2020年山东高考数学试题

合集下载

2020年高考数学山东卷 试题+答案详解

2020年高考数学山东卷 试题+答案详解

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3} B.{x |2≤x ≤3} C.{x |1≤x <4} D.{x |1<x <4}2.2i12i-=+()A.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20° B.40° C.50° D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天 C.2.5天 D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A.()2,6- B.(6,2)- C.(2,4)- D.(4,6)-8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞B.3,1][,[01]--C.[1,0][1,)-+∞ D.[1,0][1,3]- 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则CC.若mn <0,则C 是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线10.下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A.πsin(3x +B.πsin(2)3x - C.πcos(26x +)D.5πcos(2)6x -11.已知a >0,b >0,且a +b =1,则()A.2212a b +≥B.122a b-> C.22log log 2a b +≥- D.≤12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.()A.若n =1,则H (X )=0B.若n =2,则H (X )随着1p 的增大而增大C.若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )三、填空题:本题共4小题,每小题5分,共20分.13.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.14.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.16.已知直四棱柱ABCD –A1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.四、解答题:本题共6小题,共70分。

2020年山东高考数学试卷(详细解析版)

2020年山东高考数学试卷(详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}A B x x =≤< ,故选C.2.2i 12i -=+A .1B .−1C .iD .−i 答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B 解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选B5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,。

2020年山东省新高考数学试卷(新高考)含解析

2020年山东省新高考数学试卷(新高考)含解析

2020年⼭东省新⾼考数学试卷⼀、选择题:本题共8⼩题,每⼩题5分,共40分。

在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。

1.(5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4} 2.(5分)=()A.1B.﹣1C.i D.﹣i3.(5分)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种4.(5分)⽇晷是中国古代⽤来测定时间的仪器,利⽤与晷⾯垂直的晷针投射到晷⾯的影⼦来测定时间.把地球看成⼀个球(球⼼记为O),地球上⼀点A的纬度是指OA与地球⾚道所在平⾯所成⻆,点A处的⽔平⾯是指过点A且与OA垂直的平⾯.在点A处放置⼀个⽇晷,若晷⾯与⾚道所在平⾯平⾏,点A处的纬度为北纬40°,则晷针与点A处的⽔平⾯所成⻆为()A.20°B.40°C.50°D.90°5.(5分)某中学的学⽣积极参加体育锻炼,其中有96%的学⽣喜欢⾜球或游泳,60%的学⽣喜欢⾜球,82%的学⽣喜欢游泳,则该中学既喜欢⾜球⼜喜欢游泳的学⽣数占该校学⽣总数的⽐例是()A.62%B.56%C.46%D.42%6.(5分)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天7.(5分)已知P是边⻓为2的正六边形ABCDEF内的⼀点,则•的取值范围是()A.(﹣2,6)B.(﹣6,2)C.(﹣2,4)D.(﹣4,6)8.(5分)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x ﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]⼆、选择题:本题共4⼩题,每⼩题5分,共20分。

2020年山东高考数学试卷-(及答案)

2020年山东高考数学试卷-(及答案)

2020年山东高考数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}2.2i12i-=+ A .1 B .−1 C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析

2020年全国新高考Ⅰ卷高考数学(山东卷)副标题题号一二三四总分得分一、选择题(本大题共8小题,共40.0分)1.设集合A={x|1x3},B={x|2<x<4},则A B=()A. {x|2<x3}B. {x|2x3}C. {x|1x<4}D. {x|1<x<4.}2.=()A. 1B. −1C. iD. −i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A. 120种B. 90种C. 60种D. 30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬,则晷针与点A 处的水平面所成角为()A. B. C. D.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例时()A. 62%B. 56%C. 46%D. 42%6.基本再生数与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(t)=描述累计感染病例数(t)随时间t(单位:天)的变化规律,指数增长率r与,T近似满足=1+rT.有学者基于已有数据估计出=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(20.69)()A. 1.2天B. 1.8天C. 2.5天D. 3.5天7.已知P是边长为2的正六边形ABCDEF内的一点,则的取值范围是()A. (−2,6)B. (−6,2)C. (−2,4)D. (−4,6)8.若定义在R上的奇函数f(x)在(−,0)单调递减,且f(2)=0,则满足xf(x−1)0的x的取值范围是()A. [−1,1][3,+)B. [−3,−1][0,1]C. [−1,0][1,+)D. [−1,0][1,3]二、不定项选择题(本大题共4小题,共20.0分)9.已知曲线C:+=1()A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为C. 若mn<0,则C是双曲线,其渐近线方程为y=D. 若m=0,n>0,则C是两条直线10.如图是函数y=(x+)的部分图象,则(x+)=()A. (x+)B. (−2x)C. (2x+)D. (−2x)11.已知a>0,b>0,且a+b=1,则()A. +B. >C. a+b−2D. +12.信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,,n,且P(X=i)=>0(i=1,2,,n),=1,定义X的信息熵H(X)=−()A. 若n=1,则H(x)=0B. 若n=2,则H(x)随着的增大而增大C. 若=(i=1,2,,n),则H(x)随着n的增大而增大D. 若n=2m,随机变量Y的所有可能取值为1,2,,m,且P(Y=j)=+(j=1,2,,m)则H(X)H(Y)三、填空题(本大题共4小题,共20.0分)13.斜率为的直线过抛物线C:=4x的焦点,且与C交于A,B两点,则|AB|=__________.14.将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{},则{}的前n项和为__________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC DG,垂足为C,ODC=,BH DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为__________.16.已知直四棱柱ABCD−的棱长均为2,BAD=,以为球心,为半径的球面与侧面的交线长为__________.四、解答题(本大题共6小题,共70.0分)17.在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,,__________?注:如果选择多个条件分别解答,按第一个解答计分.18.已知公比大于1的等比数列{}满足+=20,=8.(1)求{}的通项公式;(2)记为{}在区间(0,m](m)中的项的个数,求数列{}的前100项和.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和浓度(单位:g/),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且浓度不超过150”的概率;(2)根据所给数据,完成下面的22列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与浓度有关?附:=,P(K2≥k)0.0500.0100.001k 3.8416.63510.82820.(12分)如图,四棱锥P−ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:l平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.已知函数f(x)=−x+a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围.22.已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM AN,AD MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.答案和解析1.【答案】C【解析】【分析】本题考查并集运算,属于容易题.【解答】解:A⋃B={x|1≤x<4}.故选C2.【答案】D【解析】【分析】本题考查复数除法运算,属于容易题.【解答】解:2−i1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−i.故选D.3.【答案】C【解析】【分析】本题考查组合问题,属于容易题.【解答】解:可以按照先选1名志愿者去甲场馆,再选择2名志愿者去乙场馆,剩下3名安排到丙场馆,安排方法有C61C52C33=60.故选C4.【答案】B【解析】【分析】本题考查空间线面角问题,考查空间想象能力,属于容易题.【解答】解:作截面图可知,晷针与点A处的水平面所成角α=40∘.故选B5.【答案】C【解析】【分析】本题考查了积事件的概率公式,属于基础题.【解答】解:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为A·B事件,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A·B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46,所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例,46%.故答案为:C.6.【答案】B【解析】【分析】本题结合实际问题考查指数对数化简求值,属于基础题.【解答】解:将R0=3.28,T=6代入R0=1+rT,得r=R0−1T =3.28−16=0.38,由2=e0.38t得t=ln20.38=0.690.38≈1.8.故选B.7.【答案】A【解析】【分析】本题考查向量数量积,属于中档题. 【解答】解:AP⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =|AP ⃗⃗⃗⃗⃗ |⋅|AB ⃗⃗⃗⃗⃗ |⋅cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=2|AP ⃗⃗⃗⃗⃗ |cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >, 由投影定义知,当点P 与点F 重合时, AP⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 取最小值2|AP ⃗⃗⃗⃗⃗ |cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=4cos120∘=−2,当点P 与点C 重合时,AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 取最大值2|AP ⃗⃗⃗⃗⃗ |cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=8×(cos30∘)2=6.故AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的取值范围是(−2,6). 故选A .8.【答案】D【解析】 【分析】本题考查函数奇偶性的应用,考查运算求解及逻辑推理能力,难度一般. 【解答】解:根据题意,不等式xf(x −1)⩾0可化为{x ⩾0f(x −1)⩾0 或{x ⩽0f(x −1)⩽0, 由奇函数性质得,f(x)在上单调递增,所以{x ⩾0x −1⩾0x −1⩽2或{x ⩽0x −1⩽0x −1⩾−2,解得1⩽x ⩽3或−1⩽x ⩽0.满足xf(x −1)⩾0的x 的取值范围是x ∈[−1,0]∪[1,3]. 故选D .9.【答案】ACD【解析】【分析】本题考查圆锥曲线的相关概念,考查逻辑推理能力,难度一般. 【解答】解:mx 2+ny 2=1可化为x 21m+y 21n=1,若m>n>0,则1m <1n,故x21m+y21n=1表示焦点在y轴的椭圆,故A正确;若m=n>0,mx2+ny2=1可化为x2+y2=1n ,表示圆心为原点,半径为√1n的圆,故B错误;若mn<0,则C是双曲线,令mx2+ny2=0,故其渐近线方程为y=±√−mnx,故C正确;若m=0,n>0,mx2+ny2=1可化为y2=1n ,即y=±√1n,表示两条直线,故D正确.故选ACD.10.【答案】BC【解析】【分析】本题考查正弦型函数的图象,考查逻辑推理能力,难度一般.利用排除法逐一判断即可.【解答】解:由图可知x=π6时,y=0,逐一代入可排除A;x=0时,y>0,逐一代入可排除D;x=π3时,y<0,BC满足,且sin(π3−2x)=cos(2x+π6),综上,可知BC正确.故选BC.11.【答案】ABD【解析】【分析】本题考查利用不等式比较大小,函数性质的应用,基本不等式的应用,属于中档题.结合各选项依次判断即可.【解答】解:因为a>0,b>0,且a+b=1,所以a 2+b 2=a 2+(1−a)2=2a 2−2a +1=2(a −12)2+12≥12,故A 正确; 由已知得0<a <1,0<b <1,所以−1<a −b <1,所以2a−b >2−1=12,故B 正确;log 2a +log 2b =log 2ab ≤log 2(a+b)24=−2,当且仅当a =b 时,等号成立,故C 错误;(√a +√b)2=a +b +2√ab ≤1+2√(a+b)24=2,则√a +√b ≤√2,当且仅当a =b 时,等号成立,故D 正确, 故选ABD .12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题. 【解答】解:A 选项中,由题意知p 1=1,此时H(X)=−1×log 21=0,故A 正确; B 选项中,由题意知p 1+p 2=1,且p 1∈(0,1),H(X)=−p 1log 2p 1−p 2log 2p 2=−p 1log 2p 1−(1−p 1)log 2(1−p 1), 设f(x)=−xlog 2x −(1−x)log 2(1−x),x ∈(0,1) 则f′(x)=−log 2x −1ln2+log 2(1−x)+1ln2=log 2(1x −1), 当x ∈(12,1)时,f′(x)<0,当x ∈(0,12)时,f′(x)>0, 故当p 1∈(0,12) 时,H(X)随着p 1的增大而增大, 当p 1∈(12,1) 时,H(X)随着p 1的增大而减小,故B 错误; C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n , 故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ),H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j+m j=1log 2p 2m+1−j p 2m+1−j ) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p jp j p 2m+1−jp 2m+1−jm j=1=∑log 2(p j +p 2m+1−j )pj (p j +p 2m+1−j )p 2m+1−jp jp j p2m+1−jp 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p jp 2m+1−j)p 2m+1−jm j=1>0,故D 错误, 故答案为AC .13.【答案】163【解析】【分析】本题考查直线与抛物线的位置关系,焦点弦的求法,属于基础题.先求出抛物线的交点坐标,从而求出直线方程,联立直线与抛物线方程,由根与系数的关系从而可求得焦点弦. 【解答】解:抛物线C:y 2=4x 的焦点为(1,0), 则直线AB 的方程为y =√3(x −1), 联立{y =√3(x −1),y 2=4x得3x 2−10x +3=0, 所以x 1+x 2=103,从而 |AB |=x 1+x 2+p =103+2=163,故答案为:163.14.【答案】3n 2−2n【解析】【分析】本题考查数列的特定项与性质以及等差数列求和,是基础题. 【解答】解:数列{2n −1} 的首项是1,公差为2的等差数列;数列{3n−2}的首项是1,公差为3的等差数列;公共项构成首项为1,公差为6的等差数列;故{a n}的前n项和S n为:S n=1×n+n×(n−1)2×6=3n2−2n.故答案为3n2−2n.15.【答案】52π+4【解析】【分析】本题考查平面图形中的边角关系,结合题意确立对应的角和边的长度以及比例关系,最后算出大的扇形面积和三角形面积减去小半圆的面积即可求解,是中档题.【解答】解:设上面的大圆弧的半径为x,由题意中的长度关系易知∠AGD=45∘,同理∠AHO=45∘,可得▵AOH为等腰直角三角形,可得OJ=AJ=√22x,OL=JK=5−√22x,DL=DK−LK=DK−OJ=7−√22x,其中OLDL =35,可得5−√22x7−√22x=35,解得x=2√2,S阴影=S扇形+S▵AOH−12S圆O=12×3π4×(2√2)2+12×(2√2)2−12π=52π+4cm2,故答案为52π+4.16.【答案】√2π2【解析】【分析】本题考查空间几何体的外接球与面的交线问题,注意球心到面的距离和形成的交线位置与所对应得圆弧和圆心角,这是本题的难点.【解答】解:直四棱柱边长为2,底面是边长为2的菱形,侧面是边长为2的正方形,又∵∠BAD= 60∘,可得∠D1C1B1=60∘,点D1到面BB1C1C的距离即为点D1到线B1C1的距离,即为√3,则根据勾股定理可得截面的圆半径为r=√5−3=√2,与侧面BB1C1C所形成的为一段圆弧长,其圆心角为π2,故形成得交线长为l=π2×√2=√22π.故答案为√2π2.17.【答案】解:sin A=√3sin B,故有a=√3b,C=π6,由余弦定理得:,有;假设三角形存在,若选①,有ac=√3,则有,则a=√3,b=1,c=1.故存在满足题意的三角形,c=1.若选②,有csin A=3,则有,则sin A=√32,故c=2√3,a=6,b=2√3,.故存在满足题意的三角形,c=2√3.若选③,其中由题意有a=√3b,a=√3c,则有b=c,这和c=√3b矛盾,故不存在满足题意的三角形.【解析】本题考查解三角形,正确运用正弦定理和余弦定理,判断三个边的关系与求值,是中档题.若选①,可利用已知条件得到的a,b,c 的关系,代入ac =√3 求解即可. 若选②,可利用已知条件得到的a,b,c 的关系,求出cos A ,从而求出c =2√3. 若选③,可利用已知条件得到的a,b,c 的关系,和第三个条件矛盾,从而无此三角形.18.【答案】解:(1)设等比数列的公比为q ,且q >1,∵a 2+a 4=20,a 3=8,∴{a 1q +a 1q 3=20a 1q 2=8,解得{a 1=32q =12(舍)或{a 1=2q =2, ∴数列{a n }的通项公式a n =2n ;(2)由(1)知a 1=2,a 2=4,a 3=8,a 4=16,a 5=32,a 6=64,a 7=128, 则当m =1时,b 1=0,当m =2时,b 2=1,以此类推,b 3=1,b 4=b 5=b 6=b 7=2,b 8=...=b 15=3,b 16=...=b 31=4,b 32=...=b 63=5,b 64=...=b 100=6,∴S 100=b 1+b 2+...+b 100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【解析】本题考查了数列求和及等比数列通项公式,属中档题.(1)根据等比数列通项公式列出方程,求出首项和公比,即可求出通项公式; (2)根据等比数列通项公式,归纳数列{b m }的规律,从而求出其前100项和. 19.【答案】解:(1)根据题意可知,基本事件总数为100, “该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的基本事件个数为64, 由古典概型概率公式p =64100=1625,即事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率1625; SO 2 PM2.5[0,150](150,475] [0,75] 64 16 (75,150]10 10(3)由(2)中的数值,代入公式k 2=100×(64×10−10×16)2(64+16)×(10+10)×(64+10)×(16+10)≈7.484>6.635, 因此,有99%的把握认为该市一天空气中P M 2.5浓度与SO 2浓度有关.【解析】本题考查了独立性检验、2×2列联表及古典概型,属中档题.(1)根据题意确定基本事件总数和满足条件的基本事件个数,利用古典概型概率公式计算即可;(2)根据题意确定各范围内对应的数量即可;(3)利用(2)中的2×2列联表里的数值,代入公式计算即可.20.【答案】解:底面ABCD ,且AD ⊂平面ABCD ,,∵ABCD 为正方形,∴AD ⊥DC ,又∵PD ∩DC =D ,且PD 、DC 在平面PDC 内, ∴AD ⊥平面PDC ,∵AD//BC ,且BC ⊂平面PBC ,平面PBC , ∴AD//平面PBC ,又∵平面PAD 与平面PBC 的交线为l ,且AD ⊂平面PAD , ∴AD//l ,∴l ⊥平面PDC ;(2)建立空间直角坐标系如图所示:由PD =AD =1,得P(0,0,1),B(1,1,0),C(0,1,0),D(0,0,0),则PB⃗⃗⃗⃗⃗ =(1,1,−1),DC ⃗⃗⃗⃗⃗ =(0,1,0), 设点Q 的坐标为(t,0,1),平面QCD 的法向量为n⃗ =(x 0,y 0,z 0), 则DQ ⃗⃗⃗⃗⃗⃗ =(t,0,1),即有{n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅DQ⃗⃗⃗⃗⃗⃗ =0,亦即{y 0=0tx 0+z 0=0, 取x 0=1,得n⃗ =(1,0,−t), 又设PB ⃗⃗⃗⃗⃗ 与n ⃗ 夹角为α,PB 与平面QCD 所成角为θ, 则cosα=PB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ |PB ⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ |=1×1+1×0+(−1)×(−t)√3×√1+t 2=1+t √3×√1+t 2,于是sinθ=|1+t|√3×√1+t 2=1√3×√1+2t+t 21+t 2,当t =0时,sinθ=√33,当时,sinθ=1√3×√1+2t+t 21+t 2=1√3×√1+2−[1(−t)+(−t)],又−[1(−t)+(−t)]≤−2(当且仅当t =−1 时,取等号),即得0≤sinθ<√33,当时,sinθ=√3×√1+2t+t 21+t 2=√3√1+21t+t,又1t +t ≥2(当且仅当t =1 时,取等号),即得√33<sinθ≤√63,综上可知,PB与平面QCD所成角的正弦值的最大值为√63.【解析】本题考查了线面角的求解及线面垂直的判定定理、线面平行的判定定理和性质定理,难度较大.(1)本题先证明AD⊥平面PDC,再证明AD//平面PBC,再利用线面平行性质定理证得AD//l,从而证得l⊥平面PDC;(2)本题可以建立空间直角坐标系,设出Q点坐标,求出PB⃗⃗⃗⃗⃗ 和平面QDC的法向量,再利用向量夹角公式求解,再结合基本不等式可求出PB与平面QCD所成角的正弦值最大值.21.【答案】解:▵当a=e,f(x)=e x−lnx+1,f′(x)=e x−1x,k=f′(1)=e−1,f(1)=e+1,所以切线方程为:y−e−1=(e−1)(x−1),即y=(e−1)x+2,所以切线在y轴上截距为2,在x轴上的截距为21−e,所以三角形的面积S=12×2×2e−1=2e−1.▵f(x)=ae x−1−lnx+lna=e lna+x−1−lnx+lna,要使f(x)≥1,只需e lna+x−1−lnx+lna≥1,即e lna+x−1+lna−1≥lnx,即e lna+x−1+lna−1+x≥lnx+x=e lnx+lnx,令g(x)=e x+x,故只需g(lna+x−1)≥g(lnx),因为g(x)为增函数,只需证lna+x−1≥lnx,即lna≥lnx+1−x,设ℎ(x)=lnx+1−x,ℎ′(x)=1x −1=1−xx,所以ℎ(x)在(0,1)单调递增,在(1,+∞)单调递减,ℎ(x)max=ℎ(1)=0,所以lna ≥0,a ≥1,即a 的取值范围为[1,+∞).【解析】本题考查导数的几何意义及利用导数研究函数的单调性问题,属于较难题. ▵根据导数的几何意义进行计算即可.▵把条件进行等价转化,利用导数研究函数的单调性、最值,再根据函数的单调性得不等式,求解即可.22.【答案】▵解:由题意可知c a =√22,4a 2+1b 2=1,a 2=b 2+c 2, 解得a 2=6,b 2=3, 所以椭圆方程为x 26+y 23=1.▵证明:设点M(x 1,y 1),N(x 2,y 2), 因为AM ⊥AN ,所以y 1−1x1−2⋅y 2−1x 2−2=−1,所以y 1y 2−(y 1+y 2)+1=−x 1x 2+2(x 1+x 2)−4,① 设MN:y =kx +m , 联立{y =kx +m,x 2+2y 2=6得(1+2k 2)x 2+4kmx +2m 2−6=0, 由Δ>0,得6k 2−m 2+3>0,由根与系数的关系得x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2,所以y 1+y 2=k(x 1+x 2)+2m =2m 1+2k 2, y 1y 2=k 2x 1x 2+km(x 1+x 2)+m 2=m 2−6k 21+2k 2,代入①式化简可得4k 2+8km +(m −1)(3m +1)=0, 即(2k +m −1)(2k +3m +1)=0, 所以m =1−2k 或m =−2k+13,所以直线方程为y =kx +1−2k 或y =kx −2k+13,所以直线过定点(2,1)或(23,−13), 又因为(2,1)和A 点重合,故舍去, 所以直线过定点E(23,−13),所以AE 为定值,又因为▵AED 为直角三角形,AE 为斜边, 所以AE 中点Q 满足|QD|为定值2√23,此时Q(43,13).【解析】本题考查椭圆的几何性质及直线与椭圆的位置关系,属于难题. ▵根据条件列方程求解即可.▵联立直线与椭圆的方程,根据根与系数的关系结合两直线的斜率之积为−1化简即可证明.。

2020年山东省高考数学试卷试卷及解析(26页)

2020年山东省高考数学试卷试卷及解析(26页)

2020年山东省高考数学试卷试卷及解析(26页)一、选择题(每小题5分,共50分)1. 设集合A={x|x^25x+6=0},B={x|x^23x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. { }2. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最大值为M,则M的取值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 54. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√35. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i6. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为()A. 0B. 1C. 2D. 37. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最小值为n,则n的取值为()A. 0B. 1C. 2D. 38. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 59. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√310. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i二、填空题(每小题5分,共20分)11. 若log2(3x2)=1,则x的值为_________。

12. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为_________。

13. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为_________。

2020山东高考数学试题及答案

2020山东高考数学试题及答案

2020年山东新高考数学试题
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=
A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}
2.2i
12i
-
=
+
A.1B.−1C.i D.−i
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有
A.120种B.90种C.60种D.30种
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为
A.20°B.40°C.50°D.90°。

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析
名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()
A.120种B.90种C.60种D.30种
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来
测定时间.把地球看成一个球(球心记为),地球上一点A的纬度是指OA与地球赤
道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置
2020年全国新高考Ⅰ卷高考数学(山东卷)
副标题
题号
一二三四0.0分)
1.设集合={|1x3},={|2<<4},则A=()
A.{|2<3}B.{|2x3}C.{|1<4}D.{|1<<4.}
2.=()
A.1B.−1C.iD.−
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1
一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬,则晷针与点A
处的水平面所成角为()
A.B.C.D.
5.某中学的学生积极参加体育锻炼,其中有96%的学
生喜欢足球或游泳,60%的学生喜欢足球,82%的
学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的
学生数占该校学生总数的比例时()
A.62%
6.基本再生数
出=3.28,=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需
要的时间约为(20.69)()
A.1.2天B.1.8天C.2.5天D.3.5天
7.已知P是边长为2的正六边形ABCDEF内的一点,则
的取值范围是()
B.56%C.46%D.42%
与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染
者传染的平均人数,世代间隔指两代间传染所需的平均时间在新冠肺炎疫情初始

2020年高考真题——数学(新高考全国卷Ⅰ 适用地区:山东)

2020年高考真题——数学(新高考全国卷Ⅰ 适用地区:山东)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

设集合A ={x |1≤x ≤3},B ={x |2〈x 〈4},则A ∪B =( ) A 。

{x |2<x ≤3} B. {x |2≤x ≤3} C 。

{x |1≤x <4} D 。

{x |1<x <4}【答案】C 【解析】 【分析】根据集合并集概念求解。

【详解】[1,3](2,4)[1,4)A B ==故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题。

2。

2i12i-=+( )A 。

1 B. −1 C 。

iD 。

−i【答案】D 【解析】 【分析】根据复数除法法则进行计算。

【详解】2(2)(12)512(12)(12)5i i i ii i i i ----===-++-故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种 B. 90种 C. 60种 D. 30种【答案】C 【解析】 【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解。

【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆. 故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4。

2020年山东高考数学试卷(新高考全国I卷)及答案

2020年山东高考数学试卷(新高考全国I卷)及答案

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3} B.{x |2≤x ≤3}C.{x |1≤x <4} D.{x |1<x <4}2.2i12i-=+()A.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20°B.40°C.50°D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是()A.()2,6-B.(6,2)-C.(2,4)- D.(4,6)-8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞B.3,1][,[01]--C.[1,0][1,)-⋃+∞ D.[1,0][1,3]-⋃二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C 是圆,其半径为C.若mn <0,则C 是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线10.下图是函数y =sin(ωx +φ)A.πsin(3x +)B.πsin(2)3x - C.πcos(26x +)D.5πcos(2)6x -11.已知a >0,b >0,且a +b =1,则()A.2212a b +≥B.122a b->C.22log log 2a b +≥- D.≤12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.()A.若n =1,则H (X )=0B.若n =2,则H (X )随着1p 的增大而增大C.若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )三、填空题:本题共4小题,每小题5分,共20分.13.斜率为的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.14.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.16.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.四、解答题:本题共6小题,共70分。

2020年山东高考数学试卷(word版+详细解析版)

2020年山东高考数学试卷(word版+详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}AB x x =≤<,故选C.2.2i 12i -=+ A .1 B .−1C .iD .−i答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选BCBO赤道A5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天答案:B 解析:设从1t 到2t 累计感染数增加1倍,即21()2()I t I t =,因为(e )rt I t =,所以21e 2ert rt =,所以21()e 2r t t -=,所以21()ln 2r t t -=.因为R 0 =1+rT ,所以01R r T-=,所以210ln 2ln 260.69 1.81 2.28T t t r R ⨯-==≈≈- 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-答案:A解析:如图,过P 作PG AB ⊥,G 为垂足,则()||||cos ,AP AB AG GP AB AG AB AG AB AG AB ⋅=+⋅=⋅=⋅〈〉,当G 点落在AB 的反向延长线上时,cos ,1AG AB 〈〉=-,这时0||||cos 60AG AF <<︒,即0||1AG <<,所以这时20AP AB -<⋅<;当G 点落在AB 上或AB 的延长线上时,cos ,1AG AB 〈〉=,这时0||||cos 60AG AB BC ≤<+︒,即0||3AG ≤<,所以06AP AB ≤⋅<.综上所述,AP AB ⋅的取值范围是()2,6-,故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档