2020年山东省高考数学试题级答案
2020年新高考全国卷(山东卷)数学高考真题及答案详细解析
2020年普通高等学校招生全国统一考试·新高考数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}2.2i12i-=+ A .1 B .−1 C .i D .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种B .90种C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A.20°B.40°C.50°D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62% B.56%C.46% D.42%6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(eI t=描述累计感染病例数I(t))rt随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天7.已知P是边长为2的正六边形ABCDEF内的一点,则AP AB⋅的取值范围是A.()6,2--B.()2,6C.()-4,62,4-D.()8.若定义在R的奇函数f(x)在(0)xf x-≥),-∞单调递减,且f(2)=0,则满足(10的x的取值范围是A.[)--[01]-+∞ B.3,1][,1,1][3,C.[)-[[1,1,0][1,-+∞ D.1,0]3]二、选择题:本题共4小题,每小题5分,共20分。
2020年高考数学山东卷 试题+答案详解
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3} B.{x |2≤x ≤3} C.{x |1≤x <4} D.{x |1<x <4}2.2i12i-=+()A.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20° B.40° C.50° D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天 C.2.5天 D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A.()2,6- B.(6,2)- C.(2,4)- D.(4,6)-8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞B.3,1][,[01]--C.[1,0][1,)-+∞ D.[1,0][1,3]- 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则CC.若mn <0,则C 是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线10.下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A.πsin(3x +B.πsin(2)3x - C.πcos(26x +)D.5πcos(2)6x -11.已知a >0,b >0,且a +b =1,则()A.2212a b +≥B.122a b-> C.22log log 2a b +≥- D.≤12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.()A.若n =1,则H (X )=0B.若n =2,则H (X )随着1p 的增大而增大C.若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )三、填空题:本题共4小题,每小题5分,共20分.13.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.14.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.16.已知直四棱柱ABCD –A1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.四、解答题:本题共6小题,共70分。
2020年山东省新高考数学试卷(新高考)含解析
2020年⼭东省新⾼考数学试卷⼀、选择题:本题共8⼩题,每⼩题5分,共40分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
1.(5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4} 2.(5分)=()A.1B.﹣1C.i D.﹣i3.(5分)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种4.(5分)⽇晷是中国古代⽤来测定时间的仪器,利⽤与晷⾯垂直的晷针投射到晷⾯的影⼦来测定时间.把地球看成⼀个球(球⼼记为O),地球上⼀点A的纬度是指OA与地球⾚道所在平⾯所成⻆,点A处的⽔平⾯是指过点A且与OA垂直的平⾯.在点A处放置⼀个⽇晷,若晷⾯与⾚道所在平⾯平⾏,点A处的纬度为北纬40°,则晷针与点A处的⽔平⾯所成⻆为()A.20°B.40°C.50°D.90°5.(5分)某中学的学⽣积极参加体育锻炼,其中有96%的学⽣喜欢⾜球或游泳,60%的学⽣喜欢⾜球,82%的学⽣喜欢游泳,则该中学既喜欢⾜球⼜喜欢游泳的学⽣数占该校学⽣总数的⽐例是()A.62%B.56%C.46%D.42%6.(5分)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天7.(5分)已知P是边⻓为2的正六边形ABCDEF内的⼀点,则•的取值范围是()A.(﹣2,6)B.(﹣6,2)C.(﹣2,4)D.(﹣4,6)8.(5分)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x ﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]⼆、选择题:本题共4⼩题,每⼩题5分,共20分。
2020年山东高考数学试卷-(及答案)
2020年山东高考数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}2.2i12i-=+ A .1 B .−1 C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020年山东省高考数学试卷试卷及解析(26页)
2020年山东省高考数学试卷试卷及解析(26页)一、选择题(每小题5分,共50分)1. 设集合A={x|x^25x+6=0},B={x|x^23x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. { }2. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最大值为M,则M的取值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 54. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√35. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i6. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为()A. 0B. 1C. 2D. 37. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最小值为n,则n的取值为()A. 0B. 1C. 2D. 38. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 59. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√310. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i二、填空题(每小题5分,共20分)11. 若log2(3x2)=1,则x的值为_________。
12. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为_________。
13. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为_________。
2020年山东高考数学试卷-(及答案)
A 到直线 DE 和 EF 的距离均为 7 cm,圆孔半径为 1 cm,则图中阴影部分的面积为 ________cm2.
3
16.已知直四棱柱 ABCD–A1B1C1D1 的棱长均为 2,∠ BAD=60°.以 D1 为球心, 5 为半径的球
面与侧面 BCC1B1 的交线长为 ________. 四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。 17.( 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项
是符合题目要求的。
1.设集合 A={ x|1 ≤x≤ 3,} B={ x|2<x<4} ,则 A∪B=
A .{ x|2<x≤ 3}
B. { x|2 ≤x≤ 3}
C.{ x|1 ≤x<4} 2. 2 i
1 2i
A.1
D. { x|1<x<4} B. -1
C.i
D. -i
3.6 名同学到甲、乙、丙三个场馆做志愿者,每名同学只去 1 个场馆,甲场馆安排 1 名,乙
场馆安排 2 名,丙场馆安排 3 名,则不同的安排方法共有
A .120 种
B. 90 种
C.60 种
D. 30 种
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时
C.50°
D. 90°
5.某中学的学生积极参加体育锻炼,其中有 96%的学生喜欢足球或游泳, 60%的学生喜欢足
球, 82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比
例是
1
A .62%
B. 56%
C.46%
D. 42%
6.基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数 .基本再生数指一个感染者传
2020年山东省高考数学试卷(含详细解析)
保密★启用前2020年山东省高考数学试卷题号—四总分得分注意事项:1.答题前境写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、单选飓I-设集合』=国1安3,刀二(同254},则二()A.{x|2<x<3}B.{x|2冬3}C.{x\l<x<4}D.(x|l<.r<4}c2・i<)】+2iA.1B.-1C.iD.—i3.6名同学到甲、乙、丙三个场馆做志愿者,何名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.日曹是中国占代用来测定时间的仪器,利用与昌面玳立的岩针投射到岳面的影子来测定时间.把地球看成-•个球(球心记为O),地球上一点刃的纬度是指&4勺地球赤道所在平面所成角,点/处的水平而是指过点.4旦与OA垂宜的平面.在点X处放迎一个日号,若妙面与赤道所在平面平行,点X处的纬度为北纬40。
则曷针与点为处的水平面所成角为()oA.20°B.40C.S(PD.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生总欢足球或游泳,60%的学生O 喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(A.62%B.56%,C.46%D.42%6.基本再生数/?。
.与世代间隔r是新冠肺炎的流行病学基本参数.基本再生数指•个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:/«)=矿描述累计感染病例数/(,)随时间r(单位:天)的变化规O 体,指数增长率尸与R。
,7•近似满足汽。
=1+尸70学者基于己有数据估计出仇=3.2X,E>.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(1应二0.69)A. 1.2天B. 1.8天C.25天D. 3.5天7.已知P是边长为2的正六边形ABCDEF内的一点.则而•而的取值范围是(A.(-2.6)B,(—6,2)O※※粟※※她※※^ !※※急※※上※※漓※※七※※共※※/※※磐※米C.(-2,4)D.(-4,6)8.若定义在A的奇函数/W在gO)单调递减,且.42)=0,则满足xf(x-\)>Q fiijx的取值范闱是(A.[-U1UIX+X)B.[-X-1JUI0J]£C•[一l,0]u[l,E D.[T,0]5L3]评卷人得分O.。
2020山东高考数学试题及答案
2020年山东新高考数学试题
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=
A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}
2.2i
12i
-
=
+
A.1B.−1C.i D.−i
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有
A.120种B.90种C.60种D.30种
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为
A.20°B.40°C.50°D.90°。
2020年普通高等学校招生全国统一考试数学理(山东卷,解析版)
2020年普通高等学校招生全国统一考试数学理(山东卷,解析版)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
参考公式:柱体的体积公式V=Sh ,其中S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);R 如果事件A,B 独立,那么P(AB)=P(A)P(B). 事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(0,1,2,,)k k n kn n P k C p p k n -=-=L .第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =U ,则a 的值为( ) A.0 B.1 C.2 D.4【解析】:∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =U ∴2164a a ⎧=⎨=⎩∴4a =,故选D.答案:D【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.2.复数31ii--等于( ). A .i 21+ B.12i - C.2i + D.2i -2. 【解析】:223(3)(1)324221(1)(1)12i i i i i ii i i i i --++-+====+--+-,故选C. 答案:C【命题立意】:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算. 3.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =3. 【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos 22sin y x x =+=,故选D.答案:D【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+4π+C. 2π+π【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为2133⨯=所以该几何体的体积为2π+答案:C【命题立意】:本题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地侧(左)视图正(主)视图俯视图计算出.几何体的体积.5. 已知α,β表示两个不同的平面,m 为平面α内的 一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【解析】:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m β⊥,则αβ⊥,反过来则不一定.所以“αβ⊥”是“m β⊥”的必要不充分条件.答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.6. 函数x xx xe e y e e--+=-的图像大致为( ).【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A.答案:A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.7.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )DABC P第7题图A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r 【解析】:因为2BC BA BP +=u u u r u u u r u u u r,所以点P 为线段AC 的中点,所以应该选C 。
2020年高考数学新高考1卷(山东)真题及答案解析
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1 C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20°B.40° C.50°D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天B .1.8天C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。