山东省高考数学试卷(理科)
全国高考山东省数学(理)试卷及答案【精校版】
![全国高考山东省数学(理)试卷及答案【精校版】](https://img.taocdn.com/s3/m/ffde395559eef8c75ebfb303.png)
高考山东卷理科数学真题一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为 共轭复数,则=+2)(bi a(A )i 45- (B) i 45+ (C) i 43- (D) i 43+ 答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A I (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C)2[∞+, 4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少 有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为(A )22(B )24(C )2(D )4答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为8.已知函数()12+-=x x f ,()kx x g =.若方程()()x g xf =有两 个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D )),(∞+2答案:B9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2 答案:B10.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-b y a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 答案:A二.填空题:本大题共5小题,每小题5分,共25分, 答案须填在题中横线上。
全国高考理科数学考试试卷(山东)参考答案
![全国高考理科数学考试试卷(山东)参考答案](https://img.taocdn.com/s3/m/4febe328700abb68a882fbbb.png)
高考理科数学考试真题(山东卷)参考答案1.D 【解析】由已知得2,1a b ==,∴22(2)34a bi i i +=+=+(). 2.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =。
∴[1,3)A B ⋂=.3.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或,故选C . 4.A 【解析】 “至少有一个实根”的反面为“没有实根”,故选A .5.D 【解析】由已知得x y >,此时22,x y 大小不定,排除A,B ;由正弦函数的性质,可知C 不成立;故选D .6.D 【解析】由34x x =得,0x =、2x =或2x =-(舍去),直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)(2)|44S x x dx x x =-=-=⎰. 7.C 【解析】第一组和第二组的频率之和为0.4,故样本容量为20500.4=,第三组的频率为0.36,故第三组的人数为500.3618⨯=,故第三组中有疗效的人数为18-6=12. 8.B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<. 9.B 【解析】解法一 如图可知目标函数在(2,1)处取得最小值,故2a b +=224420a b ab +==,又224224ab a b a b =⨯⨯+≤, ∴()22222220445a b a b a b+++=+≤,所以224a b +≥,当且仅当2a b =时取得,即a b ==时等号成立. 解法二 如图上图可知目标函数在(2,1)处取得最小值,故2a b +=把2a b +=作平面直角坐标下aOb 中的直线,则22a b +的几何意义是直线2a b +=坐标原点距离的平方,显然22a b +的最小值是坐标原点到直线2a b +=方,即24=. 10.A 【解析】1C的离心率为a ,2C的离心率为a,=,得424a b =,即a =, ∴2C的渐近线的方程为y =,即0x =. 11.3【解析】214130,2,1x n -⨯+==≤;224230,3,2x n -⨯+==≤;234330,4,3x n -⨯+==≤;244430,5,4x n -⨯+>==,此时输出n 值,故输出n 的值为3.12.16【解析】∵cos AB AC AB AC A ⋅=⋅,∴由cos tan AB AC A A ⋅=,得23AB AC ⋅=,故ABC 的面积为11||||sin 266AB AC π=.13.14【解析】如图,设C 点到平面PAB 的距离为h ,三角形PAB 的面积为S ,则213V Sh =,1111132212E ADB V V S h Sh -==⨯⨯=,∴1214V V =. 14.2【解析】266123166()()rrr r r r rr b T C ax C a b xx---+==,令1230r -=,得3r =,故333620C a b =,∴221,22ab a b ab =+=≥,当且仅当1a b ==或1ab ==-时等号成立.15.)+∞【解析】函数()g x 的定义域为[1,2]-,根据已知得()()()2h xg x f x +=,所以()=2()()62h x f x g x x b -=+()()h x g x >恒成立,即62x b +,令3y x b =+,y =,则只要直线3y x b =+在半圆224(0)x y y +=≥2>,解得b >,故实数b的取值范围是)+∞. 16.【解析】(Ⅰ)已知()sin2cos2f x m x n x =⋅=+a b ,)(x f 过点)2,32(),3,12(-ππ∴()sincos1266f m n πππ=+= 234cos 34sin )32(-=+=πππn m f∴12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩解得⎩⎨⎧==13n m(Ⅱ)由(Ⅰ)知)62sin(22cos 2sin 3)(π+=+=x x x x f由题意知()()2sin(22)6g x f x x πϕϕ=+=++设()y g x =的图象上符合题意的最高点为0(,2)x由题意知2011x +=。
招生全国统一考试数学理试题山东卷,含答案
![招生全国统一考试数学理试题山东卷,含答案](https://img.taocdn.com/s3/m/769b675ac8d376eeafaa3150.png)
绝密★启用并使用完毕前普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项: 1. 答题前,考试务必用毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为() A. 2+i C. 5+i(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C. 5 (3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+ ,则f(-1)= ()(A )-2(B )0(C )1(D )2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为 ,底面积是边长为的正三棱柱,若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 () (A )(B )(C )(D )(5)将函数y=sin (2x +φ)的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则φ的一个可能取值为 (A )(B ) (C )0 (D )(6)在平面直角坐标系xOy 中,M 为不等式组:220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,,所表示的区域上一动点,则直线OM斜率的最小值为(A )2 (B )1 (C )(D )(7)给定两个命题p ,q 。
普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)
![普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)](https://img.taocdn.com/s3/m/92b2ac28f7ec4afe04a1dfdf.png)
(山东卷)理科数学全解全析第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=7sin()6πα+的值是 3().5A -3().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos 225αα+=, 7314sin()sin()cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin sin 3625παααα-+=+=得到134cos 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
山东高考数学真题理科
![山东高考数学真题理科](https://img.taocdn.com/s3/m/efbb0b72443610661ed9ad51f01dc281e53a56a4.png)
山东高考数学真题理科2021年山东高考数学真题理科部分一、选择题1.已知集合$A=\{x|x=\frac{m-1}{2} , m \text{是整数}\} ,B={2^{n}|n=0,1,2,3}, A \cup B=\{3,4\}, A \cap B =\{3\}, 则m+n=$()A.8B.11C.6D.52.在$\triangle ABC$中,$BC=\sqrt{3} , \angle ADB=60^{\circ}, AB=3,AC=4,则BD=$()A.$\sqrt{3}-1$B. 1C. 2D. 43.设$f(1)=2, f(2)=3,f(3)=f(4)=5,f(5)=17,$则$f(x)=$()A.x+1B.x+2C.x+3D.x+44.曲线$y=\frac{x^2+2}{x}的对称轴方程是$A.y=xB.y=-xC.x=-yD.x=y5.图中是几个单位正旋角的相交部分,其中阴影部分的面积为$\frac{1}{6}, 则$此原图旋角度数为()A. 30B. 45C. 60D.906.已知函数$f(x)=\frac{x+a}{x^2+x}实数a, 且f(4)=\frac{1}{2},则a=$()A.1B.2C.3D.47.如图,已知四边形$ABCD$中$\angle ABC=\angle AFE,AB=4,AC=3,$则四边形$EFD$中$\angle DEF=$()A.$45^{\circ}$B.$30^{\circ}$C.$60^{\circ}$D.$75^{\circ}$8.在点$A(10,5)和B(2,1)上,能准确相应加平移矢量能使A、B垂直则的c的值是()A.$\frac{7}{2}$B.$\frac{29}{14}$C.$\frac{6}{7}$D.$-\frac{3}{7}$9.若$2A=3B=4C$,则$S_{\triangle{ABC}}:S_{\triangle{ABC}}:S_{\triangle{ABC}}$A.4:4:4B.4:8:12C.3:3:3D.9:6:410.已知函数$f(x)=sin\frac{\pi}{2}(x+2\pi)$,则$f(-3\pi)+f(-\pi)=$()A.1B.-1C.0D.311.若等差数列1,2,...,10+9有共同项数,求它的16项12.$\sqrt{2a^4b^4}$的值为$()$A.$a^4b^2$B.$a^2b$C.2$a^2$ B.2b13.已知$f(x)=3^x$,$f\left(\log_3{\frac{3}{2}}\right)=$()A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$14.用实数$a,b$表示直线x=y的方程为$(1+a)x+b=0$,则$a$与$b$满足的关系式「」A$x-1=0 B$(-1+a)x+b=0 C$(1-a)x+b=0 D$(-1+a)x-b=015.如图,过点P做两条直线与x轴交于A、B,S≠0,AB的方程为$ki+5k=0,$,则点P的函数式为$2k-3$A.-\frac{1}{2}B.-\frac{1}{3}C.\frac{1}{2}D.\frac{1}{3}16.若圆方程为$(x-1)2+(y-2)2=1$,则与x轴交在A与B的有一个象限像在D区的是「」A.I象限B.II象限C.III象限D.IV象限17.巧合点(0,0)在函数图像的关系,此的函数是「」A.对称B.奇函数C.偶函数D.周期函数18.阶为$\triangle ABC, \triangle DEF, 对$图,函数为$\triangle ABC 与偶函数の三边等分$$\triangle DEF=\{1,2,3,4\}$山东高考数学真题理科结束。
2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)
![2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)](https://img.taocdn.com/s3/m/a6c4e26df01dc281e53af05f.png)
2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A. {x|−4<x <3}B. {x|−4<x <−2}C. {x|−2<x <2}D. {x|2<x <3}2. 设复数z 满足|z -i |=1,z 在复平面内对应的点为(x ,y ),则( )A. (x +1)2+y 2=1B. (x −1)2+y 2=1C. x 2+(y −1)2=1D. x 2+(y +1)2=1 3. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190 cm5. 函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A. 516 B. 1132 C. 2132 D. 1116 7. 已知非零向量a ⃗ ,b ⃗ 满足|a ⃗ |=2|b ⃗ |,且(a ⃗ -b ⃗ )⊥b ⃗ ,则a ⃗ 与b ⃗ 的夹角为( )A. π6B. π3C. 2π3D. 5π68. 如图是求12+12+12的程序框图,图中空白框中应填入()A. A =12+A B. A =2+1A C. A =11+2A D. A =1+12A9. 记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A. a n =2n −5 B. a n =3n −10 C. S n =2n 2−8nD. S n =12n 2−2n10. 已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=111. 关于函数f (x )=sin|x |+|sin x |,有下述四个结论:①f (x )是偶函数②f (x )在区间(π2,π)上单调递增③f (x )在[-π,π]上有4个零点④f (x )的最大值是2 其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③12. 已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共4小题,共20.0分)13. 曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和,若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是______.16. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为______.三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB |.20. 已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(-1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.21. 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.(i )证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; (ii )求p 4,并根据p 4的值解释这种试验方案的合理性.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】解:∵M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},∴M∩N={x|-2<x<2}.故选:C.利用一元二次不等式的解法和交集的运算即可得出.本题考查了一元二次不等式的解法和交集的运算,属基础题.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z-i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z-i=x+(y-1)i,∴|z-i|=,∴x2+(y-1)2=1,故选:C.3.【答案】B【解析】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.【答案】B【解析】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.充分运用黄金分割比例,结合图形,计算可估计身高.本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.【答案】D【解析】解:∵f(x)=,x∈[-π,π],∴f(-x)==-=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f ()=,因此排除B,C;故选:D.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.【答案】A【解析】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:∵(-)⊥,∴=,∴==,∵,∴.故选:B.由(-)⊥,可得,进一步得到,然后求出夹角即可.本题考查了平面向量的数量积和向量的夹角,属基础题.8.【答案】A【解析】解:模拟程序的运行,可得:A=,k=1;满足条件k≤2,执行循环体,A=,k=2;满足条件k≤2,执行循环体,A=,k=3;此时,不满足条件k≤2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A=.故选:A.模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】A【解析】【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n-5,,故选:A.10.【答案】B【解析】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=,∴|AF2|=a,|BF1|=a,在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1=,根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=.b2=a2-c2=3-1=2.所以椭圆C的方程为:+=1.故选:B.根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.本题考查了椭圆的性质,属中档题.11.【答案】C【解析】解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sinx|=f(x),则函数f(x)是偶函数,故①正确.当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误.当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0得2sinx=0,得x=0或x=π,由f(x)是偶函数,得在[-π,π)上还有一个零点x=-π,即函数f(x)在[-π,π]上有3个零点,故③错误.当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确的结论是①④,故选C.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键.12.【答案】D【解析】解:如图,由PA=PB=PC ,ABC是边长为2的正三角形可知,三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P-ABC的三条侧棱两两互相垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D=,半径为,则球O的体积为.故选D.由题意画出图形,证明三棱锥P-ABC为正三棱锥,且三条侧棱两两互相垂直,再由补形法求外接球球O的体积.本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:. 15.【答案】0.18【解析】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:如图,∵=,且•=0,∴OA⊥F1B,则F1B:y=,联立,解得B (,),则,,∴=4c2,整理得:b2=3a2,∴c2-a2=3a2,即4a2=c2,∴,e=.故答案为:2.由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由勾股定理求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.17.【答案】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.则sin2B+sin2C-2sin B sin C=sin2A-sin B sin C,∴由正弦定理得:b2+c2-a2=bc,∴cos A =b2+c2−a22bc =bc2bc=12,∵0<A<π,∴A=π3.(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√6 2+sin(2π3−C)=2sinC解得sin(C-π6)=√22,∴C-π6=π4,C=π4+π6,∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.【解析】(1)由正弦定理得:b2+c2-a2=bc,再由余弦定理能求出A.(2)由已知及正弦定理可得:sin(C-)=,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且NH=12AA1,又MB∥AA1,MB=12AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A1(√3,-1,4),NM⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2),设平面A1MN的一个法向量为m⃗⃗⃗ =(x,y,z),由{m⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =√32x+32y=0m⃗⃗ ⋅NA1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x−12y+2z=0,取x=√3,得m⃗⃗⃗ =(√3,−1,−1),又平面MAA1的一个法向量为n⃗=(1,0,0),∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |=√3√5=√155.∴二面角A-MA1-N的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N作NH⊥AD,证明NM∥BH,再证明BH∥DE,可得NM∥DE,再由线面平行的判定可得MN∥平面C1DE;(2)以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,分别求出平面A1MN与平面MAA1的一个法向量,由两法向量所成角的余弦值可得二面角A-MA1-N的正弦值.19.【答案】解:(1)设直线l的方程为y=32(x-t),将其代入抛物线y2=3x得:94x2-(92t+3)x+94t2=0,设A(x1,y1),B(x2,y2),则x1+x2=92t+394=2t+43,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t+43+32=4,解得t=712,直线l 的方程为y =32x -78.(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则y 1=-3y 2,∴32(x 1-t )=-3×32(x 2-t ),化简得x 1=-3x 2+4t ,③ 由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【解析】(1)很具韦达定理以及抛物线的定义可得. (2)若=3,则y 1=-3y 2,⇒x 1=-3x 2+4t ,再结合韦达定理可解得t=1,x 1=3,x 2=,再用弦长公式可得.本题考查了抛物线的性质,属中档题.20.【答案】证明:(1)f (x )的定义域为(-1,+∞),f ′(x )=cos x −11+x ,f ″(x )=-sin x +1(1+x)2,令g (x )=-sin x +1(1+x)2,则g ′(x )=-cos x −2(1+x)3<0在(-1,π2)恒成立, ∴f ″(x )在(-1,π2)上为减函数,又∵f ″(0)=1,f ″(π2)=-1+1(1+π2)2<-1+1=0,由零点存在定理可知,函数f ″(x )在(-1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(-1,x 0)上单调递增, 在(x 0,π2)上单调递减,可得f ′(x )在区间(-1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减; 当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0,由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,-11+x <0,于是f ′(x )=cos x -11+x <0,f (x )单调递减, 其中f (π2)=1-ln (1+π2)>1-ln (1+3.22)=1-ln2.6>1-ln e =0, f (π)=-ln (1+π)<-ln3<0. 于是可得下表:x (-1,0) 0 (0,x 1) x 1(x 1,π2) π2 (π2,π) π f ′(x ) - 0 + 0---- f (x )减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f (x )在(-1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,f (x )=sin x -ln (1+x )<1-ln (1+π)<1-ln3<0,因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点. 【解析】(1)f (x )的定义域为(-1,+∞),求出原函数的导函数,进一步求导,得到f″(x )在(-1,)上为减函数,结合f″(0)=1,f″()=-1+<-1+1=0,由零点存在定理可知,函数f″(x )在(-1,)上存在唯一得零点x 0,结合单调性可得,f′(x )在(-1,x 0)上单调递增,在(x 0,)上单调递减,可得f′(x )在区间(-1,)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f′(x )>0,f (x )单调递增;由于f′(x )在(x 0,)上单调递减,且f′(x 0)>0,f′()<0,可得函数f′(x )在(x 0,)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈()时,f (x )单调递减.当x ∈(,π)时,f (x )单调递减,再由f ()>0,f (π)<0.然后列x ,f′(x )与f (x )的变化情况表得答案.本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大. 21.【答案】(1)解:X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β), X -11P (1-α)β αβ+(1-α)(1-β) α(1-β)()()证明:∵,, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1-p i )=0.4(p i -p i -1),即(p i +1-p i )=4(p i -p i -1),又∵p 1-p 0=p 1≠0,∴{p i +1-p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0=p 1(1−48)1−4=48−13P 1,∵p 8=1,∴p 1=348−1,∴P 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44−13p 1=1257.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理. 【解析】(1)由题意可得X 的所有可能取值为-1,0,1,再由相互独立试验的概率求P (X=-1),P (X=0),P (X=1)的值,则X 的分布列可求;(2)(i )由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i-1+bp i +cp i+1,得到(p i+1-p i )=4(p i -p i-1),由p 1-p 0=p 1≠0,可得{p i+1-p i }(i=0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=,进一步求得p 4=.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度. 22.【答案】解:(1)由{x =1−t 21+t 2,y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t 2, 两式平方相加,得x 2+y 24=1(x ≠-1),∴C 的直角坐标方程为x 2+y 24=1(x ≠-1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0. 即直线l 的直角坐标方程为得2x +√3y +11=0;(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0, 联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2-12=0. 由△=16m 2-64(m 2-12)=0,得m =±4. ∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小,为|11−4|√22+3=√7. 【解析】(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l 的直角坐标方程; (2)写出与直线l 平行的直线方程为,与曲线C 联立,化为关于x 的一元二次方程,利用判别式大于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值. 本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1. 就要证:abc a +abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2-2bc -2ac -2ab ≥0(a -b )2+(a -c )2+(b -c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a -b )2≥0;(a -c )2≥0;(b -c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a -b )2+(a -c )2+(b -c )2≥0得证. 故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立; 即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24; 当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证. 故得证. 【解析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证. 本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.。
高考山东理科数学试题包括答案word解析版
![高考山东理科数学试题包括答案word解析版](https://img.taocdn.com/s3/m/fc9fa0fa79563c1ec4da7111.png)
2021年高考山东理科数学试题及答案(word解析版)2021年普通高等学校招生全国统一考试〔山东卷〕 数学〔理科〕 第一卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕【2021年山东,理1,5分】a,bR ,i 是虚数单位,2假设ai与2bi互为共轭复数,那么〔abi 〕 〔〕〔A 〕54i〔B 〕54i〔C 〕34i〔D 〕34i【答案】D互为共轭复数,,【解析】与2bi22 44ii 2aia2,b1abi2i 34i应选D .,,〔2〕【2021年山东,理2,5分】设集合{ 2x,[0,2]}A {xx12}Byyx那么AI B 〔〕〔A 〕[0,2]〔B 〕(1,3)〔C 〕[1,3)〔D 〕(1,4)【答案】C,,,, ,,,【解析】2xQx 122x121x3Qyx0,2y 1,4AI B1,3应选C .〔3〕【2021年山东,理3,5分】函数f(x)1的定义域(log 2 x) 21为〔 〕〔B 〕(2,)〔C 〕〔A〕(0,)1211(0,)U(2,)〔D〕(0,]U[2,)22【答案】C【解析】log2x10log2x1x1x2x或log2或01,应选C.222〔4〕【2021年山东,理4,5分】用反证法证明命题“设a,bR,那么方程x2axb0至少有一个实根〞时要做的假设是〔〕〔A〕方程x2axb0没有实根〔B〕方程x2axb0至多有一个实根〔C〕方程x2axb0至多有两个实根〔D〕方程x2axb0恰好有两个实根【答案】A【解析】反证法证明问题时,反设实际是命题的否认,∴用反证法证明命题“设,为实数,那么方程2ab x axb0至少有一个实根〞时,要做的假设是:方程x2axb0没有实根,应选A.5〕【2021年山东,理5,5分】实数x,y满足axay(0a1),那么以下关系式恒成立的是〔〕〔A〕2121〔B〕ln(x1)ln(y1)〔C〕sinxsiny22x1y1〔D〕x3y3【答案】D【解析】Qa x a y,0a1xy,排除A,B,对于C,sinx是周期函数,排除C,应选D.6〕【2021年山东,理6,5分】直线y4x与曲线yx3在第一象限内围成的封闭图形的面积为〔〕〔A〕2〔B〕2〔C〕24 2〔D〕4【答案】D【解析】Q4x x3,Q4x x3x4x2x2x2x0,解得频率/组距直线和曲线的交点为x0,x2,x2,30121314151617舒张压/kPa第一象限面24xx dx2x x844,故D.0321447〕【2021年山,理7,5分】了研究某厂的效,取假设干名志愿者行床,所有志愿者的舒数据〔位:kPa〕的分区[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的序分号第一,第二,⋯⋯,第五,右是根据数据制成的率分布直方,第一与第二共有20人,第三中没有效的有6人,第三中有效的人数〔〕〔A〕6〔B〕8〔C〕12〔D〕18【答案】C【解析】第一与第二率之和,2050,5018,18612,故C.8〕【2021年山,理8,5分】函数fxx21,gxkx.假设方程fxgx有两个不相等的根,数k的取范是〔〕11〔C〕〔A〕〔0,〕〔B〕〔,1〕22〔1,2〕〔D〕〔2,〕【答案】B【解析】画出fx的象最低点是2,1,gx kx原点和2,1斜率最小1,斜率最大gx的斜率与fx x1的斜2率一致,故B.〔9〕【2021年山,理9,5分】x,y足的束条件4x y10,当目标函数zaxbya0,b0在该约束条件下取2x y305时,a b的最小值为〔〕得最小值222〔A〕5〔B〕4〔C〕5〔D〕2【答案】B【解析】xy10求得交点为2,1,那么2a b25,即圆心0,0到直2x y30线2,应选B.2a b250的距离的平方252245〔10〕【2021年山东,理10,5分】a0,b0,椭圆C1的方程为x2y2,双曲线x2y2与的离心1C21C1C22222a b的方程为a b,率之积为3,那么C2的渐近线方程为〔〕2〔A〕x2y0〔B〕2xy0〔C〕x2y0 D〕2xy0【答案】A2c2a2b22c2a2b22a4b4344,b2,【解析】e1a2a2,e2a2a2,e1e2a44a4b a2应选A.II卷〔共100分〕二、填空题:本大题共5小题,每题5分11〕【2021年山东,理11,5分】执行下面的程序框图,假设输入的x的值为1,那么输出的n的值为.【答案】3【解析】根据判断条件x24x30,得1x3,输入x1,第一次判断后循环,xx12,n n11;第二次判断后循环,xx13,n n12;第三次判断后循环,xx14,n n13;5第四次判断不满足条件,退出循环,输出n 3.uuur uuur 〔12〕【2021年山东,理12,5分】在VABC中,ABACtanA,当A 时,VABC的面积为6【答案】16uuuruuur【解析】由条件可知ABAC cbcosA.tanA,2,11.SABC bcsinA,当Abc3266(13〕【2021年山东,理13,5分】三棱锥PABC中,D,E分别为PB,PC的中点,记三棱锥DABE的体积为V1,PABC的体积为V2,那么V1.V2【答案】14【解析】分别过E,C向平面做高h1,h2,由E为PC的中点得h11,h22由D为PB的中点得S ABD1S ABP,所以V1:V2323SABPh24.SABDh1111〔14〕【2021年山东,理14,5分】假设ax64项b的展开式中x3x的系数为20,那么a2b2的最小值为【答案】2b x)6【解析】将(ax2展开,得到Tr1C6ab20,得ab1,333所以a b2ab2.22高考山东理科数学试题包括答案word解析版.C6r a6r b r x123r,令12 3r 3,得r 3.由〔15〕【2021年山东,理15,5分】函数y f(x)(xR),对函数yg xx I,定义gx关于fx的“对称函数〞为函数,两个点,满足:对任意x IyhxxI yhx x,h x,x,gx关于点x,fx对称,假设hx是gx4x2关于fx3xb的“对称函数〞,且hx gx恒成立,那么实数b的取值范围是.6【答案】b210【解析】根据图像分析得,当f(x)3x b与g(x)4x2在第二象限相切时,b210,由h(x)g(x)恒成立得b210.三、解答题:本大题共6题,共75分.〔16〕【2021年山东,理16,12分】向量vm,cos2xvsin2x,n,a,b函数fv vx的图像过点,3和点2,2.xa b,且yf123〔1〕求m,n的值;〔2〕将y fx的图像向左平移0个单位后得到函数y g x的图像,假设y g x图像上各最高点到点0,3的距离的最小值为1,求y g x的单调递增区间.r rmsin2x ncos2x,f(x)过点(,3),(,2),解:〔1〕f(x)a b2123f()msinncos63,1262441m3n3,解得m3.f()msin ncos2,22333312n122〔2〕,左移后得到.f(x)3sin2x cos2x2sin(2x)f(x)g(x)2sin(2x2)解得[k2柱AB1171〕求证:C1M//平面A1ADD1;2〕假设CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角〔锐角〕的余弦值.解:〔1〕连接AD 1,1111为四棱柱,11,CD//AM,CD AM,QABCD ABCD CD//CDAM//C1D1,AM C1D1,AMC1D1为平行四边形,AD1//MC1,又QC1M 平面A1ADD1,AD1 平面A1ADD1, AD1//平面A1ADD1.〔2〕解法一:QAB//A1B1,A1B1//C1D1,面D1C1M与ABC1D1共面,作CN AB,连接D1N,那么D1NC即为所求二面角,在ABCD中,DC1,AB2,DAB60o CN3,2在Rt D1CN中,CD13,CN3,D1N15.22解法二:作CP AB于p点以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,13,0),uuuuuruuuuur13C1(1,0,3),D1(0,0,3),M(,C1D1(1,0,0),D1M(,,3)2222设平面CD M的法向量为r,x103,n(x1,y1,z1)111x1y13z1022uur,n 1(0,2,1)显然平面ABCD 的法向量为uur,n 2(1,0,0)uuruur uur uurn 1 n 2 1 5 ,显然二面角为锐角,cosn 1,n 2n 1 n 2 5 5uur uur所以平面C 1D 1M 和平面ABCD 所成角的余弦值为5 ,5NC 33 5.cosD 1CN2D 1N15 15 52818〕【2021年山东,理18,12分】乒乓球台面被球网分成甲、乙两局部.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落CABD点在甲上的来球后向乙回球.规定:回球一次,落点在C上的概率为1,在D上的概率5为3.假设共有两次来球且落在A,B上各一次,小明的解 5解两次回球互不影响.求:解1〕小明两次回球的落点中恰有一次的落点在乙上的概率;解2〕两次回球结束后,小明得分之和的分布列与数学期望.解:〔1〕设恰有一次的落点在乙上这一事件为A,P(A)51143.656510〔2〕的可能取值为01,,2,3,4,6,P(0)111;P(1)11131;653035656P(2)131;355P(3)11112;P(4)131111;P(6)111.2565152535302510的分布列为:0123461112111P3065153010 E()011121324116191.306515301030〔19〕【2021年山东,理19,12分】等差数列{a n}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.〔1〕求数列{a n}的通项公式;〔2〕令bn(1)n14n,求数列{bn}的前n项和Tn.a n a n19得得解:〔1〕d2,S1a1,S22a1d,S44a16d,QS1,S2,成等比,S22S1S4,解得a11,a n2n1.〔2〕b n(1)n14n(1)n1(111),当n为偶数时,anan12n2n1T n11111LL(1111),(1)()()2n32n)(12n3355712n1T n1112n1,2n2n当n为奇数时,T n(11)(11)(11)L L(131)(111)335572n2n12n2n12n,n为偶数12n2,T n.T n12n12n12n12n2为奇数2n ,n 1(〔20〕【2021年山东,理20,12分】设函数fx(为常数,e 是自然对数的底数〕.(1〕当k0时,求函数fx的单调区间;(2〕假设函数fx在0,2内存在两个极值点,范围.xk(2elnx)〔k x2x求k的取值x 2解:〔1〕f'(x)ex x4令f x 时,f〔2〕令gx e xx1x kx)2xe2(x2)(e,当时,,x,k(x2x)x3(x0)k0kx0e kx00,那么x2.当x0,2时,fx单调递减;当x2,x单调递增.kx,那么gxe x k,e x,.',,kx lnkQg(0)1k0g(0)10g'(2)e2k0,g2e22k0k e2glnke lnk klnk0lnk1ke,2,综上:e的取值范围为〔e,e2〕.2〔21〕【2021年山东,理21,14分】抛物线C:y22px(p>0〕的焦点为,为上异于原点的任意一点,过点的FA CA直线l交于另一点B,交x轴的正半轴于点D,且有(FA FD,当点A的横坐标为3时,ADF为正三角形.(1〕求C的方程;(2〕假设直线l1//l,且l1和C有且只有一个公共点E.10〔ⅰ〕证明直线AE过定点,并求出定点坐标;〔ⅱ〕ABE的面积是否存在最小值?假设存在,请求出最小值;假设不存在,请说明理由.解:〔1〕由题意知F p,0.设Dt,0t0,那么FD的中点为p2t,0.因24为FA FD,由抛物线的定义知:p pp或t3〔舍32t2,解得t3去〕.由p2t3,解得p2.4所以抛物线C的方程为y24x.〔2〕〔ⅰ〕由〔1〕知F1,0.设Ax0,y0x0y00,DxD,0xD0,因为FA FD,那么xD1x01,由x D0得x D x02,故D x02,0.故直线l1和直线AB平行,设直线l1的方程为y y0x b,2代入抛物线方程得:y28y8b0,由题意y0y0 6432b2.设ExE,yE,y02y00,得b y04y0那么4,42时,yEy0y04y0y04 y0y Ey0.当y04xEx04y0xE2kAE22,y024可得直线AE的方程为:4y024x0,整理可得:y 4y0x1,yy02xx0,由y02y04y04(直线AE恒过点F1,0.(y024时,直线AE的方程为x1,过点F1,0.所以直线AE过定点F1,0.(ⅱ〕由〔ⅰ〕知直线AE过焦点F1,0,所以11x01.AEAFFEx012x0x0设直线AE的方程为x my 1,因为点Ax0,y0 在直线11AE 上,故mx0y01.设Bx 1,y 1,y0 0,由于y 0 0,可得直线AB 的方程为yy2xx2,代入抛物线方程得:x2x 0y 0y28y8 4x00.所以y0y 18,可求得y1y0 8,y0y0y04x 0 4.x 1x 0所以点B 到直线AE 的距离为:4x 0 4 my 081x0 y04x 0 11,d1m24x0x 0x 0111那么ABE 的面积S4x 0x 0216,当且仅当2x 0x 01x0,即x01时等号成立.x0所以 ABE 的面积的最小值为 16.12。
山东高考数学试卷及答案解析理科
![山东高考数学试卷及答案解析理科](https://img.taocdn.com/s3/m/02741a3184254b35effd345f.png)
绝密★启用前 试卷类型:B2021年普通高等学校招生全国统一考试(山东卷)理科数学解析版考前须知:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试完毕后,请将本试题卷和答题卡一并上交。
第一卷〔共60分〕 一、选择题:本大题共l0小题.每题5分,共50分在每题给出的四个选项中,只有一项为哪一项满足题目要求的.(1) 全集U=R ,集合M={x||x-1|≤2},那么U C M=〔A 〕{x|-1<x<3} (B){x|-1≤x ≤3} (C){x|x<-1或x>3} (D){x|x ≤-1或x ≥3}【答案】C【解析】因为集合M={}x|x-1|2≤={}x|-1x 3≤≤,全集U=R ,所以U C M={}x|x<-1x>3或,应选C.【命题意图】此题考察集合的补集运算,属容易题.(2) 2(,)a i b i a b i +=+2a i b i i+=+〔a,b ∈R 〕,其中i 为虚数单位,那么a+b= (A)-1 (B)1 (C)2 (D)3【答案】B【解析】由a+2i =b+i i得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,应选B. 【命题意图】此题考察复数相等的意义、复数的根本运算,属保分题。
(3)在空间,以下命题正确的选项是〔A 〕平行直线的平行投影重合〔B 〕平行于同一直线的两个平面平行〔C〕垂直于同一平面的两个平面平行〔D〕垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。
(完整word版)山东省高考理科数学试卷及【word版】
![(完整word版)山东省高考理科数学试卷及【word版】](https://img.taocdn.com/s3/m/ee4a62dc2af90242a995e533.png)
2019年高考山东卷理科数学真题及参照答案一.:本大共10 小,每小 5 分,共50 分。
在每小出的四个中,切合目要求的。
1. 已知a, b R, i 是虚数位,若 a i 与2 bi 互共复数,(a2 bi )( A)5 4i (B) 5 4i (C) 3 4i (D) 3 4i答案: D2. 会合A { x x 1 2}, B { y y 2x , x [ 0,2]}, A B(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案: C3. 函数f (x) 1 的定域(log 2 x) 2 1(A)1(B) (2,) (C)1) (D)1) (0, ) (0, ) (2, (0, ] [ 2,2 2 2答案: C4. 用反法明命“ a, b R, 方程 x2 ax b 0 起码有一个根” 要做的假是(A) 方程x2 ax b 0 没有根(B) 方程 x2 ax b 0 至多有一个根(C) 方程x2 ax b 0 至多有两个根(D) 方程 x2 ax b 0 恰巧有两个根答案: A5. 已知数x, y足a x a y (0 a 1) ,以下关系式恒成立的是(A) 11 11(B) ln( x2 1) ln( y 2 1) (C) sin x sin y (D) x3 y3x2 y2答案: D6.直 y 4x 与曲y x2在第一象限内成的封形的面(A)2 2( B)4 2(C) 2( D) 4 答案:D7. 了研究某厂的效,取若干名志愿者行床,全部志愿者的舒数据(位:kPa )的分区[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的序分号第一,第二,⋯⋯,第五,右是依据数据制成的率散布直方,已知第一与第二共有20 人,第三中没有效的有 6 人,第三中有效的人数频次 / 组距0.360.240.160.080 12 13 14 15 16 17 舒张压 /kPa( A)6 ( B)8 ( C)12 (D) 18答案: C8. 已知函数 f x x 2 1 g x kx .若方程 f x g x 有两个不相等的实根,则实数k 的取值范围是,1 1 ( C)(1,2)( D)(2,)( A)(,)()0 B (,1)2 2答案: B9. 已知x, y知足的拘束条件x - y - 1 0,z ax by(a 0, b 0) 在该拘束条件下获得最小值2x - y - 3当目标函数0,2 5 时,a2 b2的最小值为( A)5( B)4(C)5( D)2答案: B10. 已知a 0, b 0 ,椭圆 C 的方程为 x2 y2 1,双曲线 C 的方程为x2 y2 1 , C 与 C 的离心率之积为1 a2 b2 2 a2 b2 123,则 C2的渐近线方程为2( A)x 2 y 0 (B) 2x y 0 (C) x 2y 0(D) 2x y 0答案: A二.填空题:本大题共 5 小题,每题 5 分,共 25 分,答案须填在题中横线上。
山东高考理科试题及答案
![山东高考理科试题及答案](https://img.taocdn.com/s3/m/c24d8e4653ea551810a6f524ccbff121dd36c5cd.png)
山东高考理科试题及答案一、数学试题及答案第一部分选择题1.设A是一个小于π的锐角,sinA=x, 在(π/2,π) 的范围中,A的终边上的坐标(x,y)所确定的点的坐标为()A. ( -√(1-x^2), -√(1-y^2) )B. ( -√(1-x^2), √(1-y^2) )C. ( √(1-x^2), √(1-y^2) )D. ( √(1-x^2), -√(1-y^2) )答案:A2. 把函数 y=x^2-4x+5 约束在直线 y-2x+1=0 上,则所得函数的转动体的体积为()A. 12/5B. 24/5C. 36/5D. 48/5答案:B3. 基于Bose-Einstein分布,在绝对温度T下,一单位体积内准费米气体占有因子为1/3。
现有一个占有费米子总数为N的系统,体积为V,分别求准费米气体的总体积和其占有费米子的数目。
()A. V/8,N/24B. V/6,N/16C. V/4,N/12D. V/3,N/8答案:C第二部分填空题4. 细胞生物的染色体数目与组织细胞数的数学关系是_________ 。
答案:有的细胞是单倍体细胞,有的是多倍体细胞,不同类型的细胞染色体数目是不同的。
5. 物体在竖直向上的抛体运动中,达到最大高度时的速度大小为_________ 。
答案:06. 某弹簧的伸长量与外力的关系近似线性,当外力为2N时,伸长量是5cm,当外力为3N时,伸长量是10cm,则当外力为4N时,伸长量是_________cm。
答案:15第三部分解答题7. 已知函数 f(x)=acos^2(2x+b)+bsin^2(x-a) (a, b为常数),其中0≤x≤π/4,f(x) 的最大值为2,求 a 与 b 的值。
解答:根据题意:f(x) 的最大值为2,即 a* cos²(2x+b) + b* sin²(x-a) = 2。
由于0 ≤ x ≤ π/4,可取 x = 0,则有 a * cos²(b) + b * sin²(-a) = 2。
高考山东卷理数试题解析(正式版)(解析版)
![高考山东卷理数试题解析(正式版)(解析版)](https://img.taocdn.com/s3/m/8fb953a14431b90d6d85c751.png)
绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+(D )12i --【答案】B考点:注意共轭复数的概念.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 考点:本题涉及求函数值域、解不等式以及集合的运算.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中 自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图, 这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60(C )120(D )140【答案】D考点:频率分布直方图(4)若变量x ,y 满足2,239,0,x y x y x 则22x y 的最大值是(A )4 (B )9 (C )10 (D )12【答案】C 【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC =,故选C. 考点:线性规划求最值(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )123+π(C )123+π(D )21+π 【答案】C考点:根据三视图求几何体的体积.(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A 【解析】试题分析:直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a ,b 可能相交,也可能平行,故选A. 考点:直线与平面的位置关系;充分、必要条件的判断.(7)函数f (x )=3sin x +cos x )3cos x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:三角函数化简,周期公式(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4(C )94(D )–94【答案】B考点:平面向量的数量积(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x > 时,11()()22f x f x +=-.则f (6)=(A )−2 (B )−1(C )0(D )2【答案】D 【解析】 试题分析:当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:本题考查了函数的周期性、奇偶性(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =ex(D )y =x3【答案】A考点:函数求导,注意本题实质上是检验函数图像上是否存在两点的导数值乘积等于-1.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.【答案】3 【解析】试题分析:第一次循环:a 1,b 8==;第二次循环:a 3,b 6==;第三次循环:a 6,b 3==;满足条件,结束循环,此时,i 3=. 考点:循环结构的程序框图 (12)若(a x 2x5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 【解析】试题分析:因为5102552155()(r r rr r rr T C ax C a x x---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-考点:二项式定理(13)已知双曲线E :22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2考点:双曲线的几何性质,把涉及到的两个线段的长度表示出来是做题的关键. (14)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y 相交”发生的概率为 .【答案】34【解析】试题分析:直线y =kx 与圆22(5)9xy 相交,需要满足圆心到直线的距离小于半径,即2d 31k=<+,解得33k 44-<<,而[1,1]k ,所以所求概率P =33224=.考点:直线与圆位置关系;几何概型(15)已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,,其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是_________. 【答案】(3,)+∞ 【解析】试题分析:由题意画出函数图像如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得m 3>,故m 的取值范围是(3,)+∞.考点:分段函数,函数图像,能够准确画出函数的图像是解决本题的关键.三、解答题:本答题共6小题,共75分.(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ;学科.网(Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12()∏由()I 知2a bc +=, 所以2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立. 故cos C 的最小值为12. 考点:两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式. (17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线. (I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (II )已知EF =FB =12AC =3AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)7(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥可得平面BCF 的一个法向量3(),m =- 因为平面ABC 的一个法向量(0,0,1),n =所以7cos ,7||||m n m n m n ⋅<>==. 所以二面角F BC A --的余弦值为77. 解法二:考点:空间平行判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 (18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法 (19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;学.科网(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.【答案】(Ⅰ)23(Ⅱ)分布列见解析,236=EX(Ⅱ)由题意,随机变量X的可能取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得()111114343144P X==⨯⨯⨯=,()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯== ⎪⎝⎭,()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=, ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯=,()3231321260542=4343434314412P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭,()32321643434P X ==⨯⨯⨯=.可得随机变量X 的分布列为X 0 1 2 3 4 6P1144 572 25144 112 512 14所以数学期望15251512301234614472144121246EX =⨯+⨯+⨯+⨯+⨯+⨯=. 考点:独立事件的概率公式和互斥事件的概率加法公式;分布列和数学期望 (20)(本小题满分13分)已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析当0≤a ,)1,0(∈x 时,0)(/>x f ,)(x f 单调递增;/(1,),()0x f x ∈+∞<时,)(x f 单调递减.当0>a 时,/3(1)22()()()a x f x x x x a a-=+-.综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,/22321122()()ln (1)x f x f x x x x x x x --=-+---+考点:利用导函数判断函数的单调性;分类讨论思想. (21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是32,抛物线E :22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22(所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=tt t t t S S , 当211=t ,即2=t 时,21S S 取得最大值49,此时22=m ,满足0>∆,所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(.考点:椭圆方程;直线和抛物线的关系;二次函数求最值;运算求解能力.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------学科网高考一轮复习微课视频手机观看地址:http://xkw.so/wksp信达。
高考山东理科数学试题及答案解析
![高考山东理科数学试题及答案解析](https://img.taocdn.com/s3/m/0e1568e86bd97f192379e915.png)
2021年普通高等学校招生全国统一考试〔山东卷〕数学〔理科〕第一卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 〔1〕【2021年山东,理1】集合2{|430}x x x -+<,{|24}B x x =<<,那么A B =〔 〕〔A 〕()1,3 〔B 〕()1,4 〔C 〕()2,3 〔D 〕()2,4 〔2〕【2021年山东,理2】假设复数z 满足i 1iz=-,其中i 是虚数单位,那么z =〔 〕 〔A 〕1i - 〔B 〕1i + 〔C 〕1i -- 〔D 〕1i -+〔3〕【2021年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像〔 〕〔A 〕向左平移12π个单位〔B 〕向右平移12π个单位〔C 〕向左平移3π个单位〔D 〕向右平移3π个单位 〔4〕【2021年山东,理4】菱形ABCD 的边长为a ,60ABC ∠=,那么BD⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =〔 〕 〔A 〕232a - 〔B 〕234a - 〔C 〕234a 〔D 〕232a〔5〕【2021年山东,理5】不等式|1||5|2x x ---<的解集是〔 〕〔A 〕(,4)-∞ 〔B 〕(,1)-∞ 〔C 〕(1,4) 〔D 〕(1,5)〔6〕【2021年山东,理6】,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩假设z ax y =+的最大值为4,那么a =〔 〕〔A 〕3 〔B 〕2 〔C 〕-2 〔D 〕-3 〔7〕【2021年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为〔 〕〔A 〕23π 〔B 〕43π 〔C 〕53π 〔D 〕2π〔8〕【2021年山东,理8】某批零件的长度误差〔单位:毫米〕服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为〔 〕〔附:假设随机变量ξ服从正态分布2(,)N μσ,那么()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=〕〔A 〕4.56% 〔B 〕13.59% 〔C 〕27.18% 〔D 〕31.74% 〔9〕【2021年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,那么反射光线所在的直线的斜率为〔 〕〔A 〕53-或35- 〔B 〕32-或23- 〔C 〕54-或45- 〔D 〕43-或34-〔10〕【2021年山东,理10】设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩那么满足()(())2f a f f a =的取值范围是〔 〕〔A 〕2[,1]3 〔B 〕[0,1] 〔C 〕2[,)3+∞ 〔D 〕[1,)+∞第II 卷〔共100分〕二、填空题:本大题共5小题,每题5分 〔11〕【2021年山东,理11】观察以下各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .〔12〕【2021年山东,理12】假设“[0,],tan 4x x m π∀∈≤〞是真命题,那么实数m 的最小值为 .〔13〕【2021年山东,理13】执行右边的程序框图,输出的T 的值为 .〔14〕【2021年山东,理14】函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,那么a b += .〔15〕【2021年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,假设OAB ∆的垂心为2C 的焦点,那么1C 的离心率为 .三、解答题:本大题共6题,共75分.〔16〕【2021年山东,理16】〔本小题总分值12分〕设2()sin cos cos ()4f x x x x π=-+.〔Ⅰ〕求()f x 的单调区间;〔Ⅰ〕在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,假设()0,12Af a ==,求ABC ∆面积.〔17〕【2021年山东,理17】〔本小题总分值12分〕如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. 〔Ⅰ〕求证://BD 平面FGH ;〔Ⅰ〕假设CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角〔锐角〕的大小.〔18〕【2021年山东,理18】〔本小题总分值12分〕设数列{}n a 的前n 项和为n S ,233nn S =+.〔Ⅰ〕求数列{}n a 的通项公式;〔Ⅰ〕假设数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .〔19〕【2021年山东,理19】〔本小题总分值12分〕假设n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,那么称n 为“三位递增数〞〔如137,359,567等〕.在某次数学趣味活动中,每位参加者需从所有的“三位递增数〞中随机抽取一个数,且只能抽取一次,得分规那么如下:假设抽取的“三位递增数〞的三个数字之积不能被5整除,参加者得0分;假设能被5整除,但不能被10整除,得-1分;假设能被10整除,得1分.〔Ⅰ〕写出所有个位数字是5的“三位递增数〞;〔Ⅰ〕假设甲参加活动,求甲得分X 的分布列和数学期望EX .〔20〕【2021年山东,理20】〔本小题总分值13分〕平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.〔Ⅰ〕求椭圆C 的方程;〔Ⅰ〕设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .〔i 〕求||||OQ OP 的值;〔ii 〕求ABQ ∆面积最大值.〔21〕【2021年山东,理21】〔此题总分值14分〕设函数2()ln(1)()f x x a x x =++-,其中a R ∈.〔Ⅰ〕讨论函数()f x 极值点的个数,并说明理由;〔Ⅱ〕假设0x ∀>,()0f x ≥成立,求a 的取值范围.2021年普通高等学校招生全国统一考试〔山东卷〕数学〔理科〕第一卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 〔1〕【2021年山东,理1】集合2{|430}x x x -+<,{|24}B x x =<<,那么A B =〔 〕〔A 〕()1,3 〔B 〕()1,4 〔C 〕()2,3 〔D 〕()2,4 【答案】C【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B =,应选C .〔2〕【2021年山东,理2】假设复数z 满足i 1iz=-,其中i 是虚数单位,那么z =〔 〕 〔A 〕1i - 〔B 〕1i + 〔C 〕1i -- 〔D 〕1i -+ 【答案】A【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,应选A .〔3〕【2021年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像〔 〕〔A 〕向左平移12π个单位〔B 〕向右平移12π个单位〔C 〕向左平移3π个单位〔D 〕向右平移3π个单位 【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位,应选B .〔4〕【2021年山东,理4】菱形ABCD 的边长为a ,60ABC ∠=,那么BD ⃗⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =〔 〕 〔A 〕232a - 〔B 〕234a - 〔C 〕234a 〔D 〕232a【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,应选D .〔5〕【2021年山东,理5】不等式|1||5|2x x ---<的解集是〔 〕〔A 〕(,4)-∞ 〔B 〕(,1)-∞ 〔C 〕(1,4) 〔D 〕(1,5) 【答案】A【解析】当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,那么14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,应选A . 〔6〕【2021年山东,理6】,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩假设z ax y =+的最大值为4,那么a =〔 〕〔A 〕3 〔B 〕2 〔C 〕-2 〔D 〕-3【答案】B【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,应选B . 〔7〕【2021年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为〔 〕〔A 〕23π 〔B 〕43π 〔C 〕53π 〔D 〕2π【答案】C【解析】2215121133V πππ=⋅⋅-⋅⋅=,应选C .〔8〕【2021年山东,理8】某批零件的长度误差〔单位:毫米〕服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为〔 〕〔附:假设随机变量ξ服从正态分布2(,)N μσ,那么()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=〕〔A 〕4.56% 〔B 〕13.59% 〔C 〕27.18% 〔D 〕31.74% 【答案】D【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=,应选D .〔9〕【2021年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,那么反射光线所在的直线的斜率为〔 〕〔A 〕53-或35- 〔B 〕32-或23- 〔C 〕54-或45- 〔D 〕43-或34-【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,那么22|3223|1,|55|11k k d k k k ----==+=++,解得43k =-或34-,应选D . 〔10〕【2021年山东,理10】设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩那么满足()(())2f a f f a =的取值范围是〔 〕〔A 〕2[,1]3 〔B 〕[0,1] 〔C 〕2[,)3+∞ 〔D 〕[1,)+∞【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,那么121a a ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,应选C .第II 卷〔共100分〕二、填空题:本大题共5小题,每题5分〔11〕【2021年山东,理11】观察以下各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n nn n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= 〔12〕【2021年山东,理12】假设“[0,],tan 4x x m π∀∈≤〞是真命题,那么实数m 的最小值为 . 【答案】1【解析】“[0,],tan 4x x m π∀∈≤〞是真命题,那么tan 14m π≥=,于是实数m 的最小值为1.〔13〕【2021年山东,理13】执行右边的程序框图,输出的T 的值为 .【答案】116【解析】11200111111236T xdx x dx =++=++=⎰⎰.〔14〕【2021年山东,理14】函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,那么a b += .【答案】32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,那么13222a b +=-=-.〔15〕【2021年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,假设OAB ∆的垂心为2C 的焦点,那么1C 的离心率为 . 【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,那么22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2pF ,那么22222AF pb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 三、解答题:本大题共6题,共75分.〔16〕【2021年山东,理16】〔本小题总分值12分〕设2()sin cos cos ()4f x x x x π=-+.〔Ⅰ〕求()f x 的单调区间;〔Ⅰ〕在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,假设()0,12Af a ==,求ABC ∆面积.解:〔Ⅰ〕由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=-,由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,那么()f x 的递增区间为[,],44k k k Z ππππ-+∈; 由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,那么()f x 的递增区间为3[,],44k k k Z ππππ++∈.〔Ⅰ〕在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即12323bc ≤=+-,11123sin sin 22644ABC S bc A bc bc π∆+===≤故ABC ∆面积的最大值为234+.〔17〕【2021年山东,理17】〔本小题总分值12分〕如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. 〔Ⅰ〕求证://BD 平面FGH ;〔Ⅰ〕假设CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角〔锐角〕的大小.解:〔Ⅰ〕证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,那么2AC DF =, 而G 是AC 的中点,DF AC ,那么//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC ∆,是BC 的中点,那么TH DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH .〔Ⅰ〕由CF ⊥平面ABC ,可得DG ⊥平面ABC 而,AB BC ⊥,45BAC ∠=,那么GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点, ,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系,设2AB =,那么1,22,2DE CF AC AG ====,22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---, 那么平面ACFD 的一个法向量为1(0,1,0)n =,设平面FGH 的法向量为 2222(,,)n x y z =,那么2200n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x y x z ⎧-=⎪⎨⎪-+=⎩, 取21x =,那么221,2y z ==,2(1,1,2)n =,1211cos ,2112n n <>==++,故平面FGH 与平面ACFD 所成角〔锐角〕的大小为60.〔18〕【2021年山东,理18】〔本小题总分值12分〕设数列{}n a 的前n 项和为n S ,233nn S =+.〔Ⅰ〕求数列{}n a 的通项公式;〔Ⅰ〕假设数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:〔Ⅰ〕由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥,而11133a -=≠,那么13,13,1n n n a n -=⎧=⎨>⎩.〔Ⅰ〕由3log n n n a b a =及13,13,1n n n a n -=⎧=⎨>⎩,可得3111log 3113n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++,2234111123213333333n n n n n T ---=++++++,22312231211111111111111()3333333333333331121213113213319392233182313n n n n n n n n n nn n T n n n ----=+-++++-=-+++++----+=+-=+--=-⋅⋅- 113211243n n n T -+=-⋅ 〔19〕【2021年山东,理19】〔本小题总分值12分〕假设n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,那么称n 为“三位递增数〞〔如137,359,567等〕.在某次数学趣味活动中,每位参加者需从所有的“三位递增数〞中随机抽取一个数,且只能抽取一次,得分规那么如下:假设抽取的“三位递增数〞的三个数字之积不能被5整除,参加者得0分;假设能被5整除,但不能被10整除,得-1分;假设能被10整除,得1分.〔Ⅰ〕写出所有个位数字是5的“三位递增数〞;〔Ⅰ〕假设甲参加活动,求甲得分X 的分布列和数学期望EX . 解:〔Ⅰ〕125,135,145,235,245,345;〔Ⅰ〕X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=.〔20〕【2021年山东,理20】〔本小题总分值13分〕平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.〔Ⅰ〕求椭圆C 的方程;〔Ⅰ〕设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .〔i 〕求||||OQ OP 的值;〔ii 〕求ABQ ∆面积最大值.解:〔Ⅰ〕由椭圆2222:1(0)x yC a b a b+=>>c e a ==,而222a b c =+那么2,a b c =, 左、右焦点分别是12(,0),,0)FF ,圆1F :22()9,x y +=圆2F :22()1,x y += 由两圆相交可得24<<,即12<,交点在椭圆C 上,那么224134b b =⋅,整理得424510b b -+=,解得21b =,214b =〔舍去〕, 故21b =,24a =,椭圆C 的方程为2214xy +=.〔Ⅰ〕〔i 〕椭圆E 的方程为221164x y +=,设点00(,)P x y,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. 〔ii 〕点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->,||AB = 211||||32214m S AB d k ∆==⋅⋅⋅+ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,那么2244y kx m x y =+⎧⎨+=⎩有解, 即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥, 那么上述2282m k =+不成立,等号不成立,设(0,1]t =,那么S ∆==(0,1]为增函数,于是当2214k m +=时max S ∆=ABQ ∆面积最大值为12.〔21〕【2021年山东,理21】〔此题总分值14分〕设函数2()ln(1)()f x x a x x =++-,其中a R ∈.〔Ⅰ〕讨论函数()f x 极值点的个数,并说明理由;〔Ⅱ〕假设0x ∀>,()0f x ≥成立,求a 的取值范围.解:〔Ⅰ〕2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞,21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-, 假设809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 假设89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,那么12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减;当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增.因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増;当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减,所以函数只有一个极值点.综上可知当809a ≤≤时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个 极值点.〔Ⅰ〕由〔Ⅰ〕可知当809a ≤≤时()f x 在(0,)+∞单调递增,而(0)0f =, 那么当(0,)x ∈+∞时,()0f x >,符合题意; 当819a <≤时,2(0)0,0g x ≥≤,()f x 在(0,)+∞单调递增,而(0)0f =, 那么当(0,)x ∈+∞时,()0f x >,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =,那么当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<, 此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.另解:〔Ⅰ〕2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞ 21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++, 当0a =时,1()01f x x '=>+,函数()f x 在(1,)-+∞为增函数,无极值点. 设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=∆=--=-,当0a ≠时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.假设(98)0a a ∆=-≤,即809a <≤时,()0g x ≥,()0f x '≥函数在(1,)-+∞为增函数,无极值点. 假设(98)0a a ∆=->,即89a >或0a <,而当0a <时(1)0g -≥ 此时方程()0g x =在(1,)-+∞只有一个实数根,此时函数()f x 只有一个极值点; 当89a >时方程()0g x =在(1,)-+∞都有两个不相等的实数根,此时函数()f x 有两个极值点; 综上可知当809a ≤≤时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时, ()f x 的极值点个数为2.〔Ⅰ〕设函数2()ln(1)()f x x a x x =++-,0x ∀>,都有()0f x ≥成立,即2ln(1)()0x a x x ++-≥当1x =时,ln 20≥恒成立;当1x >时,20x x ->,2ln(1)0x a x x++≥-; 当01x <<时,20x x -<,2ln(1)0x a x x++≤-;由0x ∀>均有ln(1)x x +<成立. 故当1x >时,,2ln(1)11x x x x +<--(0,)∈+∞,那么只需0a ≥; 当01x <<时,2ln(1)1(,1)1x x x x +>∈-∞---,那么需10a -+≤,即1a ≤.综上可知对于0x ∀>,都有 ()0f x ≥成立,只需01a ≤≤即可,故所求a 的取值范围是01a ≤≤.另解:〔Ⅰ〕设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ∀>,都有()0f x ≥成立,只需函数函数()f x 在(0,)+∞上单调递增即可,于是只需0x ∀>,1()(21)01f x a x x '=+-≥+成立, 当12x >时1(1)(21)a x x ≥-+-,令210x t -=>,2()(,0)(3)g t t t =-∈-∞+, 那么0a ≥;当12x =时12()023f '=>;当102x <<,1(1)(21)a x x ≤-+-, 令21(1,0)x t -=∈-,2()(3)g t t t =-+关于(1,0)t ∈-单调递增, 那么2()(1)11(13)g t g >-=-=--+,那么1a ≤,于是01a ≤≤. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =,那么当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意. 综上所述,a 的取值范围是01a ≤≤.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a 的讨论来研究函数的单调性,进一步确定参数的取值范围;二是别离参数法,求相应函数的最值或取值范围以到达解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的局部进行分析验证其不符合题意,即可确定所求.。
2020年普通高等学校招生全国统一考试数学理试题(山东卷,解析版)
![2020年普通高等学校招生全国统一考试数学理试题(山东卷,解析版)](https://img.taocdn.com/s3/m/5509b3fc8e9951e79a892701.png)
2020年普通高等学校招生全国统一考试数学理试题(山东卷,解析版)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )33 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 3663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】B【解析】由奇函数定义,容易得选项B 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C. 7. 某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得$9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -= 【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,所以222a b =+,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R),1412A A A A μ=u u u u v u u u u v(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O )(c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ=u u u u v u u u u v (λ∈R),1412A A A A μ=u u u u v u u u u v(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D. 二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y. 14. 若62()a x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616()rrr r a T C x -+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =. 15. 设函数()(0)2xf x x x =>+,观察: 1()(),2x f x f x x ==+ 21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+L L 根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .【答案】22(1)xn x n -+【解析】观察知:四个等式等号右边的分母为2,34,78,1516x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n -+.16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在V ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c Ca A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=154,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯154=154.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试(山东卷)
本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:
1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:
锥体的体积公式:V=1
3
Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P (B)。
第I卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,
只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为
A 3+5i
B 3-5i
C -3+5i
D -3-5i
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B为
A {1,2,4}
B {2,3,4}
C {0,2,4}
D {0,2,3,4}
3 设a>0 a≠1 ,则“函数f(x)= a3在R上是减函数”,是“函数g(x)=(2-a) 3x在R上是增函数”的
A 充分不必要条件
B 必要不充分条件
C 充分必要条件
D 既不充分也不必要条件
(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为
(A)7 (B)9 (C)10 (D)15
(5)的约束条件
2x y4
4x-y-1
+
⎧
⎨
⎩
≤
≥
,则目标函数z=3x-y的取值范围是
(A )
(B)
3
,1
2
⎡⎤--⎢⎥⎣⎦
(C )[-1,6]
(D )3-62⎡⎤⎢⎥⎣⎦,
(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为
(A )2(B )3(C )4(D )5
(7)若42ππθ⎡⎤∈⎢⎥⎣⎦
,,sin 2=8θ,则sin θ=
(A )35(B )45(C (D )34
(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x
<-1时,f (x )=-(x+2),当-1≤x <3时,f (x )=x 。
则f (1)
+f (2)+f (3)+…+f (2019)=
(A )335(B )338(C )1678(D )2019
(9)函数的图像大致为
(10)已知椭圆C :的离心学率为。
双曲线x ²-y ²=1的渐近线与径有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆c 的方程为
(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,延求这卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为
(A )232 (B)252 (C)472 (D)484
(12)设函数f (x )=,g (x )=ax 2+bx 若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是
A.当a<0时,x 1+x 2<0,y 1+y 2>0
B. 当a<0时, x 1+x 2>0, y 1+y 2<0
C.当a>0时,x 1+x 2<0, y 1+y 2<0
D. 当a>0时,x 1+x 2>0, y 1+y 2>0
第Ⅱ卷(共90分)
二、填空题:本大题共4小题,每小题4分,共16分。
(13)若不等式的解集为,则实数k=__________。
(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF
的体积为____________。
(15)设a >0.若曲线与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______。
(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,
的坐标为
______________。
三、解答题:本大题共6小题,共74分。
(17)(本小题满分12分)
已知向量m=(sinx ,1)
,函数f (x )=m ·n 的最大值为6.
(Ⅰ)求A ;
(Ⅱ)将函数y=f (x )的图象像左平移12 个单位,再将所得图象各点的横坐标缩短为原来的12
倍,纵坐标不变,得到函数y=g (x )的图象。
求g (x )在
上的值域。
(18)(本小题满分12分)
在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF 。
(Ⅰ)求证:BD ⊥平面AED ;
(Ⅱ)求二面角F-BD-C 的余弦值。
(19)(本小题满分12分)
先在甲、乙两个靶。
某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。
该射手每次射击的结果相互独立。
假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X 的分布列及数学期望EX
(20)(本小题满分12分)
在等差数列{a n }中,a 3+a 4+a 5=84,a 5=73.
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9n ,92n )内的项的个数记为bm ,求数列{b n }的前m 项和S n 。
(21)(本小题满分13分)
在平面直角坐标系xOy 中,F 是抛物线C :x2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34。
(Ⅰ)求抛物线C 的方程;
(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;
(Ⅲ)若点M ,直线l :y=kx+14
与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当
12≤k ≤2时,的最小值。
22(本小题满分13分)
已知函数f(x) = 2ln x k e
(k 为常数,c=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行。
(Ⅰ)求k 的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,g(x)<1+e -2。