1,0 到直线mx +n y -1 =0的距离为d ,d =-m -nm 2+n 2=m +nm 2+n 2由弦长公式AB =2r 2-d 2得d =1,所以m +nm 2+n2=1,化简得mn =0.故选:A .8(2024·广东深圳·校考一模)已知圆C :x 2+y 2-2kx -2y -2k =0,则下列命题是真命题的是()A.若圆C 关于直线y =kx 对称,则k =±1B.存在直线与所有的圆都相切C.当k =1时,P x ,y 为圆C 上任意一点,则y +3x 的最大值为5+3D.当k =1时,直线l :2x +y +2=0,M 为直线l 上的动点,过点M 作圆C 的切线MA ,MB ,切点为A ,B ,则CM ⋅AB 最小值为4【答案】BCD【详解】解:圆C :x 2+y 2-2kx -2y -2k =0,整理得:x -k 2+y -1 2=k +1 2,所以圆心C k ,1 ,半径r =k +1 >0,则k ≠-1对于A ,若圆C 关于直线y =kx 对称,则直线过圆心,所以1=k 2,得k =±1,又k =-1时,r =0,方程不能表示圆,故A 是假命题;对于B ,对于圆C ,圆心为C k ,1 ,半径r =k +1 >0,则k ≠-1,当直线为x =-1时,圆心到直线的距离d =k -(-1) =k +1 =r ,故存在直线x =-1,使得与所有的圆相切,故B 是真命题;对于C ,当k =1时,圆的方程为x -1 2+y -1 2=4,圆心为C 1,1 ,半径r =2由于P x ,y 为圆C 上任意一点,设y +3x =m ,则式子可表示直线y =-3x +m ,此时m 表示直线的纵截距,故当直线与圆相切时,可确定m 的取值范围,于是圆心C 1,1 到直线y =-3x +m 的距离d =3+1-m12+32=r =2,解得m =3-3或m =5+3,则3-3≤m ≤5+3,所以y +3x 的最大值为5+3,故C 为真命题;对于D ,圆的方程为x -1 2+y -1 2=4,圆心为C 1,1 ,半径r =2,如图,连接AC ,BC ,因为直线MA ,MB 与圆C 相切,所以MA ⊥AC ,MB ⊥BC ,且可得MA =MB ,又AC =BC =r =2,所以MC ⊥AB ,且MC 平分AB ,所以S =1CM ⋅AB =2S =2×1MA ⋅AC ,则CM ⋅AB =2MA ⋅AC =2CM 2-r 2×2=4CM 2-4,则CM ⋅AB 最小值即CM 的最小值,即圆心C 1,1 到直线l :2x +y +2=0的距离d =CM min =2+1+222+12=5,所以CM ⋅AB 的最小值为4,故D 为真命题.故选:BCD .9(2024·安徽合肥·合肥一六八中学校考一模)已知直线y =kx +2k ∈R 交圆O :x 2+y 2=9于P x 1,y 1 ,Q x 2,y 2 两点,则3x 1+4y 1+16 +3x 2+4y 2+16 的最小值为()A.9 B.16C.27D.30【答案】D【详解】由题设直线与y 轴的交点为A 0,2 ,设弦PQ 的中点为E x ,y ,连接OE ,则OE ⊥PQ ,即OE ⊥AE ,所以OE ⋅AE=0,即x ,y ⋅x ,y -2 =x 2+y y -2 =0,所以点E 的轨迹方程为x 2+(y -1)2=1,即E 的轨迹是以0,1 为圆心,1为半径的圆,设直线l 为3x +4y +16=0,则E 到l 的最小距离为4+165-1=3,过P 、E 、Q 分别作直线l 的垂线,垂足分别为M ,R ,N ,则四边形MNQP 是直角梯形,且R 是MN 的中点,则ER 是直角梯形的中位线,所以MP +NQ =2ER ,即3x 1+4y 1+165+3x 2+4y 2+165=2ER ,即3x 1+4y 1+6 +3x 2+4y 2+6 =10ER ≥30,所以3x 1+4y 1+16 +3x 2+4y 2+16 的最小值为30.故选:D .10(2024·吉林延边·统考一模)已知A x 1,y 1 ,B x 2,y 2 是圆O :x 2+y 2=4上的两点,则下列结论中正确的是()A.若点O 到直线AB 的距离为2,则AB =22B.若AB =23,则∠AOB =π3C.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为6D.x 1x 2+y 1y 2的最小值为-4【答案】ACD【详解】依题意,圆O :x 2+y 2=4的圆心O 0,0 ,半径为r =2如图所示:对于A 选项:因为点O 到直线AB 的距离为2,所以AB =2r 2-d 2=22,故选项A 正确;对于B 选项:因为AB =23,且OA =OB =r =2,所以在△ABC 中,由余弦定理可得:cos ∠AOB =OA2+OB 2-AB 22OA OB=4+4-122×2×2=-12,所以∠AOB =2π3,故选项B 错误;对于C 选项:由x 1+y 1-1 +x 2+y 2-1 =2x 1+y 1-12+x 2+y 2-12,其几何意义为A x 1,y 1 ,B x 2,y 2 到直线x +y -1=0的距离之和的2倍设A ,B 的中点为C x 0,y 0 ,结合梯形的中位线可知:则有x 1+y 1-1 +x 2+y 2-1 =22x 0+y 0-12,因为∠AOB =π2,所以AB =4+4=22,在直角三角形△OAB 中,OC =12AB =2,所以点C 的轨迹为以原点0,0 为圆心,2为半径的圆.因为0,0 到x +y -1=0的距离为d =0+0-12=22,所以x 0+y 0-12max=22+2=322,所以x 1+y 1-1 +x 2+y 2-1 max =22x 0+y 0-12max=6,故选项C 正确;对于D 选项:因为x 1x 2+y 1y 2=OA ⋅OB =2×2×cos OA ,OB,所以当OA ,OB所成的角为π时,x 1x 2+y 1y 2 min =2×2×cosπ=-4.故选项D 正确;故选:ACD .题型02椭圆11(2024·安徽合肥·合肥一六八中学校考一模)如果椭圆x 2k +8+y 29=1(k >-8)的离心率为e =12,则k =()A.4B.4或-54C.-45D.4或-45【答案】B【详解】解:因为椭圆x 2k +8+y 29=1(k >-8)的离心率为e =12,当k +8>9时,椭圆焦点在x 轴上,可得:a =k +8,b =3,∴c =a 2-b 2=k -1,∴e =k -1k +8=12,解得k =4,当0<k +8<9时,椭圆焦点在y 轴上,可得:a =3,b =k +8,∴c =a 2-b 2=1-k ,∴e =c a=1-k 3=12,解得k =-54.∴k =4或k =-54.故选:B .12(2024·福建厦门·统考一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 交于A ,B 两点,若F 1F 2 =2,且△ABF 2的周长为8,则()A.a =2B.C 的离心率为14C.|AB |可以为πD.∠BAF 2可以为直角【答案】AC【详解】由F 1F 2 =2c =2⇒c =1,如下图△ABF 2周长为4a =8⇒a =2,故b 2=a 2-c 2=3,所以,椭圆离心率为e =12,A 对,B 错;当AB ⊥x 轴,即AB 为通径时|AB |min =2b 2a =3,且|AB |<2a =4,所以3≤|AB |<4,故|AB |可以为π,C 对;由椭圆性质知:当A 为椭圆上下顶点时∠BAF 2最大,此时cos ∠BAF 2=a 2+a 2-4c 22a2=12,且∠BAF 2∈(0,π),故(∠BAF 2)max =π3,即∠BAF 2不可能为直角,D 错.故选:AC13(2024·云南曲靖·统考一模)已知P 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一点,F 1,F 2分别为C 的左、右焦点,且PF 1⊥PF 2,若△PF 1F 2外接圆半径与其内切圆半径之比为52,则C 的离心率为.【答案】57【详解】由题意,在Rt △PF 1F 2中|F 1F 2|=2c ,|PF 1|+|PF 2|=2a ,∠F 1PF 2=90°,所以其外接圆半径R =|F 1F 2|2=c ,内切圆的半径为|PF 1|+|PF 2|-|F 1F 2|2=a -c ,故c a -c =52⇒e =c a =57.故答案为:5714(2024·重庆·统考一模)已知点F 为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,过坐标原点作一条倾斜角为π3的直线交椭圆于P ,Q 两点,FP +FQ =FP -FQ ,则该椭圆的离心率为.【答案】3-1/-1+3【详解】令椭圆的左焦点为F ,半焦距为c ,分别连接F P ,F Q ,由FP +FQ =FP -FQ ,得四边形FPF Q 为矩形,而∠FOP =π3,则△OFP 为正三角形,所以|FP |=c ,FP =3c ,∴2a =PF +|PF ∣=(3+1)c ,则椭圆离心率为e =ca =3-1,故答案为:3-1.15(2024·黑龙江齐齐哈尔·统考一模)已知P 为椭圆C :x 29+y 23=1上的一个动点,过P 作圆M :(x -1)2+y 2=2的两条切线,切点分别为A ,B ,则AB 的最小值为.【答案】2105/2510【详解】设P x ,y ,∠MAB =θ,由已知MA ⊥AP ,由对称性可得AB ⊥PM ,所以∠PAB +∠MAB =π2,∠MPA +∠PAB =π2,且sin θ=2PM,因为PM =(x -1)2+y 2=(x -1)2+3-x 23=23x -322+52,因为-3≤x ≤3,所以PM ≥102,当且仅当x =32时等号成立,所以sin θ=2PM≤25,又θ∈0,π2 ,所以cos θ=1-sin 2θ≥15=55,所以AB =22cos θ≥22×55=2105.所以AB 的最小值为2105.故答案为:2105.16(2024·山东济南·山东省实验中学校考一模)若椭圆C 1和C 2的方程分别为x 2a 2+y 2b 2=1(a >b >0)和x 2a 2+y 2b2=λ(a >b >0,λ>0且λ≠1)则称C 1和C 2为相似椭圆.己知椭圆C 1:x 24+y 23=1,C 2:x 24+y 23=λ(0<λ<1),过C 2上任意一点P 作直线交C 1于M ,N 两点,且PM +PN=0,则△MON 的面积最大时,λ的值为()A.13B.12C.34D.32【答案】B【详解】当直线MN 的斜率不存在时,设直线MN 的方程为x =x 0,-2λ≤x 0≤2λ,联立x 24+y 23=1x =x,可得x =x 0y =±3×1-x 24 ,所以MN =23×1-x 204,所以△MON 的面积为S △MON =3x 01-x 204,由PM +PN =0 ,可得P 为MN 的中点,所以P x 0,0 ,因为点P 在椭圆C 2上,所以x 0=±2λ,所以S △MON =23×λ1-λ ,当直线MN 的斜率存在时,设直线MN 的方程为y =sx +t ,联立x 24+y 23=1y =sx +t ,消去y 得,4s 2+3 x 2+8stx +4t 2-12=0,∴Δ=64s 2t 2-44s 2+3 4t 2-12 =484s 2-t 2+3 >0,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8st 4s 2+3,x 1x 2=4t 2-124s 2+3,∴y 1+y 22=s x 1+x 2 +2t 2=-4s 2t 4s 2+3+t =3t4s 2+3,所以P 点坐标为-4st 4s 2+3,3t4s 2+3,因为点P 在椭圆C 2上,所以t 2=λ4s 2+3 ,因为原点O 到直线MN 的距离为t1+s 2,MN =1+s 2x 2-x 1 =1+s 2×x 1+x 2 2-4x 1x 2,所以△MON 的面积为S △MON =12t x 1-x 2 =23t 4s 2-t 2+34s 2+3=23×λ4s 2+3 ×1-λ 4s2+34s 2+3=23×λ1-λ ,综上,S △MON =23×λ1-λ ,又0<λ<1,又S △MON =23×λ1-λ =23×-λ-122+14,所以当λ=12时,△MON 的面积最大.故选:B .【点睛】关键点点睛:由PM +PN =0可得P 为MN 的中点,由此得到t 2=λ4s 2+3 ,将此关系代入S △MON 并化简可将S △MON 表示为一个变量的函数,从而利用二次函数求最值.17(2024·新疆乌鲁木齐·统考一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,点P 0,2 在椭圆C 上,过点P 的两条直线PA ,PB 分别与椭圆C 交于另一点A ,B ,且直线PA ,PB ,AB 的斜率满足k PA +k PB =4k AB k AB ≠0 .(1)求椭圆C 的方程;(2)证明直线AB 过定点;(3)椭圆C 的焦点分别为F 1,F 2,求凸四边形F 1AF 2B 面积的取值范围.【答案】(1)x 212+y 24=1(2)证明见解析(3)24611,82 【详解】(1)由题设得b =2ca =63a 2=b 2+c 2,解得a 2=12,所以C 的方程为x 212+y 24=1;(2)由题意可设l AB :y =kx +m (m ≠2),设A x 1,y 1 ,B x 2,y 2 ,由y =kx +mx 212+y 24=1,整理得1+3k 2 x 2+6kmx +3m 2-12=0,Δ=36k 2m 2-41+3k 2 3m 2-12 =1212k 2-m 2+4 >0.由韦达定理得x 1x 2=3m 2-121+3k 2,x 1+x 2=-6mk1+3k 2,由k PA +k PB =4k AB 得y 1-2x 1+y 2-2x 2=4k ,即kx 1+m -2x 1+kx 2+m -2x 2=4k ,整理得2mk (m -2)=24-m 2 k ,因为k ≠0,得m 2-m -2=0,解得m =2或m =-1,m =2时,直线AB 过定点P (0,2),不合题意,舍去;m =-1时,满足Δ=364k 2+1 >0,所以直线AB 过定点(0,-1).(3))由(2)得直线l AB :y =kx -1,所以x =1k(y +1),由x =1k (y +1)x 212+y 24=1,整理得1k 2+3y 2+2k 2y +1k 2-12=0,Δ=361k2+4>0,由题意得S F 1AF 2B =12F 1F 2 y1-y 2=22y 1-y 2 =1221k 2+41k 2+3,因为k AF 2=122,所以k 2>18,所以0<1k2<8,令t =1k 2+4,t ∈(2,23),所以S F 1AF 2B =122t t 2-1=1221t -1t,在t ∈(2,23)上单调递减,所以S F 1AF 2B 的范围是24611,82.18(2024·江西吉安·吉安一中校考一模)如图,D 为圆O :x 2+y 2=1上一动点,过点D 分别作x 轴,y 轴的垂线,垂足分别为A ,B ,连接BA 并延长至点W ,使得WA =1,点W 的轨迹记为曲线C .(1)求曲线C 的方程;(2)若过点K -2,0 的两条直线l 1,l 2分别交曲线C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点;于P ,Q 两点.请探究:y 轴上是否存在点R ,使得∠ORP +∠ORQ =π2?若存在,求出点R 坐标;若不存在,请说明理由.【答案】(1)x 24+y 2=1(2)证明见解析,-65,0 (3)存在,R (0,±2)【详解】(1)设W x ,y ,D (x 0,y 0),则A (x 0,0),B (0,y 0),由题意知AB =1,所以WA =AB ,得(x 0-x ,-y )=(-x 0,y 0),所以x 0=x2y 0=-y,因为x 2+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)由题意可知,直线l 1,l 2不平行坐标轴,则可设l 1的方程为:x =my -2,此时直线l 2的方程为x =-1my -2.由x =my -2x 24+y 2=1,消去x 得:(m 2+4)y 2-4my =0,解得:y =4m m 2+4或y =0(舍去),所以x =m ⋅4m m 2+4-2=2m 2-8m 2+4,所以M 2m 2-8m 2+4,4m m 2+4 ,同理可得:N 2-8m 24m 2+1,-4m4m 2+1.当m ≠±1时,直线MN 的斜率存在,k MN =4mm 2+4+4m 4m 2+12m 2-8m 2+4-2-8m 24m 2+1=4m (5m 2+5)16m 4-16=5m 4m 2-4,则直线MN 的方程为y =5m 4m 2-4x +65,所以直线MN 过定点-65,0 .当m =±1时,直线MN 斜率不存在,此时直线MN 方程为:x =-65,也过定点-65,0 ,综上所述:直线MN 过定点-65,0 .(3)假设存在点R 使得∠ORP +∠ORQ =π2,设R 0,t ,因为∠ORP +∠ORQ =π2,所以∠ORQ =∠OPR ,即tan ∠ORQ =tan ∠OPR ,所以|OQ ||OR |=|OR ||OP |,所以|OR |2=|OP |⋅|OQ |,直线x =x 0与曲线C 交于不同的两点G 、H ,易知G 、H 关于x 轴对称,设G (x 0,y 0),H (x 0,-y 0)(y 0≠±1,y 0≠0),易知点S 0,1,直线SG 方程是y =y 0-1x 0x +1,令y =0得点P 横坐标x P =-x 0y 0-1,直线SH 方程是y =y 0+1-x 0x +1,令y =0得点Q 横坐标x Q =x 0y 0+1,由|OR |2=|OP |⋅|OQ |,得t 2=x 20|y 20-1|,又G (x 0,y 0)在椭圆上,所以x 204+y 20=1,所以t 2=4,解得t =±2,所以存在点R (0,±2),使得∠ORP +∠ORQ =π2成立.19(2024·湖南长沙·雅礼中学校考一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,且点1,-32在椭圆上.(1)求椭圆C 的标准方程;(2)如图,若一条斜率不为0的直线过点(-1,0)与椭圆交于M ,N 两点,椭圆C 的左、右顶点分别为A ,B ,直线BN 的斜率为k 1,直线AM 的斜率为k 2,求证:k 21+k 22k 1⋅k 2为定值.【答案】(1)x 24+y 23=1(2)证明见解析【详解】(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点1,-32 在椭圆上,可得c a =12,所以b 2a 2=1-c 2a 2=1-12 2=34,又点1,-32 在该椭圆上,所以1a 2+94b 2=1,所以a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:设M x 1,y 1 ,N x 2,y 2 ,由于该直线斜率不为0,可设L MN :x =my -1,联立方程x =my -1和x 24+y 23=1,得(3m 2+4)y 2-6my -9=0,Δ>0恒成立,根据韦达定理可知,y 1+y 2=6m 3m 2+4,y 1·y 2=-93m 2+4,my 1·y 2=-32y 1+y 2 ,k 1=y 2x -2,k 2=y 1x +2,k 2k 1=y 1(x 2-2)(x 1+2)y 2=y 1(my 2-3)(my 1+1)y 2=my 1y 2-3y 1my 1y 2+y 2,∴k 2k 1=-32(y 1+y 2)-3y 1-32(y 1+y 2)+y 2=3,∴k 21+k 22k 1∙k 2=k 1k 2+k 2k 1=103.20(2024·吉林延边·统考一模)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,点1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P -2,0 ,Q 2,0 .若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别为S △MPQ ,S △NPQ ,求S △MPQS △NPQ的值.【答案】(1)x 24+y 23=1(2)13【详解】(1)由∠OHF 2=30°,得b =3c (c 为半焦距),∵点1,32 在椭圆E 上,则1a 2+94b2=1.又a 2=b 2+c 2,解得a =2,b =3,c =1.∴椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 21,0 .设直线l :x =my +1,A x 1,y 1 ,B x 2,y 2 .由x =my +1x 24+y 23=1消去x ,得3m 2+4 y 2+6my -9=0.显然Δ=144m 2+1 >0.则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.∴my 1y 2=32y 1+y 2 .由P -2,0 ,Q 2,0 ,得直线AP 的斜率k 1=y 1x 1+2,直线BQ 的斜率k 2=y 2x 2-2.又k 1 =OM OP ,k 2 =ON OQ,OP =OQ =2,∴OMON =k 1k 2 .∴S △MPQ S △NPQ =12PQ⋅OM 12PQ⋅ON =OM ON =k 1 k 2 .∵k 1k 2=y 1x 2-2 x 1+2 y 2=y 1my 2-1 my 1+3 y 2=my 1y 2-y 1my 1y 2+3y 2=32y 1+y 2 -y 132y 1+y 2 +3y 2=12y 1+32y 232y 1+92y 2=13.∴S △MPQ S△NPQ=13.21(2024·山东济南·山东省实验中学校考一模)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的右焦点为F 2,0 ,点2,3 在椭圆C 上.(1)求椭圆C 的方程;(2)过F 的两条互相垂直的直线分别交椭圆C 于A ,B 两点和P ,Q 两点,设AB ,PQ 的中点分别为M ,N ,求△FMN 面积的最大值.【答案】(1)x 28+y 24=1(2)49【详解】(1)由题意知c =2.又a 2=b 2+c 2,所以a 2=b 2+4.把点2,3 代入椭圆方程,得2b 2+4+3b2=1,解得b 2=4.故椭圆C 的方程为x 28+y 24=1.(2)由题意知直线AB ,PQ 的斜率均存在且不为零.设直线AB 的方程为y =k x -2 k ≠0 ,且A x 1,y 1 ,B x 2,y 2 .由y =k x -2x 28+y 24=1消去y ,得1+2k 2 x 2-8k 2x +8k 2-8=0.所以x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k 2.而y 1+y 2=k x 1-2 +k x 2-2 =k x 1+x 2 -4k =-4k1+2k 2,所以M 4k 21+2k 2,-2k 1+2k 2 .同理得N 42+k 2,2k 2+k 2.若4k 21+2k 2=42+k 2,则k =±1,此时直线MN 的斜率不存在,可得直线MN :x =43.此时MN =43,所以S △FMN =12×43×23=49;若k ≠±1,则直线MN 的斜率为-2k1+2k 2-2k 2+k 24k 21+2k 2-42+k 2=3k21-k 2,可得直线MN :y +2k 1+2k 2=3k 21-k 2 x -4k 21+2k 2.化简,得y =3k 21-k 2x -43 .所以直线MN 过定点T 43,0 .所以S △FMN =S △FTM +S △FTN =12×23×-2k 1+2k 2 +12×23×2k2+k 2=13×2k 1+2k 2+13×2k 2+k 2=13×2k 3+3k 21+2k 2 2+k 2 =2k 1+k 22k 4+5k 2+2=2k +1k 2k 2+1k2 +5.令t =k +1k∈2,+∞ ,则S △FMN =f t =2t 2t 2-2 +5=2t2t 2+1.因为f t =21-2t22t2+12<0,所以f t 在t∈2,+∞上单调递减.所以f t <f2 =49,即S△FMN<49.综上,S△FMN≤4 9 .所以当k=±1时,△FMN的面积取得最大值4 9.【点睛】关键点睛:本题考查了椭圆方程,定点问题,最值问题;意在考查学生的计算能力,转化能力和综合应用能力,其中利用设而不求的思想,分类讨论的思想,根据韦达定理得到根与系数的关系,是解题的关键,此方法是考查的重点,需要熟练掌握.22(2024·山西晋城·统考一模)已知椭圆P:x26+y22=1的焦点是椭圆E的顶点,椭圆Q:x26+y29=1的焦点也是E的顶点.(1)求E的方程;(2)若F x0,y0,C,D三点均在E上,且CF⊥DF,直线CF,DF,CD的斜率均存在,证明:直线CD过定点(用x0,y0表示).【答案】(1)x24+y23=1(2)过定点x07,-y07,证明见解析.【详解】(1)因为6-2=2,所以P的焦点为(-2,0),(2,0),因为9-6=3,所以Q的焦点为(0,-3),(0,3),所以可设E的方程为x2a2+y2b2=1(a>b>0),则a=2,b=3,故E的方程为x24+y23=1.(2)证明:设C x1,y1,D x2,y2,直线CD:y=kx+m.k FC=y1-y0x1-x0,k FD=y2-y0x2-x0.因为CF⊥DF,所以k CF⋅k FD=-1,即x1-x0x2-x0+y1-y0y2-y0=0,即x1x2-x0x1+x2+x20+y1y2-y0y1+y2+y20=0①,将y=kx+m代入E的方程,得(3+4k2)x2+8kmx+4m2-12=0,则Δ=483+4k2-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-123+4k2,y1+y2=k x1+x2+2m=6m3+4k2,y1y2=kx1+mkx2+m=k2x1x2+km x1+x2+m2=-12k2+3m23+4k2,将以上4个式子代入①,得x20-x0⋅-8km3+4k2+4m2-123+4k2+y20-y0⋅6m3+4k2+-12k2+3m23+4k2=0,即4kx0+m2+34x20-3+3y0-m2+4k2y203-4k2=0②,34y20代入②得4kx 0+m +y 0 kx 0+m -y 0 =3kx 0+m -y 0 kx 0-m +y 0 ,即kx 0+m -y 0 kx 0+7m +y 0 =0,因为CF ⊥DF ,所以F 不在直线CD 上,则kx 0+m -y 0≠0,则m =-y 0+kx 07,所以直线CD :y =k x -x 07 -y 07过定点x 07,-y 07 .【点睛】关键点点睛:本题考查直线与椭圆的位置关系,将韦达定理代入表达式化简为4kx 0+m 2+34x 20-3 +3y 0-m 2+4k 2y 203-4k 2 =0并利用点在椭圆上进一步化简是本题关键.23(2024·浙江·校联考一模)已知椭圆C :x 24+y 23=1的左右焦点分别为F 1,F 2,点P x 0,y 0 为椭圆C 上异于顶点的一动点,∠F 1PF 2的角平分线分别交x 轴、y 轴于点M 、N .(1)若x 0=12,求PF 1 ;(2)求证:PM PN为定值;(3)当△F 1PN 面积取到最大值时,求点P 的横坐标x 0.【答案】(1)PF 1 =94(2)证明见解析(3)x 0=3-1【详解】(1)由已知得F 1-1,0 ,x 204+y 203=1⇒y 20=3-3x 204则PF 1 =x 0+1 2+y 20=2+12x 0.所以当x 0=12时,PF 1 =94;(2)设M m ,0 ,在△F 1PF 2中,PM 是∠F 1PF 2的角平分线,所以PF 1 PF 2=MF 1 MF 2,由(1)知PF 1 =2+12x 0,同理PF 2 =x 0-1 2+y 20=2-12x 0,即2+12x 02-1x =m +11-m ,解得m =14x 0,所以M 14x 0,0 ,过P 作PH ⊥x 轴于H .所以PM PN=MH OH=34.(3)记△F 1PN 面积的面积为S ,由(1)可得,S =12F 1M ⋅y 0+13y 0 =16x 0+4 344-x 20 =312x 0+4 4-x 20,其中x 0∈-2,0 ∪0,2 ,则S =-364-x 2x 20+2x 0-2 ,当x 0∈-2,0 ∪0,3-1 时,S >0,S 单调递增;当x 0∈3-1,2 时,S <0,S 单调递减.所以当x 0=3-1时,S 最大.【点睛】关键点点睛:本题第三问的关键是利用导函数求解面积表达式的最值,注意函数的定义域.24(2024·辽宁沈阳·统考一模)已知如图,点B 1,B 2为椭圆C 的短轴的两个端点,且B 2的坐标为0,1 ,椭圆C 的离心率为22.(1)求椭圆C 的标准方程;(2)若直线l 不经过椭圆C 的中心,且分别交椭圆C 与直线y =-1于不同的三点D ,E ,P (点E 在线段DP 上),直线PO 分别交直线DB 2,EB 2于点M ,N .求证:四边形B 1MB 2N 为平行四边形.【答案】(1)x 22+y 2=1(2)证明见解析【详解】(1)由题知b =1,c a =22,a 2=b 2+c 2. 解得a 2=2,b 2=1.故椭圆C 的方程为x 22+y 2=1.(2)方法一:显然直线l 不能水平,故设直线l 方程为x =k y +t t ≠0 ,设D x 1,y 1 ,E x 2,y 2 ,N x N ,y N ,M x M ,y M ,由x =k y +t ,x 22+y 2=1得k 2+2 y 2+2k t y +t 2-2=0,令Δ>0得,k 2-t 2+2>0.所以y 1+y 2=-2k t k 2+2,y 1y 2=t 2-2k 2+2,令y =-1,得P t -k ,-1 .故直线PO 方程为y =1k-tx ,直线DB 方程为y =y 1-1x +1.由y =1k -txy =y 1-1x 1x +1 得x M =k -tx 1x 1+k -t 1-y 1=k -tx 1k +t y 1,将x M 中x 1,y 1换成x 2,y 2得x N =k-tx 2k +t y 2.∴x M +x N =k-tx 1k +t y 1+k-tx 2k +t y 2=k-tx 1k +t y 2 +x 2k +t y 1k +t y 1 k +ty 2,∵x 1k +t y 2 +x 2k +t y 1 =k x 1+x 2 +t x 1y 2+x 2y 1 =k k y 1+t +k y 2+t +t k y 1+t y 2+k y 2+t y 1 =k 2+t 2y 1+y 2 +2k ty 1y 2+1 =-2k t k 2+t 2 +2k t k 2+t 2k 2+2=0,∴O 为线段MN 中点,又O 为B 1B 1中点,∴四边形B 1MB 2N 为平行四边形.方法二:设D x 1,y 1 ,E x 2,y 2 ,M x M ,y M ,N x N ,y N .直线B 2D 方程为y =y 1-1x 1x +1,当直线l 的斜率不存在时,设l 方程为x =x 0x 0≠0 ,此时P x 0,-1 ,直线PO 方程的为y =-1x 0x ,由y =-1x 0xy =y 1-1x 0x +1得x M=-x 0y 1,同理x N =-x 0y 2,∵y 1=-y 2∴x M +x N =0,当直线l 斜率存在时,设l 方程为y =kx +t t ≠0 ,由y =kx +t ,x22+y 2=1 得1+2k 2 x 2+4ktx +2t 2-2=0.令Δ>0得,1+2k 2-t 2>0.由韦达定理得x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.将y =-1代入y =kx +t 得P -1-tk,-1 ∴直线PO 的方程为y =kt +1x 由y =y 1-1x 1x +1y =k t +1x得x M=-x 11+t y 1-1 1+t -kx 1=-x 11+t ktx 1+t 2-1同理可得x N =-x 21+tktx 2+t 2-1.∴x M +x N =-t +1 x 1ktx 1+t 2-1+x 2ktx 2+t 2-1=-t +12ktx 1x 2+t 2-1 x 1+x 2ktx 1+t 2-1 ktx 2+t 2-1∵2ktx 1x 2+t 2-1 x 1+x 2 =2kt 2t 2-2 +t 2-1 -4kt=0,∴x M +x N =0,综上所述,x M +x N =0,∴O 为线段MN 中点,又O 为B 1B 1中点,∴四边形B 1MB 2N 为平行四边形.【点睛】关键点点睛:证明四边形B 1MB 2N 为平行四边形的方法用对角线相互平分得到.25(2024·河北·校联考一模)已知椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,离心率为12,经过点F 1且倾斜角为θ0<θ<π2的直线l 与椭圆交于A 、B 两点(其中点A 在x 轴上方),△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)如图,将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AF 1F 2)与y 轴负半轴和x 轴所确定的半平面(平面BF 1F 2)互相垂直.①若θ=π3,求异面直线AF 1和BF 2所成角的余弦值;②是否存在θ0<θ<π2 ,使得折叠后△ABF 2的周长为152?若存在,求tan θ的值;若不存在,请说明理由.【答案】(1)x 24+y 23=1;(2)①1328;②存在;tan θ=33514.【详解】解:(1)由椭圆的定义知:AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,所以△ABF 2的周长L =4a =8,所以a =2,又椭圆离心率为12,所以c a =12,所以c =1,b 2=a 2-c 2=3,由题意,椭圆的焦点在x 轴上,所以椭圆的标准方程为x 24+y 23=1;(2)①由直线l :y -0=3x +1 与x 24+y 23=1,联立求得A 0,3 ,(因为点A 在x 轴上方)以及B -85,-353 ,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴,原y 轴正半轴所在直线为x ,y ,z 轴建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 353,-85,0,F 20,1,0 ,F 1A =0,1,3 ,BF 2 =-353,135,0 .记异面直线AF 1和BF 2所成角为φ,则cos φ=cos <F 1A ,BF 2 > =F 1A ⋅BF2 F 1A BF 2=1328;②设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后A ,B 在新图形中对应点记为A ′,B ′,A ′x 1,y 1,0 ,B ′x 2,0,-y 2 ,由A ′F 2 +B ′F 2 +A ′B ′ =152,AF 2 +BF 2 +|AB |=8,故AB -A ′B ′ =12,将直线l 方程与椭圆方程联立my =x +1x 24+y 23=1,得3m 2+4 y 2-6my -9=0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠后的图形中建立如图所示的空间直角坐标系(原x 轴仍然为x 轴,原y 轴正半轴为y 轴,原y 轴负半轴为z 轴);A ′B ′ =x 1-x 22+y 12+y 22,AB =x 1-x 22+y 1-y 2 2,所以AB -A ′B ′ =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12,(i )又-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 1 2+y 1-y 2 2+x 1-x 2 2+y 21+y 21=-4y 1y 2,(ii )由(i )(ii )可得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=1+m 2 y 1-y 2 2=14-2y 1y 2 2,所以1+m 26m 3m 2+42+363m 2+4=14+183m 2+42,即1441+m3m 2+42=14+183m 2+42,所以12+12m 23m 2+4=14+183m 2+4,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.【点睛】关键点点睛:本题的解题关键是根据折叠前、后三角形△ABF 2周长的变化,得到AB -A ′B ′ =12,进而根据两点间的距离公式及韦达定理进行求解.题型03 双曲线26(2024·辽宁沈阳·统考一模)已知双曲线C 的两个焦点分别为F 1-22,0 ,F 222,0 ,且满足条件p ,可以解得双曲线C 的方程为x 2-y 2=4,则条件p 可以是()A.实轴长为4B.双曲线C 为等轴双曲线C.离心率为22D.渐近线方程为y =±x【答案】ABD【详解】设该双曲线标准方程为x 2a 2-y 2b2=1,则c =2 2.对于A 选项,若实轴长为4,则a =2,∴b 2=c 2-a 2=4,符合题意;对于B 选项,若该双曲线为等轴双曲线,则a =b ,又c =22,a 2+b 2=c 2=8,可解得a 2=b 2=4,符合题意;对于C 选项,由双曲线的离心率大于1知,不合题意;对于D 选项,若渐近线方程为y =±x ,则a =b ,结合a 2+b 2=c 2=8,可解得a 2=b 2=4,符合题意,故选:ABD .27(2024·黑龙江齐齐哈尔·统考一模)已知A 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点,O 为坐标原点,B ,C 为双曲线E 上两点,且AB +AC =2AO ,直线AB ,AC 的斜率分别为2和14,则双曲线E 的离心率为()A.2B.52C.62D.2【答案】C【详解】A a ,0 ,设B x 0,y 0 ,C -x 0,-y 0 ,则x 20a 2-y 20b2=1,则k AB =y 0x 0-a =2,k AC =y 0x 0+a =14,k AB ⋅k AC =y 20x 20-a 2=b 2x 20a2-1 x 20-a 2=b 2a 2=14×2=12,∴e =c a =c 2a 2=a 2+b 2a 2=1+b a 2=1+12=62.故选:C【点睛】求解双曲线离心率有关的问题,可以利用直接法来进行求解,也即通过已知条件求得a 和c ,从而求得双曲线的离心率.也可以利用构造齐次式的方法来进行求解,也即通过已知条件求得a 2,c 2或a 2,b 2的等量关系式,由此来求得离心率.28(2024·云南曲靖·统考一模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 ,过其右焦点F 作一条直线分别交两条渐近线于A ,B 两点,若A 为线段BF 的中点,且OA ⊥BF ,则双曲线C 的渐近线方程为()A.y =±2xB.y =±3xC.y =±5xD.y =±12x【答案】B【详解】由题设作出图形,双曲线渐近线为y =±b a x ,F (c ,0),则直线BF :y =-ab (x -c ),故y =-a b(x -c )y =-b a x,可得x =a 2c a 2-b 2,故y =-abc a 2-b 2,即B a 2c a 2-b 2,-abca 2-b2,又三角形BOF 为等腰三角形,所以|OB |2=a 2ca 2-b22+abc a 2-b22=c 2,则a 4+a 2b 2=(a 2-b 2)2,整理得b 2a 2=3⇒ba =3,即双曲线C 的渐近线方程为y =±3x .故选:B29(2024·河南郑州·郑州市宇华实验学校校考一模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右顶点分别为A 1,A 2,F 为C 的右焦点,C 的离心率为2,若P 为C 右支上一点,PF ⊥FA 2,记∠A 1PA 2=θ0<θ<π2,则tan θ=()【答案】A【详解】设C 的焦距为2c ,点P x 0,y 0 ,由C 的离心率为2可知c =2a ,b =3a ,因为PF ⊥FA 2,所以x 0=c ,将P c ,y 0 代入C 的方程得c 2a 2-y 20b 2=1,即y 0 =3b ,所以tan ∠PA 2F =3b c -a =3,tan ∠PA 1F =3bc --a=1,故tan θ=tan ∠PA 2F -∠PA 1F =3-11+3×1=12.故选:A .30(2024·新疆乌鲁木齐·统考一模)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,A 是右支上一点,满足AF 1⊥AF 2,直线AF 2交双曲线于另一点B ,且BF 1 -AF 1 =2a ,则双曲线的离心率为.【答案】102【详解】AF 2 =x ,则AF 1 =2a +x ,又BF 1 -AF 1 =2a ,所以BF 2 =AF 1 =2a +x ,则AB =AF 2 +BF 2 =2a +2x ,BF 1 =2a +AF 1 =4a +x ,又AF 1⊥AF 2,所以三角形AF 1B 为直角三角形,则AF 1 2+AB 2=BF 1 2,即2a +x 2+2a +2x 2=4a +x 2,化为x 2+ax -2a 2=0,解得x =a 或者x =-2a (舍),此时AF 1 =3a ,在直角三角形AF 1F 2中,AF 1 2+AF 2 2=F 1F 2 2,即9a 2+a 2=4c 2,所以c 2a2=e 2=52,所以e =102.故答案为:102.31(2024·浙江·校联考一模)已知A ,B 分别是双曲线C :x 24-y 2=1的左,右顶点,P 是双曲线C 上的一动点,直线PA ,PB 与x =1交于M ,N 两点,△PMN ,△PAB 的外接圆面积分别为S 1,S 2,则S1S 2的最小值为()【答案】A【详解】由已知得,A -2,0 ,B 2,0 ,由双曲线的对称性,不妨设P x ,y 在第一象限,所以k PA =y x +2,k PB =yx -2,所以k PA ⋅k PB =y x +2⋅y x -2=y 2x 2-4=x 24-1x 2-4=14,设直线PA 的方程为:y =k x +2 ,k >0,则直线PB 的方程为:y =14kx -2 ,同时令x =1,则y M =3k ,y N =-14k,所以MN =3k +14k,k >0,设△PMN ,△PAB 的外接圆的半径分别为r 1,r 2,由正弦定理得,2r 1=MNsin ∠MPN=MNsin ∠APB,2r 2=ABsin ∠APB,所以r 1r 2=MN AB =3k +14k 4≥23k ⋅14k 4=34,当且仅当3k =14k,即k =36时取等号,所以S 1S 2=πr 21πr 22=r 1r 22=316.故选:A【点睛】结论点睛:若A 、B 分别为双曲线的左、右顶点,P 为双曲线上一动点,则直线PA 与直线PB 的斜率之积为定值.32(2024·湖南长沙·雅礼中学校考一模)已知O 为坐标原点,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,离心率为62,点P x 1,y 1 是C 的右支上异于顶点的一点,过F 2作∠F 1PF 2的平分线的垂线,垂足是M ,|MO |=2,若双曲线C 上一点T 满足F 1T ⋅F 2T=5,则点T 到双曲线C 的两条渐近线距离之和为()A.22B.23C.25D.26【答案】A【详解】设半焦距为c ,延长F 2M 交PF 1于点N ,由于PM 是∠F 1PF 2的平分线,F 2M ⊥PM ,所以△NPF 2是等腰三角形,所以PN =PF 2 ,且M 是NF 2的中点.根据双曲线的定义可知PF 1 -PF 2 =2a ,即NF 1 =2a ,由于O 是F 1F 2的中点,所以MO 是△NF 1F 2的中位线,所以MO =12NF 1 =a =2,又双曲线的离心率为62,所以c =3,b =1,所以双曲线C 的方程为x 22-y 2=1.所以F 1(-3,0),F 2(3,0),双曲线C 的渐近线方程为x ±2y =0,设T (u ,v ),T 到两渐近线的距离之和为S ,则S =|u +2v |3+|u -2v |3,由F 1T ⋅F 2T=(u -3)(u +3)+v 2=u 2+v 2-3=5,即u 2+v 2=8,又T 在x 22-y 2=1上,则u 22-v 2=1,即u 2-2v 2=2,解得u 2=6,v 2=2,由|u |>2|v |,故S =2u3=22,即距离之和为2 2.故选:A .【点睛】由平面几何知识,PN =PF 2 ,依据双曲线的定义,可将|MO |=2转化为用a 表示,进而的双曲线的标准方程.33(2024·安徽合肥·合肥一六八中学校考一模)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.2【答案】A【详解】因为CB =3F 2A ,所以△F 1AF 2∽△F 1BC ,设F 1F 2 =2c ,则F 2C =4c ,设AF 1 =t ,则BF 1 =3t ,AB =2t .因为BF 2平分∠F 1BC ,由角平分线定理可知,BF 1 BC=F 1F 2 F 2C=2c 4c =12,所以BC =2BF 1 =6t ,所以AF 2 =13BC =2t ,由双曲线定义知AF 2 -AF 1 =2a ,即2t -t =2a ,t =2a ,①又由BF 1 -BF 2 =2a 得BF 2 =3t -2a =2t ,所以BF 2 =AB =AF 2 =2t ,即△ABF 2是等边三角形,所以∠F 2BC =∠ABF 2=60°.在△F 1BF 2中,由余弦定理知cos ∠F 1BF 2=BF 12+BF 2 2-F 1F 2 22⋅BF 1 ⋅BF 2,即12=4t 2+9t 2-4c 22⋅2t ⋅3t,化简得7t 2=4c 2,把①代入上式得e =ca =7,所以离心率为7.故选:A .34(2024·山西晋城·统考一模)双曲线C :x 2-y 2=m 2(m >0)的左、右焦点分别为F 1,F 2,P (t ,s )(s ≠0)为C 的右支上一点,分别以线段PF 1,PF 2为直径作圆O 1,圆O 2,线段OO 2与圆O 2相交于点M ,其中O 为坐标原点,则()A.O 1O 2 =3mB.OM =mC.点(t ,0)为圆O 1和圆O 2的另一个交点D.圆O 1与圆O 2有一条公切线的倾斜角为π4【答案】BCD【详解】C 的方程可化为x 2m 2-y 2m2=1,可得a =m ,b =m ,c =2m .由O 1为PF 1的中点,O 2为PF 2的中点,得O 1O 2 =12F 1F 2 =2m ,A 错误.由O 2为PF 2的中点,O 为F 1F 2的中点,得OO 2 =12PF 1 ,则OM =OO 2 -MO 2 =12PF 1 -PO 2 =12PF 1 -12PF 2 =a =m ,B 正确.设点Q 为圆O 1和圆O 2的另一个交点,连接PQ ,由O 1O 2⎳x 轴,可得O 1O 2⊥PQ ,O 1O 2为△PF 1F 2的中位线,则直线O 1O 2平分线段PQ ,则点Q 必在x 轴上,可得点Q 的坐标为(t ,0),C 正确.如图,若BD 为圆O 1与圆O 2的一条公切线,B ,D 为切点,连接O 1B ,O 2D ,过点O 2作O 2A ⊥O 1B ,垂足为A .由O 1O 2 =2m ,O 1A =O 1B -O 2D =12PF 1 -12PF 2 =a =m ,得sin ∠AO 2O 1=AO 1 O 1O 2=m 2m=22,。
直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习
直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
直线与圆锥曲线 高三数学解析几何专项训练(含例题答案) 高三数学解析几何专
心尺引州丑巴孔市中潭学校 直线与圆锥曲线【例题精选】: 例 1 直线y ax b a x y =+≠+=()0122与圆〔1〕 问a,b 满足什么条件,直线与圆有两个公共点?〔2〕 设这两个公共点为M 、N ,且OM 、ON 〔O 为原点〕与x 轴正方向所成角为αβα、,求证:cos(+β)=-+a a 2211分析:第〔1〕问是求直线与圆什么时候有两个公共点,因直线与圆有两个公共点的充要条件是圆心到直线的距离小于圆的半径,或者直线方程与圆的方程联立的方程组有两个实数解,这里我们用后面的条件求解。
第〔2〕问〔如图〕中角αβ、可以看成是OM 、ON 的倾斜角,直接找αβ+较麻烦,但是由圆的性质,取MN 中点P ,连结OP ,可以知道Lxop =+αβ2,只需求出OP 的斜率,也就可以得到tgαβ+2的值,再根据三角公式,就可以计算出cos()αβ+与a 的关系了。
解 : (1) 由方程组y ax b x y y =++=221消去得,(2)、如图,取MN 中点P , 连结OP ,那么<2βα+=xop例 2椭圆中心为原点O, 焦在坐标轴上,y=x+1与该椭圆相交于Q p 、,434=PQ ,求椭圆方程。
分析: 这个问题中椭圆的焦点在x 轴上还是在y 轴上没有给定,因此在设此椭圆方程时,可以设为Ax By 221+=, 又这个问题中涉及弦PQ 的长,因为P 、Q 在直线 y x =+1上,因此坐标满足方程y x =+1, 所以假设P 、Q 坐标分别为〔x, y), (x 2, y 2) 的话,可推得PQ x x =+-1112,〔我们称它为弦长公式,一般地为1212+-k x x ).由OP ⊥OQ 我们一方面可以知道OP 与OQ 的斜率乘积为-1(斜率存在的情况下),一方面也可以知道PQ中点到原点O 的距离等于PQ 的一半,因此此题可以得到以下两种一般解法.解法一: 设椭圆方程为Ax By A B 22100+=>>(,)设P (),(,),x y Q x y 1122由Ax By y x y A B x Bx B 22211210+==+⎧⎨⎩+++-=消去得,()解法二: 同解法一, 得()A B x Bx B +++-=2210,以下同解法一.例 3 求过点A(3,-1)被A 平分的双曲线x y 2244-=的弦所在直线的方程.解法一: 设过A 点的直线方程为y k x +=-13()代入x y 2244-=消去y , 得解法二 : 设直线与双曲线的两交点坐标分别为p x y Q x y (,),(,)1122那么⎪⎩⎪⎨⎧=-=-444422222121y x y x 两式相减, 得 ()()()()x x x x y y y y 1212121240-+--+=说明: 此题解法二过程简单, 在解题中是一种常用的方法,但是此法实际上是在成认了直线与双曲线存在两个交点的情况下去求解的,题中点A 坐标假设改成'''A A (,)或(,),213212用此法可以得出相应的斜率'=''=-=--=K K x y x y 1234206850或,从而得出直线或它们与双曲线都是设有交点的,因此也是不合题意的。
高二文科数学圆锥曲线基础训练(含答案)
高二文科数学圆锥曲线基础训练1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .—36<k<36B .k>36或k< —36C .—36≤k ≤36D .k ≥36或k ≤ —36 【答案】B【解析】 试题分析:由⎩⎨⎧=++=632222y x kx y 可得 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24(2+3k 2)>0得k>36或k< —36,此时直线和椭圆有两个公共点。
2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A. 0B. 1516C. 78D. 1716【答案】A 试题分析:设M ()00,y x ,因为M 到焦点的距离为1,所以110=+x ,所以00=x ,代入抛物线方程4xy 2=得00=y 。
3.过点(0,1)与双曲线221x y -=仅有一个公共点的直线共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( ) A.21B.23C.22D.33【答案】C5.若椭圆)0(122>>=+n m ny m x 和双曲线)0(122>>=-b a b y a x 有相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )A .m-aB .)(21a m - C .22a m - D .a m -【答案】A【解析】设P是第一象限的交点,由定义可知1212PF PF PF PF ⎧+=⎪⎨-=⎪⎩ 12PF PF m a ∴=-6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为()A.17922=-y x B .)0(17922>=-y x y C .17922=-y x 或17922=-x y D .)0(17922>=-x y x 【答案】D7.已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有 ( ) A. 相同的准线 B. 相同的焦点C. 相同的离心率D. 相同的长轴【答案】B8.抛物线)0(2<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛0,21a B.⎪⎭⎫ ⎝⎛a 21,0 C.⎪⎭⎫⎝⎛a 41,0 D.⎪⎭⎫ ⎝⎛-a 41,0 【答案】C9.抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于( )A. B. C.2 【答案】A10.已知椭圆)0(12222>>=+b a by a x 的左、右两焦点分别为21,F F ,点A 在椭圆上,0211=⋅F F ,4521=∠AF F ,则椭圆的离心率e 等于 ( )A.33B.12-C.13-D. 215- 【答案】B 由0211=⋅F F AF 得112AF F F ⊥,又4521=∠AF F ,112AF F F ∴=即22b c a=,整理的2220c ac a +-=2210,1e e e ∴+-==11.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为___________【答案】1728122=+y x 【解析】试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=31•2a=6,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 轴上,可得此椭圆方程为1817222=+y x . 12.过椭52x +42y =1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,求弦AB 的长_______【答案】35513.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是 .【答案】2k <<3k <<-【解析】2222150x y kx y k ++++-=表示圆需要满足22224(15)0k k +-->,解得33k -<<,又因为过圆外一点可以作两条直线与圆相切,所以点(1,2)在圆外,所以2221222150k k +++⨯+->,所以3k <-或2k >,综上所述,实数k 的取值范围是2k <<3k <<-15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为5,则m = .【答案】4±. 16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
文科圆锥曲线测试题(带详细答案)
高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =- D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A )2 (B)(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A(B(C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A.2yx =±B.y = C.y x = D.y = 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。
专题三 直线、圆、圆锥曲线测试题(文科)
专题三 直线、圆、圆锥曲线测试题(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=02.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=03.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722 B.922 C.1122 D.910104.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为( )A .1B .-1 C.12 D .25.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( )A .相离B .相交C .相切D .不确定6.设A 为圆(x +1)2+y 2=4上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=57.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4 D.148.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值是() A.2 B.4 C.6 D.89.已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则()A.1e21+1e22=4 B.e21+e22=4 C.1e21+1e22=2 D.e21+e22=210.已知双曲线x2a2-y2b2=1的两条渐近线互相垂直,则双曲线的离心率为()A. 3B.2C.52 D.2211.若双曲线x2a2-y2b2=1(a>0,b>0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为()A. 2B.3C. 5 D.212.已知点F1、F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.(1,3) B.(3,22) C.(1+2,+∞) D.(1,1+2) 二、填空题:本大题共4小题,每小题5分,共20分.13.)设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.14.已知双曲线的中心在坐标原点,焦点在x轴上,且一条渐近线为直线3x+y=0,则该双曲线的离心率等于________.15.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.16.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.三、解答题:本大题共6小题,共70分.17.(本小题满分10分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.18.(本小题满分12分)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.19.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y=x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.20.(本小题满分12分)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形.(1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.21.(本小题满分12分)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62?若存在,判断△DEG 的形状;若不存在,请说明理由.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),已知点(1,e )和⎝⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(i)若AF 1-BF 2=62,求直线AF 1的斜率;(ii)求证:PF 1+PF 2是定值.。
2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题及答案解析(10页)
2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题1.(节选)已知圆M:x2+y2=r2(r>0)与直线l1:x-y+4=0相切,设点A为圆上一动点,AB⊥x轴于B,且动点N满足=2,设动点N的轨迹为曲线C.(1)求曲线C的方程;(2)略.2.(2019甘肃武威第十八中学高三上学期期末考试)已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.3.已知圆O:x2+y2=4,点A(,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.4.(2019全国卷1,理19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.5.(2019天津河北区高三二模)已知椭圆C:=1(a>b>0)过点P(2,1),且短轴长为2.(1)求椭圆C的方程;(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与椭圆C交于另一点B.设O为坐标原点,判断直线AB与直线OP的位置关系,并说明理由.6.(2019天津第一中学高三下学期第五次月考)已知椭圆C1:=1(a>b>0)的左、右焦点为F1,F2,F2的坐标满足圆Q方程(x-)2+(y-1)2=1,且圆心Q满足|QF1|+|QF2|=2a.(1)求椭圆C1的方程;(2)过点P(0,1)的直线l1:y=kx+1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆Q于C,D两点,M为线段CD中点,若△MAB的面积为,求k的值.参考答案专题突破练24直线与圆及圆锥曲线1.解(1)设动点N(x,y),A(x0,y0),因为AB⊥x轴于B,所以B(x0,0).已知圆M的方程为x2+y2=r2,由题意得r==2,所以圆M的方程为x2+y2=4.由题意,=2,所以(0,-y0)=2(x0-x,-y),即将A(x,2y)代入圆M:x2+y2=4,得动点N的轨迹方程为+y2=1.(2)略.2.(1)证明圆C1的圆心C1(1,3),半径r1=,圆C2的圆心C2(5,6),半径r2=4, 两圆圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2.所以圆C1和C2相交.(2)解将圆C1和圆C2的方程相减,得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.因为圆心C2(5,6)到直线4x+3y-23=0的距离为d==3,故两圆的公共弦长为2-=2.3.解(1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中a=2,c=,b=1,则曲线Γ的方程为+y2=1.(2)因为B为CD的中点,所以OB⊥CD,则.设B(x0,y0),则x0(x0-)+=0.又=1,解得x0=,y0=±.则k OB=±,k AB=∓,则直线AB的方程为y=±(x-),即x-y-=0或x+y-=0.4.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x1+x2=--.从而--,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2.由可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=.故|AB|=.5.解(1)由题意得解得∴椭圆C的方程为=1.(2)直线AB与直线OP平行,证明如下:由题意知,直线PA的斜率存在且不为零.PA,PA'关于l:x=2对称,则直线PA与PA'斜率互为相反数.设直线PA:y-1=k(x-2),PB:y-1=-k(x-2).设A(x1,y1),B(x2,y2).由消去y得(4k2+1)x2-(16k2-8k)x+16k2-16k-4=0, -∴2x1=--.∴x1=--.同理,x2=-.∴x1-x2=-.∵y1=k(x1-2)+1,y2=-k(x2-2)+1,∴y1-y2=k(x1+x2)-4k=-.∵A在第四象限,∴k≠0 且A不在直线OP上,∴k AB=-.-又k OP=,∴k AB=k OP.故直线AB与直线OP平行.6.解(1)因为F2的坐标满足圆Q方程(x-)2+(y-1)2=1,故当y=0时,x=,即F2(,0),故c=.因为圆心Q满足|QF1|+|QF2|=2a,所以点Q(在椭圆上,故有=1.联立方程组解得所以椭圆方程为=1.(2)因为直线l2交圆Q于C,D两点,M为线段CD的中点,所以QM与直线l2垂直.又因为直线l1与直线l2垂直,所以QM与直线l1平行.所以点M到直线AB的距离即为点Q到直线AB的距离.即点M到直线AB的距离为d=.设点A(x1,y1),B(x2,y2).联立方程组解得(1+2k2)x2+4kx-2=0,Δ=b2-4ac=16k2+8(2k2+1)=32k2+8>0,由韦达定理可得--则|x1-x2|=----.所以AB=|x1-x2|=.所以△MAB的面积为.所以.即·|k|=,两边同时平方,化简得,28k4-47k2-18=0,解得k2=2或k2=-(舍).故k=±.此时l2:y=±x+1.圆心Q到l2的距离h=-<1成立.综上所述,k=±.。
文科圆锥曲线测试题(带详细答案)
高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =-D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A ) 2 (B )22(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A )2 (B )3 (C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A .22yx =±B .3y x =±C .33y x =± D .2y x =± 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。
高三数学文科圆锥曲线大题训练(20个)(含答案)
高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。
圆锥曲线文科高考习题含答案
已知椭圆=1(a>b>0),点P (a 55,)在椭圆上。
(I )求椭圆的离心率.(II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO |求直线OQ 的斜率的值.22.【2012高考安徽文20】(本小题满分13分)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a, b 的值.在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上。
(1)求椭圆1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程。
24.【2102高考北京文19】(本小题共14分)已知椭圆C :22x a +22y b=1(a >b >0)的一个顶点为A (2,0),离心率为2, 直线y=k(x —1)与椭圆C 交与不同的两点M ,N(Ⅰ)求椭圆C 的方程(Ⅱ)当△AMN 的面积为3时,求k 的值如图,椭圆2222:1(0)x yM a ba b+=>>的离心率为32,直线x a=±和y b=±所围成的矩形ABCD的面积为8。
(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线:()l y x m m=+∈R与椭圆M有两个不同的交点,,P Q l与矩形ABCD有两个不同的交点,S T.求||||PQST的最大值及取得最大值时m的值.26。
【2102高考福建文21】(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.29。
2024高考数学全国甲卷解析(文科)(1)
2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}{}1,2,3,4,5,9,1A B x x A ==+∈∣,则()A B ⋂=A {}1,2,3,4B {}1,2,3,4C {}1,2,3,4D {}1,2,3,4【答案】A【解析】因为{}{}{}1,2,3,4,5,9,10,1,2,3,4,8A B x x A ==+∈=∣,所以A {}1,2,3,4B ⋂=,故选(A ). 【难度】基础题【关联题点】集合运算、交集 2.设z =则()z z ⋅=A .iB .1C .-1D .2【答案】D【解析】因为z =,所以2z z ⋅=,故选D .【难度】基础题【关联题点】复数运算、共轭复数3.若,x y 满足约束条件4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩则5z x y =-的最小值为A .12B .0C .52-D .72-【答案】D【解析】将约束条件两两联立可得3个交点:()30,1,12⎛⎫- ⎪⎝⎭、和13,2⎛⎫ ⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D . 【难度】基础题【关联题点】线性规划、约束条件4.等差数列{}n a 的前n 项和为n S ,若()9371,S a a =+=A -2 B73 C 1D29【答案】D【解析】令0d =,则9371291,,99n n S a a a a ===+=,故选D . 【难度】基础题【关联题点】等差数列、通项公式5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是() A14B13C12D23【答案】B【解析】甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B . 【难度】基础题【关联题点】计数原理、特殊位置法6.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为 A .4 B .3C .2D .2【答案】C 【解析】12212F F c e a PF PF ===-,故选C . 【难度】中档题【关联题点】双曲线、离心率、圆锥曲线定义7.曲线()63f x x x =+在()0,1-处的切线与坐标轴围成的面积为()A16B32C12【答案】A【解析】因为563y x '=+,所以1113,31,1236k y x S ==-=⨯⨯=,故选(A ). 【难度】基础题【关联题点】导数应用、切线8.函数()()2e esin xxf x x x -=-+-的大致图像为()ABCD【答案】B【解析】()()()()22-ee sin()e e sin xx x x f x x x x x f x --=-+--=-+-=,所以()f x 是偶函数,图像关于y 轴对称,又因为2()0()22n n f n Z ππ⎛⎫=-<∈ ⎪⎝⎭,观察图像知选B 【难度】中档题【关联题点】函数的奇偶性、函数图像9.已知cos cos sin ααα=-则()tan 4πα⎛⎫+= ⎪⎝⎭A .1B 1C D 1【答案】B【解析】因为cos cos sin ααα=-所以tan 1tan 1tan 141tan παααα+⎛⎫=+== ⎪-⎝⎭,故选B .【难度】基础题【关联题点】三角恒等变化、两角和与差的正切公式10.找不到题目11.已知已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若,m n αα⊥⊥,则//m n ;②若,//m m n αβ⋂=,则//n β;③若//,//,m n m αα与n 可能异面,也可能相交,也可能平行;④若,m n αβ⋂=与α和β所成的角相等,则m n ⊥,以上命题是真命题的是()(A )①③B 23C ①②③D ①③④ 【答案】A【解析】//m n 一定有//n α或//n β,(1)对αβ⊥时m n ⊥也有可能,n α⊂或n β⊂,(2)错.//n α且//n β一定有//m n ,(3)对n 与,αβ所成角相等,有可能,//m n ,(4)错,选A .【难度】中档题【关联题点】立体几何线面关系、线面关系的判定12.在ABC 中,内角,,A B C 所对边分别为,,a b c ,若3B π=,294b ac =,则()sin sin A C += A32C2D2【答案】C 【解析】因为29,34B b ac π==,所以241sin sin sin 93A CB ==.由余弦定理可得:222b a c =+94ac ac -=,即:2222131313,sin sin sin sin 4412a c ac A C A C +=+==,所以()222sin sin sin sin A C A C +=+72sin sin ,sin sin 4A C A C +=+=故选C .【难度】中档题【关联题点】余弦定理、解三角形二、填空题:本题共4小题,每小题5分,共20分.13.二项式1013x ⎛⎫+ ⎪⎝⎭的展开式中系数的最大值是___.【答案】5【解析】1013x ⎛⎫+ ⎪⎝⎭展开式第1r +项系数1013rr C ⎛⎫ ⎪⎝⎭,令第1r +项系数最大 则11101011101011331133rr r r r r r r C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,711,244r r ≤≤∴=,系数最大为2210153C ⎛⎫= ⎪⎝⎭.【难度】中档题【关联题点】二项式系数、组合数14.函数()sin f x x x =在[]0,π上的最大值是___. 【答案】2【解析】()sin 2sin 23f x x x x π⎛⎫==-≤ ⎪⎝⎭,当且仅当56x π=时取等号. 【难度】中档题【关联题点】三角函数图像与性质、辅助角公式15.已知81151,log log 42a a a >-=-,则a =___. 【答案】64 【解析】因为284211315log log log log 22a a a a -=-=-, 所以()()22log 1log 60a a +-=,而1a >,故2log 6,64a a ==. 【难度】中档题【关联题点】一元二次方程、对数运算16.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为___.【答案】()2,1-【解析】令()2331x x x a -=--+,则()2331a x x x =-+-,设()()()2331,x x x x x ϕϕ=--'+()()()351,x x x ϕ=+-在()1,∞+上递增,在()0,1上递减.因为曲线33y x x =-与(y x =-21)a -+在()0,∞+上有两个不同的交点,()()01,12ϕϕ==-,所以a 的取值范围为(2-,1). 【难度】较难题【关联题点】三次函数、导数、函数零点三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式. 【答案】见解析. 【解析】(1)因为1233n n S a +=-,所以12233n n S a ++=-, 两式相减可得:1223n n a a ++=-13n a +,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以1151,3n n a a -⎛⎫== ⎪⎝⎭;(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【难度】中档题【关联题点】数列通项公式、前n 项和与通项公式的关系18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%99%的把握认为甲、乙两车间产品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =.设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?)12.247≈附:()()()()()()2220.0500.0100.010, 3.8416.63510.828P K k n ad bc K a b c d a c b d k ≥-=++++【答案】见解析.【解析】()()22150702426301 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)96160.6415025p === ()11112221.650.5 1.650.5 1.650.56715012.247p p p n ⨯-+=+⋅≈+⨯≈()11.65,p p p p n->+∴可以认为升级改造后,该工厂产品的优级品率提高了.【难度】中档题【关联题点】独立性检验、概率19.(12分)如图,已知//,//,2AB CD CD EF AB DE EF CF ====,4,10,23,CD AD BC AE M ====为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到ADE 的距离. 【答案】见解析 【解析】(1)由题意://,EF CM EF CM =,而CF 写平面,ADO EM 平面ADO ,所以EM //平面BCF ;(2)取DM 的中点O ,连结,OA OE ,则,,3,3OA DM OE DM OA OE ⊥⊥==,而23AE =,故23,3AOEOA OE S⊥=. 因为2,10DE AD ==,所以,10.AOEAD DE S DM ⊥=设点M 到平面ADE 的距离为h , 所以**1143230,33510M ADE ADEAOEV S h SDM h -====, 故点M 到ADE 的距离为2305. 【难度】中档题【关联题点】立体几何、空间向量、点到面的距离20.(12分)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立. 【答案】见解析【解析】()()()()111ln 1,,0ax f x a x x f x x x-=--+'=>. 若()()0,0,a f x f x ≤<的减区间为()0,∞+,无增区间; 若0a >时,当10x a<<时,()0f x '<, 当1x a >时,()0f x '>,所以()f x 的减区10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ∞⎛⎫+ ⎪⎝⎭; (2)因为2a ≤,所以当1x >时,()()111e e 1ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令()g x 1e2ln 1x x x -=-++,则()11e 2x g x x-=-+'.令()()h x g x =',则()121e x h x x-=-'在()1,∞+上递增,()()10h x h '>=',所以()()h x g x ='在()1,∞+上递增,()()10g x g '>=',故()g x 在()1,∞+上递增,()()10g x g >=,即:当1x >时,()1e x f x -<恒成立.【难度】较难题【关联题点】函数极值、导数、导数解不等式21.(12分)已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,点(1M ,32⎫⎪⎭在椭圆C 上,且MF x ⊥轴.(I )求椭圆C 的方程;(2)()4,0P ,过P 的直线与椭圆C 交于,A B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴. 【答案】见解析 【解析】(1)设椭圆C 的左焦点为1F ,则132,2F F MF ==.因为MF x ⊥轴,所以 1MF 15,242a MF MF ==+=,解得:2224,13a b a ==-=,故椭圆C 的方程为:22143x y +=;(2)解法1:设()()1122,,,,A x y B x y AP PB λ=,则12124101x x y y λλλλ+⎧=⎪+⎪+=⎨⎪+⎪⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩ 可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅⋅=+-+-,结合上式可得:5λ-2230.x λ+=,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()()1122,,,A x y B x y ,则12124444x x y y ---=-,即:()1221214x y x y y y -=-,所以(12x y -)()()()222222221221122112212121214444433y y x y x y x y x y x y y y y y y y ⎛⎫⎛⎫+=-=+-+=-+ ⎪ ⎪⎝⎭⎝⎭()()2112214,y y x y x y =-+即:1221212112,253.x y x y y y x y y y +=+=-, 则2122112335252Q y y y y x y y x ==--1y =,AQ y ⊥轴.【难度】较难题【关联题点】解析几何、圆锥曲线、韦达定理(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos 1ρθ+.(1)写出C 的直角坐标方程; (2)直线(x tt y t a =⎧⎨=+⎩为参数)与曲线C 交于A B 、两点,若2AB =,求a 的值.【答案】见解析.【解析】(1)因为cos 1ρρθ=+,所以()22cos 1ρρθ=+,故C 的直角坐标方程为:22(x y x +=21)+,即:221y x =+;(2)将x t y t a=⎧⎨=+⎩代入221y x =+可得:()222110,2t a t a AB +-+-====,解得:34a =. 【难度】基础题【关联题点】极坐标、参数方程23.[选修4-5:不等式选讲](10分)实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】见解析.【解析】(1)因为3a b +≥,所以()22222a b a b a b +≥+>+;(2)()222222222222a b b a a b b a a b a b -+-≥-+-=+-+()()()()()2222216a b a b a b a b a b a b =+-+≥+-+=++-≥【难度】较难题【关联题点】基本不等式、绝对值不等式。
2023年高考数学总复习第12讲:直线与圆、圆锥曲线(附答案解析)
2023年高考数学总复习第12讲:直线与圆、圆锥曲线
一.选择题(共10小题,满分50分,每小题5分)
1.(5分)(2022春•温州期末)已知直线kx﹣y+k﹣1=0与圆(x﹣2)2+y2=1有两个不同的交点,则实数k的取值范围是()
A .
B .
C .
D .
2.(5分)(2022春•萧县校级月考)直线l的方程为:x=﹣3,则直线l的倾斜角是()A .B .C.πD.0
3.(5分)(2022春•海淀区校级月考)不论m为何实数,直线x﹣2my﹣1+3m=0恒过一个定点,则这个定点的坐标为()
A.(1,0)B.(2,3)C.(3,2)D .
4.(5分)(2022春•海淀区校级月考)已知直线l:y=k(x﹣2)+2,当k变化时,点P(﹣1,2)到直线l的距离的取值范围是()
A.[0,+∞)B.[0,2]C.[0,3]D.[0,3)
5.(5分)(2022春•南京月考)已知椭圆C :=1(a>b>0)的左、右焦点分别为F1、F2,P为C上的一点,且∠F1PF2=60°,|PF1|=3|PF2|,则椭圆C的离心率为()A .B .C .D .
6.(5分)(2022•甲卷)椭圆C
:+=1(a>b>0)的左顶点为A,点P,Q均在C
上,且关于y轴对称.若直线AP,AQ 的斜率之积为,则C的离心率为()
A .
B .
C .
D .
7.(5分)(2022•甲卷)已知椭圆C :+=1(a>b>0)的离心率为,A1,A2分别
为C的左、右顶点,B为C
的上顶点.若•=﹣1,则C的方程为()
A .+=1
B .+=1
第1页(共47页)。
(完整word版)文科圆锥曲线专题练习及答案
文科圆锥曲线角形,则E 的离心率为()1 2 (A)(B)(C)—23【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思 【解析】•••△ F 2PF 1是底角为300的等腰三角形,-PF 2A 600 , IPF 2I IF 1F 2I 2c ,「. | AF 2 |=c ,2. 等轴双曲线C 的中心在原点,焦点在 x 轴上,C 与抛物线y 16x 的准线交于A,B 两点,AB 4^3 ;则C 的 实轴长为()(A) .2 (B) 2 2 (C) (D)【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题 【解析】由题设知抛物线的准线为: x 4,设等轴双曲线方程为: x 2 y 2 a 2,将x 4代入等轴双曲线方程解得 y =16 a 2 , v |AB |=4.3 ,••• 2 16 a 2 =4.3,解得 a =2,••• C 的实轴长为4,故选C.2 23. 已知双曲线C 1 :笃与1(a 0,b 0)的离心率为2.若抛物线C 2:x 2 2py(p 0)的焦点到双曲线G 的渐近线的距a b离为2,则抛物线C 2的方程为考点:圆锥曲线的性质解析:由双曲线离心率为 2且双曲线中a , b , c 的关系可知b , 3a ,此题应注意 C2的焦点在y 轴上,即(0, p/2)到直线y 3x 的距离为2,可知p=8或数形结合,利用直角三角形求解。
4.椭圆的中心在原点,焦距为 4,一条准线为x 4,则该椭圆的方程为(A) 2x2y_ 1 (B )2x 2y_ 1 16 1212 82 22 2(C ) xy 1 (D ) xy 18 412 4【命题意图】 本试题主要考查了椭圆的方程以及性质的运用。
通过准线方程确定焦点位置, 然后借助于焦距和准线求解参数a,b,c ,从而得到椭圆的方程。
2 2 2以b a c 8 4 4。
故选答案C5.已知F 1、F 2为双曲线C:x 2 y 2 2的左、右焦点,点 P 在C 上, | PF 1 | 2 | PF ? |,则cos RPF ?221.设F 1F 2是椭圆E : —22a b1(a b 0)的左、右焦点,3aP 为直线x 上一点,2F 2PF 1是底角为30°的等腰三(D) —(A) x 283 r y2 2(C) x 8y (D) x 16y【解析】因为2c 4 c 2,由一条准线方程为 x24可得该椭圆的焦点在 x 轴上县— 4a 2 4c 8,所c(B) x 2/八 1 33(A ) —( B ) —(C )-4 5 4【命题意图】 本试题主要考查了双曲线的定义的运用和性质的运用, 半径的值,然后结合三角形中的余弦定理求解即可。
高中文科数学 直线和圆 题目精选和答案
1 在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6πB .3π C .65π D .32π 2 若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD .1)2()1(22=-++y x4 已知直线21:+=x y l ,直线l 过点)1,2(-P ,且l 到l 的夹角为 45,则直线l 的方程是( )A 5 A 6 A 7)A 8 A 9 点(A 10 A C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11 由点)3,1(P 引圆922=+y x 的切线的长是 ( )A .2B .19C .1D .412 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113 已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是A .03或B .03或-C .3D .3-14 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A .3-B .6-C .23-D .3216 由y A .4π17 A .(x C .2(18 A C 1.已知点2.过点A 3.已知圆4.圆2x +5._6、设方程22242(3)2(14)1690x y m x m y m +-++-++=,若该方程表示一个圆,求m 的取值范围及这时圆心的轨迹方程。
变式1:方程224(1)40ax ay a x y +--+=表示圆,求实数a 的取值范围,并求出其中半径最小的圆的方程。
2017届高考数学(文科)- 直线与圆、圆锥曲线的概念、方程与性质-专题练习-答案
)()5,10直线与圆、圆锥曲线的概念、方程与性质解析一、选择题1.解析:由两直线平行得=≠,解得a=1.故选A.2.解析:直线过圆心(1,-2),得a=4.(1,-1)到圆心距离为1,圆半径为,所求弦长为4.选D.3.解析:y2=4x的焦点坐标为(1,0),故选D.4.解析:因为M(0,3)关于直线x+y=0的对称点为P(-3,0),又N(3,8),所以|AC|+|BC|≥|PN|-1-2=-3=7.选A.5.解析:设双曲线的焦距为2c,由已知得=b,又c2=4+b2,解得c=4,则焦距为8.选D.6.解析:双曲线中,顶点与较近焦点距离为c-a=1,焦点到渐近线的距离是,即b=,所以c2-a2=3,两式联立得,a=1,c=2,所以方程为x2-=1.选A.7.解析:依题意知C2的焦点即C1的右顶点,故C2的准线为x=-a,将其代入C1的渐近线方程y=±x,即知该等边三角形的边长为2b,高为a,故a=b,又c2=a2+b2,所以离心率e===.选D.8.解析:由双曲线的定义知,|BF1|-|BF2|=2A.又因|AB|=|BF2|,所以|AF1|=2a,又由定义可得,|AF2|=4A.在三角形AF1F2中,又因|F1F2|=2c,∠F1AF2=120°,所以由余弦定理得,(2c)2=(2a)2+(4a)2-2·2a·4a·cos 120°,解得c2=7a2,所以e==.选B.9.解析:因为准线方程为x=-1,双曲线的渐近线方程为y=±x,所以|y0|=<2,所以e=<,又e>1,所以1<e<.选B.10.解析:过B作BE⊥l于E.设l与x轴的交点为D,则=.因为=5,所以===,所以||=4,又||=||+3=7,所以||=5||=35.选B.11.解析:设M(x,y),因为|MA|2+|MO|2=10,所以有x2+(y-2)2+x2+y2=10,即x2+(y-1)2=4,由于点M还在直线l上,所以直线与圆相交或相切,即≤2解得-2-1≤a≤2-1.选D.二、填空题12.解析:由题意知,1<<2⇒-10<m<-5或5<m<10.13.解析:设抛物线的方程为y2=2px(p>0),抛物线的准线方程为x=-,由抛物线的定义可得,2+=,解得p=1.即抛物线的方程为y2=2x.14.解析:双曲线-=1的渐近线方程为y=±x,故y=x经过点(1,2),可得b=2a,故双曲线的离心率e====.。
word完整版圆锥曲线文科测试含答案推荐文档
2圆锥曲线(文科)1已知F i 、F 2是两个定点,点P 是以F i 和F 2为公共焦点的椭圆和双曲线的一个交点, 并且PF i 丄PF 2, e i 和e 2分别是椭圆和双曲线的离心率,则有A . ee ? 22 ei2 2.已知方程— I m| 1 2 y=1 2 m表示焦点在y 轴上的椭圆,则 m 的取值范围是A . m<2 3 1<m<—22 4.已知椭圆二3m C . m< — 1 或 1<m<2D . m<— 1 或B . 1<m<2 3.在同一坐标系中, ) 5n 3n A . x —+ 上 y 2 5.过抛物线y=ax 2 (a > 0)的焦点 2m _ , <15 , £3 y 一 ± xC . x 一 ± y - 4 P 、 A . 2a B .丄 2a 2 F 用一直线交抛物线于 Q 两点, v —+ 3 y —± x 4 若线段PF 与FQ 的长分别是p 、q ,则丄 pC . 4a 2 y_ (a > b > 0) 的左、右焦点分别为 F i 、F 2,线段 F i F 2被抛物线y 2=2bx 的焦点分成5:3两段, 则此椭圆的离心率为 7. 8. 椭圆 16 172 x 12 2 »=13 ± _34 B 4 1717 的一个焦点为F i ,点 P 在椭圆上 •如果线段 PF i 的中点M 在y 轴上,那么点 M 的纵坐标是(2设F i 和F 2为双曲线— 4 y 2 1的两个焦点,点 P 在双曲线上,且满足/ F i PF 2= 90°,则 △ F 1PF 2的面积是(2x 已知双曲线—a2 計利椭圆2x 2 m 2+每=1(a>0,m>b>0)的离心率互为倒数,那么以 b 2 a 、 b 、 m 为边长的三角形是A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形 10.中心在原点,焦点坐标为(0, ± 5=2)的椭圆被直线3x — y — 2=0截得的弦的中点的横坐标为 丄,则椭圆方程为22 2 A.红+也=1 25 752 2 B .红+也=1 75 25 2 2C . —1 25 75 11.已知点(一2, 3)与抛物线y 2=2px ( p >0)的焦点的距离是2 2 D .・+・=1 75 255,贝y p= ____2 212•设圆过双曲线 ] 1=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是___________9162 213.双曲线x y = 1的两个焦点为F i 、F 2,点P 在双曲线上,若 PF i 丄PF 2,则点P 到x 轴的距离为 _________________________百 14.若A 点坐标为(1, 1) , F 1是5X 2 + 9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+ |P F 1|的最小值是 _______________________2 216•双曲线 笃 与1 ( a>1,b>0)的焦距为2c,直线I 过点(a,0)和(0, b),且点(1,0)到直线I 的距离与点(- a b 1,0)到直线l 的距离之和s > 4 c.求双曲线的离心率e 的取值范围52 2 ,—17.已知圆C 1的方程为(x - 2)2+(y — 1)2=竺,椭圆C 2的方程为 —+ -^=1 (a>b>0), C 2的离心率为空,如果 G 与C 2相交 3 a 2 b 2 2 于A 、B 两点,且线段 AB 恰为圆C 1的直径,求直线 AB 的方程和椭圆 C 2的方程。
高考数学(文科)- 直线与圆、圆锥曲线的概念、方程与性质-专题练习(含答案与解析)
219y =A.49.(2016·广西河池适应性测试,若5FA FB=,则AF等于(B.35)()5,10直线与圆、圆锥曲线的概念、方程与性质解析一、选择题1.解析:由两直线平行得=≠,解得a=1.故选A.2.解析:直线过圆心(1,-2),得a=4.(1,-1)到圆心距离为1,圆半径为,所求弦长为4.选D.3.解析:y2=4x的焦点坐标为(1,0),故选D.4.解析:因为M(0,3)关于直线x+y=0的对称点为P(-3,0),又N(3,8),所以|AC|+|BC|≥|PN|-1-2=-3=7.选A.5.解析:设双曲线的焦距为2c,由已知得=b,又c2=4+b2,解得c=4,则焦距为8.选D.6.解析:双曲线中,顶点与较近焦点距离为c-a=1,焦点到渐近线的距离是,即b=,所以c2-a2=3,两式联立得,a=1,c=2,所以方程为x2-=1.选A.7.解析:依题意知C2的焦点即C1的右顶点,故C2的准线为x=-a,将其代入C1的渐近线方程y=±x,即知该等边三角形的边长为2b,高为a,故a=b,又c2=a2+b2,所以离心率e===.选D.8.解析:由双曲线的定义知,|BF1|-|BF2|=2A.又因|AB|=|BF2|,所以|AF1|=2a,又由定义可得,|AF2|=4A.在三角形AF1F2中,又因|F1F2|=2c,∠F1AF2=120°,所以由余弦定理得,(2c)2=(2a)2+(4a)2-2·2a·4a·cos 120°,解得c2=7a2,所以e==.选B.9.解析:因为准线方程为x=-1,双曲线的渐近线方程为y=±x,所以|y0|=<2,所以e=<,又e>1,所以1<e<.选B.10.解析:过B作BE⊥l于E.设l与x轴的交点为D,则=.因为=5,所以===,所以||=4,又||=||+3=7,所以||=5||=35.选B.11.解析:设M(x,y),因为|MA|2+|MO|2=10,所以有x2+(y-2)2+x2+y2=10,即x2+(y-1)2=4,由于点M还在直线l上,所以直线与圆相交或相切,即≤2解得-2-1≤a≤2-1.选D.二、填空题12.解析:由题意知,1<<2⇒-10<m<-5或5<m<10.13.解析:设抛物线的方程为y2=2px(p>0),抛物线的准线方程为x=-,由抛物线的定义可得,2+=,解得p=1.即抛物线的方程为y2=2x.14.解析:双曲线-=1的渐近线方程为y=±x,故y=x经过点(1,2),可得b=2a,故双曲线的离心率e====.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 直线、圆、圆锥曲线测试题(文科)解析一、选择题:1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=0 解析 x 2+y 2-8x -2y +10=0,即(x -4)2+(y -1)2=7,圆心O (4,1),设过点M (3,0)的直线为l ,则k OM =1,故k l =-1,∴y =-1×(x -3),即x +y -3=0.2.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0解析 因为直线x -2y +3=0的斜率是12,故所求直线的方程为y -3=12(x +1),即x -2y +7=0. A3.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722 B.922 C.1122 D.91010解析 曲线y =2x -x 3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0,由点到直线的距离公式得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.A4.若曲线x2+y2+2x-6y+1=0上相异两点P、Q关于直线kx+2y-4=0对称,则k的值为()A.1 B.-1 C.12D.2解析曲线方程可化为(x+1)2+(y-3)2=9,由题设知直线过圆心,即k×(-1)+2×3-4=0,∴k=2.故选D.5.直线ax-y+2a=0(a≥0)与圆x2+y2=9的位置关系是() A.相离B.相交C.相切D.不确定解析圆x2+y2=9的圆心为(0,0),半径为3.由点到直线的距离公式d=|Ax0+By0+C|A2+B2得该圆圆心(0,0)到直线ax-y+2a=0的距离d=2aa2+(-1)2=2aa2+12,由基本不等式可以知道2a≤a2+12,从而d=2aa2+12≤1<r=3,故直线ax-y+2a=0与圆x2+y2=9的位置关系是相交.B6.设A为圆(x+1)2+y2=4上的动点,P A是圆的切线,且|P A|=1,则P点的轨迹方程为()A.(x+1)2+y2=25 B.(x+1)2+y2=5C.x2+(y+1)2=25 D.(x-1)2+y2=5解析设圆心为O,则O(-1,0),在Rt△AOP中,|OP|=|OA|2+|AP|2=4+1= 5. B7.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于()A .-14B .-4C .4 D.14解析双曲线标准方程为:y 2-x 2-1m=1,由题意得-1m =4,∴m =-14. 8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8解析如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.C9.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4 B .e 21+e 22=4C.1e 21+1e 22=2 D .e 21+e 22=2解析 设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧ |PF 1|+|PF 2|=2a ①||PF 1|-|PF 2||=2m ②).①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2,两边同除以2c 2,得2=1e 21+1e 22,故选C. 10.已知双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( ) A. 3 B.2 C.52 D.22解析 两条渐近线y =±b a x 互相垂直,则-b 2a2=-1,则b 2=a 2,双曲线的离心率为e =c a =2a 2a =2,选B.11.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B.3C. 5 D .2解析 焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a 2=5,所以e = 5.C12.已知点F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)解析 依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e <2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D.二、填空题:13.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________. 解析 由椭圆定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.14.已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________.解析 设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =c a =2.15.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.16.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________. 解析 ∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p 2,|BF →|=y 2+p 2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10.三、解答题:17.(本小题满分12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.解 (1)设点P 的坐标为(x 0,y 0),由题意,有x 20a 2+y 20b 2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP ·k BP =-12,可得x 20=a 2-2y 20,代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)(方法一)依题意,直线OP 的方程为y=kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧ y 0=kx 0,x 20a 2+y 20b 2=1.消去y 0并整理得x 20=a 2b 2ka 2+b 2.②由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a1+k 2,代入②,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3. (方法二)依题意,直线OP 的方程为y =kx ,可设点P的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.③由|AP |=|OA |,A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a1+k 2.代入③, 得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3. 18.(本小题满分12分)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解 (1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ),②由①②相乘得 y 2=-y 21x 21-a (x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2,因此t 21+t 22=a 2+b 2为定值.19.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y=x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解 由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎨⎧ x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎨⎧ x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2.2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0.故所求点P 的轨迹方程为y =2x -1.20.(本小题满分12分)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|, 即(a -c )2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a 2+c a -1=0,得c a =-1(舍)或c a =12,所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2.直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧ x 1=0,y 1=-3c ,⎩⎨⎧ x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c , B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).21.(本小题满分12分)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62?若存在,判断△DEG 的形状;若不存在,请说明理由. 解 (1)证明:1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称.所以x 2=x 1,y 2=-y 1,因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1.① 又因为S △OPQ =62.所以|x 1|·|y 1|=62.②由①②得|x 1|=62,|y 1|=1,此时x 21+x 22=3,y 21+y 22=2.2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m .由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx +3(m 2-2)=0.其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0. 即3k 2+2>m 2.(*)又x 1+x 2=-6km2+3k 2,x 1x 2=3(m 2-2)2+3k 2.所以|PQ |=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·263k 2+2-m 22+3k2.因为点O 到直线l 的距离为d =|m |1+k2.所以S△OPQ=12|PQ |·d =121+k 2·263k 2+2-m 22+3k 2·|m |1+k 2=6|m |3k 2+2-m 22+3k 2又S △OPQ=62. 整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝ ⎛⎭⎪⎪⎫-6km 2+3k 22-2×3(m 2-2)2+3k 2=3.y 21+y 22=23(3-x 21)+23(3-x 22)=4-23(x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一: 1)当直线l 的斜率不存在时.由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2.因此|OM |·|PQ |=62×2= 6. 2)当直线l 的斜率存在时,由(1)知:x 1+x 22=-3k 2m .y 1+y 22=k ⎝ ⎛⎭⎪⎪⎫x 1+x 22+m =-3k 22m +m =-3k 2+2m 22m =1m . |OM |2=⎝ ⎛⎭⎪⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎪⎫y 1+y 222=9k 24m 2+1m 2=6m 2-24m 2=12⎝ ⎛⎭⎪⎫3-1m 2. |PQ |2=(1+k 2)24(3k 2+2-m 2)(2+3k 2)2=2(2m 2+1)m 2=2⎝ ⎛⎭⎪⎫2+1m 2. 所以|OM |2·|PQ |2=12×⎝ ⎛⎭⎪⎫3-1m 2×2×⎝ ⎛⎭⎪⎫2+1m 2=⎝ ⎛⎭⎪⎫3-1m 2⎝ ⎛⎭⎪⎫2+1m 2≤⎝ ⎛⎭⎪⎫3-1m 2+2+1m 222=254.所以|OM |·|PQ |≤52,当且仅当3-1m 2=2+1m 2,即m =±2时,等号成立.综合1)2)得|OM |·|PQ |的最大值为52.解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5.即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52.(3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62.证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG =S △OEG =62,由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u 2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫±62,±1这四点中选取三个不同点,而这三点的两两连线中必有一条过原点.与S △ODE =S △ODG =S △OEG =62矛盾.所以椭圆C 上不存在满足条件的三点D ,E ,G .22.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),已知点(1,e )和⎝⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(i)若AF 1-BF 2=62,求直线AF 1的斜率; (ii)求证:PF 1+PF 2是定值. 解(1)由题设知a 2=b 2+c 2,e =ca .由点(1,e )在椭圆上,得1a 2+c 2a 2b 2=1,解得b 2=1,于是c 2=a 2-1,又点⎝⎛⎭⎪⎫e ,32在椭圆上,所以e 2a 2+34b 2=1,即a 2-1a 4+34=1,解得a 2=2.因此,所求椭圆的方程是x 22+y 2=1. (2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my .设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0.由⎩⎪⎨⎪⎧x 212+y 21=1x 1+1=my 1得(m 2+2)y 21-2my 1-1=0,解得y 1=m +2m 2+2m 2+2,故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21=2(m 2+1)+mm 2+1m 2+2.①同理,BF 2=2(m 2+1)-m m 2+1m 2+2.② (i)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0,故m = 2.所以直线AF 1的斜率为1m =22.(ii)因为直线AF 1与BF 2平行,所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22,从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理PF 2=BF 2AF 1+BF 2(22-AF 1).因此,PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2(22-AF 1)=22-2AF 1·BF 2AF 1+BF 2.又由①②知AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2. 所以PF 1+PF 2=22-22=322.因此,PF 1+PF 2是定值.。