主成分分析分析法
主成分分析方法
主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它通过线性变换将原始数据映射到一个新的坐标系中,以便更好地揭示数据的内在结构。
在实际应用中,主成分分析方法被广泛应用于数据压缩、特征提取、模式识别等领域。
本文将介绍主成分分析的基本原理、数学推导以及实际应用。
1. 基本原理。
主成分分析的基本思想是将高维数据映射到低维空间中,同时尽可能保留原始数据的信息。
假设我们有一个包含n个样本和m个特征的数据集X,其中每一行代表一个样本,每一列代表一个特征。
我们的目标是找到一个线性变换,将原始数据映射到k维空间中(k < m),使得映射后的数据能够最大程度地保留原始数据的信息。
2. 数学推导。
设我们的线性变换矩阵为W,映射后的数据集为Z,即Z = XW。
我们的目标是找到一个合适的W,使得映射后的数据集Z的协方差矩阵达到最大。
通过对协方差矩阵进行特征值分解,我们可以得到最大的k个特征值对应的特征向量,这些特征向量构成了我们的主成分。
3. 实际应用。
主成分分析方法在实际应用中具有广泛的应用价值。
首先,它可以用于数据压缩,将高维数据映射到低维空间中,从而节省存储空间和计算资源。
其次,主成分分析可以用于特征提取,提取最能代表原始数据的特征,从而降低数据维度并提高模型的泛化能力。
此外,主成分分析还可以用于模式识别,通过对数据进行降维和去噪,提高数据的分类和聚类效果。
总结。
主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间中,以便更好地揭示数据的内在结构。
在实际应用中,主成分分析方法具有广泛的应用价值,可以用于数据压缩、特征提取、模式识别等领域。
希望本文对主成分分析方法有所帮助,谢谢阅读!。
主成分分析法及其应用
主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。
它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。
本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。
我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。
然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。
我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。
二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。
这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。
变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。
主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。
方差最大化:主成分分析的另一个重要原理是方差最大化。
这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。
通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。
数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。
主成分分析法的步骤和原理[技巧]
主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。
设随机向量X的均值为μ,协方差矩12p阵为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。
2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。
ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
主成分分析法
主成分分析法什么事主成分分析法:主成分分析(principal components analysis , PCA 又称:主分量分析,主成分回归分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想:在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
主成分分析分析法
第四节 主成分分析方法地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看,这是一种降维处理技术。
假定有n 个地理样本,每个样本共有 p 个变量描述,这样就构成了一个 n xp 阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 )应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为X i , 为 X i ,X 2,…,zm (mep)。
贝U坷"】內+G 衍++l]p%X 2,…,X P ,它们的综合指标 新变量指标在(2)式中,系数l j由下列原则来决定:(1)乙与z j (i工j ;i , j=1 , 2,…,m)相互无关;(2) ............................................................................................................... z i是x i,X2,…,X P的一切线性组合中方差最大者;Z2是与z i不相关的X i, X2,…,X P的所有线性组合中方差最大者;;Z m是与Z i,乙, ..................................... Z m-1都不相关的X i, X2,…,X P的所有线性组合中方差最大者。
(完整版)主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法
主成分分析法1. 主成份分析:主成份分析是最经典的基于线性分类的分类系统。
这个分类系统的最⼤特点就是利⽤线性拟合的思路把分布在多个维度的⾼维数据投射到⼏个轴上。
如果每个样本只有两个数据变量,这种拟合就是其中和分别是样本的两个变量,⽽和则被称为loading,计算出的P值就被称为主成份。
实际上,当⼀个样本只有两个变量的时候,主成份分析本质上就是做⼀个线性回归。
公式本质上就是⼀条直线。
插⼊⼀幅图(主成份坐标旋转图,来⾃:PLS⼯具箱参考⼿册)如果⼀个样本有n个变量,那主成份就变为:其中PC1 称为第⼀主成份,⽽且,我们还可以获得⼀系列与PC这个直线正交的其它轴,如:被称为第⼆主成份以此类推,若令,此时向量A称为主成份的载荷(loading),计算出的主成份的值PC称为得分(score)。
1. 主成份分析举例作为⼀个典型的降维⽅法,主成份分析在数据降维⽅⾯⾮常有⽤,⽽且也是所有线性降维⽅法的基础。
很多时候,如果我们拿着⼀个⾮常复杂的数据不知所措的话,可以先考虑⽤主成份分析的⽅法对其进⾏分解,找出数据当中的种种趋势。
在这⾥,我们利⽤数据挖掘研究当中⾮常常见的⼀个数据集对主成份分析的使⽤举例如下:1996年,美国时代周刊(Times)发表了⼀篇关于酒类消费,⼼脏病发病率和平均预期寿命之间关系的科普⽂章,当中提到了10个国家的烈酒,葡萄酒和啤酒的⼈均消费量(升/年)与⼈均预期寿命(年)⼀级⼼脏病发病率(百万⼈/年)的数据,这些数据单位不⼀,⽽且数据与数据之间仅有间接关系。
因此直接相关分析不能获得重要且有趣的结果。
另外⼀⽅⾯,总共只有10个国家作为样本,各种常见的抽样和假设检验在这⽅⾯也没有⽤武之地,我们看看⽤何种⽅法能够从这个简单的数据表中获得重要知识作为数据挖掘的第⼀步,⾸先应该观察数据的总体分布情况。
⽆论是EXCEL软件,还是R语⾔,我们都能够很⽅便的从下表中获得表征数据分布的条形图。
从图中可以看出,总共10个国家,有5类数据,由于各类数据性质各不相同,因此数值上⼤⼩也很不相同。
主成分分析法原理
主成分分析法原理
主成分分析法是一种数据分析方法,可以将多维数据集合中的高维变量转化为少量的主成分,从而实现数据的降维和特征抽取。
主成分分析法的基本思想是:将原始数据的多维变量压缩到低维空间,其中压缩的维度由维度数量决定,而每一维变量的压缩程度由各维度的系数来决定。
每一个维度的系数可以理解为一个方向的投影,可以将原始数据投影到该方向上,以此来获得降维后的新数据矩阵。
主成分分析法由一系列步骤组成,包括数据预处理、主成分析、结果分析等。
首先,对原始数据进行预处理,将数据集中的变量标准化,并计算其协方差矩阵。
接着,在协方差矩阵的基础上,通过矩阵分解算法求出其特征值和特征向量,而特征向量代表了原始数据的主要特征和方向,其特征值表示了各个特征的重要性,用于对特征做出选择。
最后,利用特征值和特征向量,可以构建出新的主成分矩阵,以此实现数据的降维和特征抽取。
主成分分析法在实际应用中具有许多优点,可以实现多维数据的有效降维,减少原始数据的复杂性;可以提取数据中有用的信息;还可以用于数据可视化、数据分类等,因此被广泛应用于各个领域。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法简介
主成份分析法(Principal Component Analysis,PCA )也称主分量分析或矩阵数据分析,是统计分析常用的一种重要的方法,在系统评价、质量管理和发展对策等许多方面都有应用。
它利用数理统计方法找出系统中的主要因素和各因素之间的相互关系,由于系统地相互关系性,当出现异常情况时或对系统进行分析时,抓住几个主要参数的状态,就能把握系统的全局,这几个参数放映了问题的综合的指标,也就是系统的主要因素。
主成分分析法是一种把系统的多个变量转化为较少的几个综合指标的统计分析方法,因而可将多变量的高维空间转化为低维的综合指标问题,能放映系统信息量最大的综合指标为第一主成分,其次为第二主成分。
主成分的个数一般按需放映的全部信息的百分比来决定,几个主成分之间是互不相关的。
主成分分析法的主要作用是:发现隐含于系统内部的结构,找出存在于原有各变量之间的内在联系,并简化变量;对变量样本进行分类,根据指标的得分值在指标轴空间进行分类处理。
主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X 1,X 2,…,X P (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标F m 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量X P 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
设F 1表示原变量的第一个线性组合所形成的主成分指标,即11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F 1)越大,表示F 1包含的信息越多。
常常希望第一主成分F 1所含的信息量最大,因此在所有的线性组合中选取的F 11应该是X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 1为第一主成分。
如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F 2,为有效地反映原信息,F 1已有的信息就不需要再出现在F 2中,即F 2与F 1要保持独立、不相关,用数学语言表达就是其协方差Cov(F 1, F 2)=0,所以F 2是与F 1不相关的X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 2为第二主成分,依此类推构造出的F 1、F 2、……、F m 为原变量指标X 1,X 2,…,X P 第一、第二、……、第m 个主成分。
主成分分析法的实施步骤
主成分分析法的实施步骤简介主成分分析法(Principal Component Analysis,PCA)是一种常用的数据降维技术,可以将高维数据转换为低维数据,同时保留原始数据的主要特征。
本文将介绍主成分分析法的实施步骤。
步骤一:数据预处理在进行主成分分析之前,首先需要对数据进行预处理。
常见的预处理步骤包括数据标准化、缺失值处理、异常值处理等。
下面是数据预处理的一般步骤:1.数据标准化:将不同尺度的数据转化为具有相同尺度的数据,常用的标准化方法包括均值标准化和均方差标准化。
2.缺失值处理:对于含有缺失值的数据,常见的处理方法包括删除缺失值、使用平均值或中值填充缺失值等。
3.异常值处理:对于含有异常值的数据,可以使用箱线图或3σ法进行识别和处理。
步骤二:计算相关系数矩阵在进行主成分分析之前,需要计算原始数据的相关系数矩阵。
相关系数矩阵是一个对称矩阵,表示原始数据中各个变量之间的线性关系强度和方向。
计算相关系数矩阵的步骤如下:1.计算变量之间的协方差矩阵:协方差矩阵用于衡量两个变量之间的线性关系强度和方向。
2.标准化协方差矩阵:将协方差矩阵的每个元素除以相应变量的标准差,得到标准化协方差矩阵。
3.计算相关系数矩阵:将标准化协方差矩阵的每个元素除以两个变量的标准差的乘积,得到相关系数矩阵。
步骤三:计算特征值和特征向量特征值和特征向量是主成分分析的核心。
特征值表示主成分的解释方差量,而特征向量表示主成分的方向。
计算特征值和特征向量的步骤如下:1.对相关系数矩阵进行特征值分解,得到特征值和特征向量。
2.将特征值从大到小排序,选择保留的主成分的数量。
3.选取与保留的主成分对应的特征向量。
步骤四:构建主成分根据保留的特征向量,可以构建主成分。
主成分是原始变量的线性组合,具有解释原始变量方差的能力。
构建主成分的步骤如下:1.对于保留的特征向量,将其与原始数据进行矩阵相乘。
2.得到主成分矩阵。
步骤五:解释主成分解释主成分是分析主成分分析结果的一种方法,可以帮助我们理解主成分的含义和作用。
主成分分析法(论文)
主成分分析法(论文)摘要:本文介绍主成分分析法(PCA)的基本原理、数学模型、以及应用领域,详细阐述了PCA在多变量统计分析、图像处理、模式识别等领域中的应用。
通过实例分析,展示了PCA在数据降维、去噪、特征提取等方面的应用优势。
最后,对PCA的优缺点进行了总结,展望了其未来的研究方向。
关键词:主成分分析;多变量统计分析;图像处理;模式识别1. 简介主成分分析法(PCA)是一种常用的数据分析方法,它是对多个相关性较高的变量进行线性组合,得到一组无关的新变量,这些新变量称为主成分。
主成分是原变量的线性组合,具有较强的统计意义,能够反映出原变量的主要信息,同时可以用较少的变量来描述原数据。
因此,PCA被广泛应用于多变量统计分析、图像处理、模式识别等领域。
2. 基本原理PCA的核心思想是将原始数据转化成一组线性不相关的主成分,即通过正交变换将原数据转化成具有更好的可解释性和更小的冗余性的形式。
这种变换的基本思路是将原始数据进行协方差矩阵分解,使得矩阵的特征向量可以表示出新的主成分,特征值可以表示出每个主成分的贡献率。
假设原数据为一个m维随机向量X,每一维的方差为σ1^2, σ2^2, ..., σm^2,协方差矩阵为C。
则PCA的目标是寻找一个线性变换矩阵W,使得变换后的数据Y=WX具有以下特征:- Y的各维度变量之间彼此独立- Y的第一维度变量拥有最大的方差,并且是C的最大特征值所对应的特征向量- Y的第二维度变量拥有次大的方差,并且是C中第二大特征值所对应的特征向量- 以此类推,Y的每一维度变量都是协方差矩阵C对应的特征向量3. 数学模型对于一个具有n个样本和m个特征的数据集,其中每一行表示一个样本,每一列表示一个特征,则PCA的数学模型可以表示为以下步骤:1. 标准化数据:对每个特征进行标准化处理,即将每个特征的均值设为0,方差为1,使得不同特征之间具有可比性。
2. 计算协方差矩阵:计算数据集的协方差矩阵C,即其中x为m维列向量,X为n*m的数据矩阵,XT为X的转置。
主成分分析法
主成分分析法主成分分析旨在利用降维的思想,把多指标转化为少数几个综合指标。
在这个问题中为了全面、系统地分析问题,必须考虑众多影响因素。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
主成分分析法的方法:1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,...,X p)T)n 个样品x i =(x i1,x i2,...,x ip)T,i=1,2,…,n,n>p,构造样本阵,对样本阵元进行如下标准化变换:其中,得标准化阵Z。
2、对标准化阵Z 求相关系数矩阵其中,。
3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按确定m 值,使信息的利用率达85%以上,对每个λj,j=1,2,...,m, 解方程组Rb = λj b得单位特征向量。
4、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。
5 、对m 个主成分进行综合评价对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。
题目中给出了八种元素,我们想将八种元素归类,分为至少两个类别,一边之后进行分析。
因此根据主成分分析法,对八种元素分类。
应用软件,先将数据标准化,之后可以得出:相关系数矩阵,方差分解主成分提取分析表以及起始因子载荷矩阵和评分,如下图所示:结论:根据以上结果,可以把八种重金属元素分为:Cd,Cu,Hg,Pb,Zn和Cr,As,Ni两类,与前面一种方法结果相似。
事实上分析问题的方法与模型很多,得出的结果也会有差异,因此可以结合两种不同的方法,根据具体问题,将结论融合得出结论。
为此,我们通过分析决定以第一种方法的分类标准来分析之后的问题。
因为在查阅资料后,发现这样分出的两个类别与实际比较相符,而且污染的原因也大致相似,所计算出的数据也与之较为相符。
主成分分析法
在对社会调查数据进行分析时,除了把相关的问题综合成因子并保留大的因子,研究者往往还需要对因子与测度项之间的关系进行检验,以确保每一个主要的因子(主成分)对应于一组意义相关的测度项。为了更清楚的展现因子与测度项之间的关系,研究者需要进行因子旋转。常见的旋转方法是VARIMAX旋转。旋转之后,如果一个测度项与对应的因子的相关度很高(>0.5)就被认为是可以接受的。如果一个测度项与一个不对应的因子的相关度过高(>0.4),则是不可接受的,这样的测度项可能需要修改或淘汰。 用主成分分析法得到因子,并用因子旋转分析测度项与因子关系的过程往往被称为探索性因子分析。 在探索性因子分析被接受之后,研究者可以对这些因子之间的关系进行进一步测试,比用如结构方程分析来做假设检验。
主成分分析法在社会调查中的应用
在社会调查中,对于同一个变量,研究者往往用多个不同的问题来测量一个人的意见。这些不同的问题构成了所谓的测度项,它们代表一个变量的不同方面。主成分分析法被用来对这些变量进行降维处理,使它们“浓缩”为一个变量,称为因子。 在用主成分分析法进行因子求解时,我们最多可以得到与测度项个数一样多的因子。如果保留所有的因子,就起不到降维的目的了。但是我们知道因子的大小排列,我们可以对它们进行舍取。那么多小的因子需要舍弃呢?在一般的行为研究中,我们常常用到的判断方法有两个:特征根大于1法与碎石坡法。 因为因子中的信息可以用特征根li来表示,所以我们有特征根大于1这个规则。如果一个因子的特征根大于1就保留,否则抛弃。这个规则,虽然简单易用,却只是一个经验法则(rule of thumb),没有明确的统计检验。不幸的是,统计检验的方法在实际中并不比这个经验法则更有效(Gorsuch, 1983)。所以这个经验法则至今仍是最常用的法则。作为一个经验法则,它不总是正确的。它会高估或者低估实际的因子个数。它的适用范围是20-40个的测度项,每个理论因子对应3-5个测度项,并且样本量是大的 ( 3100)。 碎石坡法是一种看图方法。如果我们以因子的次序为X轴、以特征根大小为Y轴,我们可以把特征根随因子的变化画在一个坐标上,因子特征根呈下降趋势。这个趋势线的头部快速下降,而尾部则变得平坦。从尾部开始逆向对尾部画一条回归线,远高于回归线的点代表主要的因子,回归线两旁的点代表次要因子。但是碎石坡法往往高估因子的个数。这种方法相对于第一种方法更不可靠,所以在实际研究中一般不用。 抛弃小因子、保留大因子之后,降维的目的就达到了。
主成分分析法原理简介
主成分分析法原理简介1.什么是主成分分析法主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。
在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
2.主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。
这时就需要借助主成分分析来概括诸多信息的主要方面。
我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。
任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。
如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。
由这一点来看,一项指标在个体间的变异越大越好。
主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。
设随机向量X的均值为μ,协方差矩阵为Σ。
对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1p X pZ2=μ21X1+μ22X2+…μ2p X p………………Z p=μp1X1+μp2X2+…μpp X p主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X1,X2…X p的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z p是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:2211)()()()(j kj nk i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
主成分分析法原理
主成分分析法原理主成分分析法(PrincipalComponentAnalysis,PCA)是一种常用的数据处理技术,可以将一组多变量的原始数据转换成一组较少数量的新变量,称为主成分,从而简化数据分析。
这一技术源自统计学,研究发展至今已被应用于各种领域,如医学、社会学、金融学、物理科学和经济学等。
本文将就主成分分析法原理及其应用展开讨论。
一、主成分分析法原理主成分分析法是一种经验模型,它的设计目的是从一组变量中找出其中存在的潜在的结构,以最大限度的信息内容和最小的变量数量保存在一起,特别是对于那种变量数量多于样本数量的情况。
主成分分析法的基本过程是,先从多个变量中提取出一组新的解释变量,称为主成分;然后通过把原始变量转换成主成分来进行数据处理;最后,把主成分转换回原变量,完成数据的分析和处理。
主成分分析法的基本原理是通过找到一组新的变量,构成一组独立的“基”,并通过线性组合的方式,把原始变量转换成一组新的变量。
这些新变量有一定的排列性质,彼此之间是线性相关的,而且排列顺序也有一定的规律,显示出原始数据中存在的内在结构特征。
主成分分析法属于一类称为“特征处理”的数据处理技术,其主要优势在于能将原始数据中存在的内在结构和特征得以保留,同时又可以使用更少的变量来描述原始数据。
因此,主成分分析法可以有效地减少数据量,同时又将原始变量的信息保留得更完整。
二、主成分分析法的应用由于主成分分析法能够从大量的原始变量中提取出相对少量的有效变量,因此应用较为广泛,常被用于预测、统计分析以及图像处理等方面。
在预测中,主成分分析法常常被用于构建预测模型,它可以有效地减少变量数量,同时又保留原始变量中存在的重要特征,使得预测精度有了极大的提升。
在统计分析中,主成分分析法可以对多元数据进行深入的统计分析,通过构建一组新变量从而解决原始数据中变量之间存在的多重关联性问题。
在图像处理方面,主成分分析法也有较多应用,它可以把图像中的像素替换为一组主要成分,使得图像更容易储存、处理和传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 主成分分析方法
地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。
变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节 主成分分析方法的原理
主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。
假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵:
如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为 x 1, 为 x 1,x 2,⋯, zm (m ≤p ) 。
则
x 2
,⋯, x p
,它们的综合指标——新变量指标
在(2)式中,系数l ij 由下列原则来决定:
(1)z1 2与z j(i ≠j ;i ,j=1 ,2,⋯,m)相互无关;
(2)z 1是x1,x2,⋯,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,⋯,x p的所有线性组合中方差最大者;⋯⋯;z m是与z1,z2,⋯⋯z m-1 都不相关的x1,x2,⋯,x p的所有线性组合中方差最大者。
这样决定的新变量指标z1,z2,⋯,zm分别称为原变量指标x1,x2,⋯,x p 的第一,第二,⋯,第m主成分。
其中,z1在总方差中占的比例最大,z2,z3,⋯,z m的方差依次递减。
在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。
从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,⋯,p)在诸主成分z i (i=1 ,2,⋯,m)上的载荷l ij (i=1 ,2,⋯,m;j=1 ,2,⋯,p),从数学上容易知道,它们分别是x1,x2,⋯,x p的相关矩阵的m个较大的特征值所对应的特征向量。
第二节主成分分析的解法
主成分分析的计算步骤
通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,⋯,p)为原来变量x i与x j的相关系数,其计
算公式为
因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。
1 计算相关系数矩阵
2 计算特征值与特征向量
首先解特征方程|λI-R |=0求出特征值λi(i=1 ,2,⋯,p),并使其按大小顺序排列,即λ1≥λ2≥⋯,≥λp≥0;然后分别求出对应于特征值λi 的特征向量e i (i=1 ,2,⋯,p)。
3)计算主成分贡献率及累计贡献率
般取累计贡献率达85-95%的特征值λ1,λ2,⋯,λm所对应的第一,第⋯,第m(m≤p)个主成分。
4)计算主成分载荷
由此可以进一步计算主成分得分:
第三节主成分分析应用实例
主成分分析实例
对于某区域地貌- 水文系统,其57个流域盆地的九项地理要素:x1为流域盆地总高度(m)x2为流域盆地山口的海拔高度(m),x3为流域盆地周长(m),x4为河道总长度(km),x5为河
表 2-14 某 57 个流域盆地地理要素数据
道总数,x6为平均分叉率,x7为河谷最大坡度(度),x8为河源数及x9为流域盆地面积(km2)的原始数据如表2-14 所示。
张超先生(1984)曾用这些地理要素的原始数据对该区域地貌- 水文系统作了主成分分析。
下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。
表 2-15 相关系数矩阵
(1)首先将表2-14 中的原始数据作标准化处理,由公式(4)计算得相关系数矩阵(见表2-15)。
(2)由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表2-16)。
由表2-16 可知,第一,第二,第三主成分的累计贡献率已高达86.5 %,故只需求出第一,第二,第三主成分z1,z2,z3即可。
表 2-16 特征值及主成分贡献率
(3)对于特征值λ1=5.043,λ2=1.746,λ3=0.997 分别求出其特征向量e1,e2,e3,并计算各变量x1,x2,⋯⋯,x9在各主成分上的载荷得到主成分载荷矩阵(见表2-17)。
表 2-17 主成分载荷矩阵
从表2-17 可以看出,第一主成分z1与x1,x3,x4,x5,x8,x9 有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分z2 与x2有较大的正相关,与x7 有较大的负相关,而这两个地理要素是与流域切割程度有关的,因此第二主成分可以被认为是流域侵蚀状况的代表;第三主成分z3 与x6有较大的正相关,而地理要素x6 是流域比较独立的特性——河系形态的表征,因此,第三主成成可以被认为是代表河系形态的主成分。
以上分析结果表明,根据主成分载荷,该区域地貌- 水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。
如果选取其中相关系数绝对值最大者作为代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这三类地理要素的代表,利用这三个要素代替原来九个要素进行区域地貌- 水文系统分析,可以使问题大大地简化。