信号与系统第二章PPT课件

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

信号与系统 双语 奥本海姆 第二章PPT课件

信号与系统 双语 奥本海姆 第二章PPT课件

10
Chapter 2 §2.3 卷积的计算 1. 由定义计算卷积积分
例2.6 xte au tt,a0htut
2. 图解法 例2.7 求下列两信号的卷积
xt 1 , 0tT ht
0 , 其余t 3. 利用卷积积分的运算性质求解
LTI Systems
yt
t , 0t2T 0 , 其余t
11
Chapter 2
in Terms of impulses
Example 2
3 xn
2
1
1 01 2
n
xknk
x n x 1 n 1 x 0 n x 1 n 1
xnxknk k 4
Chapter 2
LTI Systems
§2.1.2 The Discrete-Time Unit Impulse Responses and the
LTI Systems
§2.3 Properties of LTI Systems
xt ht ytxtht
xn hn ynxnhn
LTI系统的特性可由单位冲激响应完全描述
Example 2.9 ① LTI system
h n
1
0
n0,1 otherwise
② Nonlinear System
③ Time-variant System
a y n x n x n 1 2 aytco s3 txt
b y n m x n ,x a n 1 x b ytetxt 12
Chapter 2
LTI Systems
§2.3.1 Properties of Convolution Integral and Convolution Sum 1. The Commutative Property (交换律)

信号与系统2-2冲激响应与阶跃响应课件

信号与系统2-2冲激响应与阶跃响应课件

8
举例
已知线性非时变系统的冲激响应 h(t) et (t),激励信号为
f (t) (t) 。试求系统的零状态响应。
解:系统零状态响应为:yzs (t) h(t) f (t) et (t) (t)
h( )
f ( )
1
0
t
0
将f(t)反折,再扫描可
yzs (t)
t e d
0
e
t 0
1
3t f1( ) f2 (t )d
1 1 1d 1 (4 t)
3t 2
2
即为重叠部分的面积。
当 3 t 1 即 t 4时:
f2 (t ) 和 f1( )没有公共的重叠部分, 故卷积 f (t) f1(t) f2 (t) 0
7
例 2.7
f1( )
A
2t 0 t1 f1( )
A
2 t0 1 t f1( )
(1 et ) (t)
确定积分上下限。
9
课堂练习题
自测题2.3 自测题2.4 自测题2.5
10
几条结论
f (t) f1(t) f2 (t)
f(t)的开始时间等于f1(t)和f2(t)的开始时间之和; f(t)的结束 时间等于f1(t)和f2(t)的结束时间之和。 f(t)的持续时间等于 f1(t)和f2(t)的持续时间之和。
h(t) 2e2t (t) (t)
计算机例题C2.3
已知系统的冲激响应为h(t) 3 (t) e2t (t),求阶跃响应。
h=sym('3*Dirac(t)-exp(-2*t)*Heaviside(t)'); g=int(h); g=simple(g)
g=1/2*Heaviside(t)*(5+exp(-2*t)) 阶跃响应为

信号与系统第二章课件.

信号与系统第二章课件.

先假定逆系统的冲击响应的结果为hi1(t),然后经逐步修 正找到最终的hi(t) 。
很遗憾以上关于hi1(t)的假定,虽然可以消除δ(t)项, 却引入了新的a2 δ(t-2T)项。不过回波信号的强度衰减了, 而且时间延迟了,使干扰效果明显减弱。可进一步设
可见若逆系统的冲激响应hi1(t)若采用此结果,回 波信号的强度可以衰减至无穷小,而且时间可以延迟 至无穷远。 实际问题中,我们只须将延时补偿采用几项,就 可达到理想效果。
其中N变量指所有的回波路径。Tm、源自m表示各条路径的延迟 时间和衰减系数。当T较小且a较小时,形成所谓的“混响”。
根据以上分析,可以很容易写出回波系统的冲击响应
这样一般信号的响应,可以很容易根据卷积关系写为
为了从含有干扰信号的回波信号中取出正常信号,我们需设 计一个“逆系统”,其方框图如下。
接下来的工作是从上式求出hi(t),这样的问题是卷 积的反问题,称为解卷积。 对已连续时间系统,解卷积一般难以给出普适的公式,而 对于离散时间问题,§7.7给出了一般的解法。采用变换域 解法(如付里叶变换、拉普拉斯变换),也可较方便给出此问 题冲激响应(或者系统函数)的解法。 下面我们给出此问题的尝试解法。
信号与系统
§2.10用算子符号表示微分方程
采用算子符号可以简化微分、积分方程的计算,本节给 出算子符号的一些基本运算规则,然后通过实例说明此方法 的方便之处。 (一)算子符号的基本规则
(一)用算子符号建立微分方程 用算子符号建立系统的微分方程不仅书写简单,而且非 常方便。电感、电容的等效算子符号为:
实例:用算子符号建立电路微分方程
R1=1
Lp=(1/4)p
1/CP=1/p C R2=3/2
线性电路微分方程求解借鉴课本,P81

南邮信号与系统课后答案第二章 ppt课件

南邮信号与系统课后答案第二章 ppt课件

xk
yk
h1k
h3 k
h2k
解: hkkh1kh2kh3kh3kh1kh3kh2kh3k
1kukuk1kukk11kuk
2
2
2
2kuk22kuk2k1uk12uk2k1uk1
2k2uk12k1uk12k22k1uk1
1 k 2
4 3
0.5k 2
k 1
k 1
2 3
1k 2
4 3
0.5k 2
4 3
1k 1
8 3
0
.5
k
1
u
k
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
u k
2 1k 0.5k uk
2-25 计算下列卷积
2 2e3tut
解原 : 式 e3tut2e3tut2ut
1 uk 1 1 uk 3
n 1
n 1
kuk 1 k 2uk 3
k k 1 k 2 uk 3 k 2uk 3
k k 1 k k 2 2uk 3
k k 1 k k 2 2uk 3
k 1
k2
k 1 2 k 2 2uk 3
k 1 2uk 2
(1)yk10.5ykxk1,xk1kuk
3
解: 设h0k 10.5h0k k
特征方程: 0.5 0 特征根: 0.5
h0k c10.5k uk 1
h011 0.5c1 c2 h0k20.5kuk1
h k h 0 k 1 2 0 . 5 k 1 u k 0 . 5 k u k
ykxkh k 1 kuk0 .5 kuk
3
k

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

第二章 信号与线性系统 吴大正 教材课件

第二章 信号与线性系统 吴大正 教材课件
yf (0) 2 yf (0) 2
对于t>0时
yf (t ) 3 yf (t ) 2 y f (t ) 6 (t )
第2章 离散信号与系统的Z域分析 连续系统的时域分析
y f (t ) C f 1e t C f 2e 2t 3;
y f (t ) 4e t e 2t 3, t 0
y (t ) an 1 y
(n)
( n 1)
(t ) a0 y (t ) bm f
m j 0
( m)
(t ) b0 f (t )
(2.1-1)
可表示为:
ai y ( i ) (t ) b j f ( j ) (t )
i 0
n
式中an-1,…,a1,a0和bm,…,b1,b0均为常数。该方程的全解由齐 次解和特解组成。齐次方程的解即为齐次解,用yh(t)表示。非齐 次方程的特解用yp(t)表示。即有 y(t)=yh(t)+yp(t) (2.1-2)
例2―3 求微分方程y″(t)+3y′(t)+2y(t)=f(t)的齐次解。 解:由特征方程
2 3 2 0 解得特征根λ1=-1,λ2=-2。
因此该方程的齐次解
yh(t)=c1e-t+c2e-2t
第2章 离散信号与系统的Z域分析 连续系统的时域分析 例2-1 求微分方程y″(t)+2y′(t)+y(t)=f(t)的齐次解。 解 由特征方程 2 2 1 0 解得二重根λ1=λ2=-1,
y x (t ) 4e t 2e 2t , t 0
第2章 离散信号与系统的Z域分析 连续系统的时域分析 2、零状态响应yf(t)

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

《信号与系统》第二版_(郑君里)_高等教育出版社课件

《信号与系统》第二版_(郑君里)_高等教育出版社课件

10
2021/4/2
零输入响应与零状态响应(cont.)
例2 7 设有如图所示的RC电路,电容两端有起始电压u( C 0),激 励源为e(t),求t 0时系统响应 电容两端电压u( C t)。 解:列写系统的微分方程为
d dt
uc (t)
1 RC
uc (t)
1 RC
e(t )

据微分方


一般表达式可
t
e RCuc (t) uc (0 )
1 RC
t
e RCe( )d
0-
R
+
+ e(t) uc (0 ) C
-


得:uc
(t
)=e
t RC
uc
(0
)
1 RC
t
e
t RC
e(
)d
0-
零输入响应
零状态响应
+
uc (t)
-
smilegs2001@
11
2021/4/2
零输入响应与零状态响应(cont.)
uR (t) RiL (t) 联立上式得
+
is (t)
-
R
iC (t) +
C
uc (t)
-
iL (t)
+
L uL (t)
-
带入(5)式得iL
(t )
iS
(t )
C
duC (t) dt
代入(3)式得
L
diL (t) dt
uC (t)
RiL (t)........................(1)
KVL:
uL

信号与系统第二章(3)卷积积分ppt课件

信号与系统第二章(3)卷积积分ppt课件

f2t
2
f
t
t2
2
3 4
d
3 4
3 2
4
t
t-2 0 t
当 t 4 时, ft0
f2t
3
4
0 t-2 t .
f (t) f1(t) f2(t)
0,
3
(t
2 ),
2
3
,
3
(4
t ),
2
0 ,
t 2 -2 t 0 0 t 2 2 t 4 t4
.
例 2.3例32: 设 f1(t)3e2t(t), f2(t)2(t),
f3(t)2(t2).
求 求卷积卷 积1) 积 f1(t) 分 f2(t( );2) ( f1(t)f3(t)。
解法一:图示法(1)
当 t 0 时 f 1 t f , 2 t 0
f1
3
当t 0时,f1t f2t
t 3e2 2d
0
6 t e2d 3e2 t
0
0
31e2t
f 1 t f 2 t 3 1 e 2 t t .
显然上式适用于 t 2 的区间。
f 1 t * f 3 t 3 1 e 2 t 2 t 2
.
练习:画出下列图形的卷积积分
f1t
f2t
2
1
2 -1 0 t
01 2
t
. 16
f1t
2
练习题答案:f1tf2t 2 -1 0 t
2
f2t
1
-1 0 1 t
01 2 t
思考:两个时限信号的卷积积分结果有何特点? 从非零区间长度及形状考虑。
本节小结1卷积积分的解析法2卷积积分的图解法23卷积积分卷积方法在本书中占有重要地位这里要讨论的卷积积分是将输入信号分解为众多冲激函数之和积分利用冲激响应求解lti系统对任意激励的零状态响应

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。

信号与系统第2章ppt课件

信号与系统第2章ppt课件

(B) u(t)Limetu(t) 0
假设u(t)的傅立叶变换为:
F ()A ()jB ()
e t u (t ) 的傅立叶变换为 :
依据傅立叶变换具有唯一性:
F e()A e()jB e()
F()li m0Fe()
所以
A()li m0Ae()精选pBpt()li m0Be()
第二章 傅立叶变换
F ()A ()jB () A()li m0Ae() B()li m0Be()
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)乘以Cs(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
精选ppt
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。

分类:连续信号、离散信号、模拟信号、数字信号等。

1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。

图形方法:波形图、频谱图、相位图等。

第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

2.2 连续系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。

齐次运算:连续信号的常数倍仍然是连续信号。

第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

3.2 离散系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。

齐次运算:离散信号的常数倍仍然是离散信号。

第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。

特点:连续性、模拟性、无限可再生性。

4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。

模拟调制:将信息信号与载波信号进行合成。

第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。

特点:离散性、数字化、抗干扰性强。

5.2 数字系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

信号与系统第二章(陈后金)2PPT课件

信号与系统第二章(陈后金)2PPT课件
2 1 0 1 2
x [k]
3
22
1
k
2 1 0 1 2 3
x [ k ] 3 [ k 1 ] [ k ] 2 [ k 1 ] 2 [ k 2 ]
2021/4/8
28
二、基本离散时间序列
5.单位阶跃序列
定义:
u[k] 1
2 1 0 1 2
✓ [k]与u[k]的关系:
[k]u[k]u[k1]
2021/4/8
1 k 0 u[k]0 k 0
k
k
u[k] [n] n 29
二、基本离散时间序列
6.矩形序列
1 0kN1
RN[k]0 otherwise
N 1
R N[k]u[k]u[kN ][km ] m 0 RN[k] 1
k
21 0 1 2
N1
2021/4/8
30
二、基本离散时间序列
7.斜坡序列
即0N = m2p , m = 正整数时,信号是周期信号。
如果0 /2p m/N , N、m是不可约的整数, 则信号的周期为N。
2021/4/8
23
[例]判断下列离散序列是否为周期信号.
1) x1[k] = cos(kp/6)
0 /2p 1/12, 由于1/12是不可约的有理数,
故离散序列的周期N=12。
-1 0 1 2 3
k
➢ 序列的列表表示
表示k=0的位置
x[k]=[0, 2, 0, 1, 3, 1, 0]
2021/4/8
18
二、基本离散时间序列
1.实指数序列
r >1
x[k]Akr, kZ
0< r <1
r <1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
(c)所示的f1(t)和f2(t)。 解
27
第2章 连续信号与系统的时域分析
题图 2.2
28
第2章 连续信号与系统的时域分析
2.6 f1(t)和f2(t)如题图2.3(a)和(b)所示,试用图解法求卷积 积分f1(t)*f2(t),并画出其波形。
题图 2.3
29
第2章 连续信号与系统的时域分析
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
39
第2章 连续信号与系统的时域分析
解 计算两个分段信号在某时刻的卷积积分值,应用图解 法求解比较方便。
当t=-1时,f2(t-τ)=f2(-1-τ)。画出f1(τ)、f2(-1-τ)波形如 题解图2.8(a)所示, 两波形重叠区间为[-2,0],求得
40
第2章 连续信号与系统的时域分析
题解图 2.8
41
第2章 连续信号与系统的时域分析
同理,当t=0和1时,分别画出f1(τ)、f2(t-τ)波形如题解图 2.8(b)、(c)所示,并在相应重叠区间上计算卷积结果,得
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
自然,根据积分运算的几何意义,上述结果也可通过直接 观察乘积信号f1(τ)·f2(t-τ)波形的净面积得到。
42
第2章 连续信号与系统的时域分析
2.9 已知信号f1(t)和f2(t)波形如题图2.5所示,试计算 f1(t)*f2(t)。
6
第2章 连续信号与系统的时域分析
题解图 2.2
7
第2章 连续信号与系统的时域分析
2.3 各信号波形如题图2.1所示,计算下列卷积,并画出其 波形。
(1) f1(t)*f2(t); (2) f1(t)*f3(t); (3) f4(t)*f3(t); (4) f4(t)*f5(t)。
8
第2章 连续信号与系统的时域分析
(3)
波形如题解图2.3-3所示。
14
第2章 连续信号与系统的时域分析
题解图 2.3-3
15
第2章 连续信号与系统的时域分析
(4) 用图解法求卷积积分。求解过程及f4(t)*f5(t)波形如题解 图2.3-4所示。
题解图 2.3-4
16
因为
第2章 连续信号与系统的时域分析
17
所以
第29
第2章 连续信号与系统的时域分析

波形如题解图2.3-1所示。
10
第2章 连续信号与系统的时域分析
题解图 2.3-1
11
第2章 连续信号与系统的时域分析
(2)
波形如题解图2.3-2所示。
12
第2章 连续信号与系统的时域分析
题解图 2.3-2
13
第2章 连续信号与系统的时域分析
18
第2章 连续信号与系统的时域分析
2.4 计算卷积积分f1(t)*f2(t):
19
第2章 连续信号与系统的时域分析
解 应用卷积性质和公式计算卷积积分。
20
第2章 连续信号与系统的时域分析 21
第2章 连续信号与系统的时域分析
结合题解图2.4,求得
所以
22
第2章 连续信号与系统的时域分析
题解图 2.4
题解图 2.6
33
第2章 连续信号与系统的时域分析
2.7 试计算下列卷积: (1) 2*t[ε(t+2)-ε(t-1)]; (2) ε(t)*tnε(t); (3) e-tε(t)*δ′(t)*ε(t); (4) e-2tε(t)*δ″(t)*tε(t)。
34
第2章 连续信号与系统的时域分析
解 (1) 画出f1(t)=t[ε(t+2)-ε(t-1)]波形如题解图2.7 所示。
第2章 连续信号与系统的时域分析
第2章 连续信号与系统 的时域分析
1
第2章 连续信号与系统的时域分析
2.1 对下列信号,当τ→0(τ>0)时,f(t)→δ(t),试确定系数
值K(提示: 利用
的特点求解)。
2
第2章 连续信号与系统的时域分析
解 (1) 因为
对上式两边从-∞到∞取积分,考虑到
求得 所以
23
第2章 连续信号与系统的时域分析
(9) 将f1(t)、f2(t)改写为
24
先计算
第2章 连续信号与系统的时域分析
再应用卷积时移性质,求得
25
(10) 因为
第2章 连续信号与系统的时域分析
所以
26
第2章 连续信号与系统的时域分析
2.5 已知f(t)如题图2.2(a)所示。试用f(t),δT(t)= 进行两种运算(相乘和卷积),构成题图2.2(b)和
题解图 2.7
35
第2章 连续信号与系统的时域分析
由于f1(t)波形净面积
S=-2+0.5=-1.5
所以,卷积积分
y1(t)=2*f1(t)=2S=-3
(2) 因为ε(-∞)=0,故可应用卷积的微积分性质简化公式得
36
第2章 连续信号与系统的时域分析
(3) 因为ε(-∞)=0, 故有 所以
37
第2章 连续信号与系统的时域分析
相关文档
最新文档