新版流体力学知识点大全-新版.pdf
流体力学知识点大全
流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ⇒⨯=迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
(完整版)流体力学知识点总结汇总
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学PDF
第七章 功與能 4. 表面張力的計算:
表面張力存在於液體之表面,如下之問題,有兩面(前後、裡外、上下、…等 等),必須算兩次。
把針放在水面上的小技巧:針放在衛生紙上,讓衛生紙慢慢下沉。
P ∝ e−ah
第七章 功與能
第七章 功與能
流體力學→界面現象→表面張力→毛細管
090509
毛細管與毛細現象
1.成因: 以水為例: 玻璃與水之間的作用力 > 水與水之間的作用力 即,附著力大於內聚力,故玻璃會將液柱往上拉
3.進階應用:
靜力平衡(分析液柱):
向上的力=向下的力
mg = T cosα ⋅ 2πr
(ρπr2 y)g = T cosα ⋅ 2πr 故
y
=
2T cosα ρgr
靜力平衡(分析整段水):
向上的力=向下的力
mg = T cosα ⋅ 2l
(ρdhl)g = T cosα ⋅ 2l
故
h
=
2T cosα ρgd
h
相等
h
【口訣】:同一種液體,同一高度,壓力相同
4.進階思考: 三容器在桌面造成的壓力何者最大?
三容器內的液體在容器底部造成的壓力何者最大?
容器甲及丙對水的力為何?
第七章 功與能
命題焦點 9.2→大氣壓力
090201 大氣壓力:
1、壓力的來源:
種類
氣體壓力
氣體壓力
來源
氣體的重量
氣體的碰撞
章別
第九章
When a body is fully or partially submerged in a fluid, a buoyant force from the
surrounding fluid acts on the body. The force is directed upward and has a magnitude
流体力学知识要点
1.质量力:质量力是作用在流体上的每一个质点上的力。
单位是牛顿N单位质量力:设在流体中的M点附近取质量为dm的微团,其体积为dv,作用于该微团的质量力为dF 则称极限lim dF/dm =f为作用于M点单位质量的质量力2.表面力:表面力是作用在所考虑的或大或小的流体系统表面上的力。
3.容重:密度和重力加速度的乘积。
4.动力黏度:它表征单位速度梯度下作用下的切应力,反映了黏滞性的动力性质。
单位为N/m2.s以符号Pa.s动力黏度u与运动黏度γu=ρv5表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降高度的现象称为毛细管现象。
6流体的三个模型:连续介质模型,无黏性流体模型,不可压缩流体模型第二1流体静压强的两个特征:其方向必然是沿着作用面的内法线方向;其大小只与位置有关,与方向无关2流体静压强基本方程式b:流体静压强的分布规律适用条件:只适用于静止,同种,连续性液体3静止均质液体的水平面是等压面,静止非均质流体的水平面是等压面,等密面和等温面4压强的两种计算基准:绝对压强和相对压强。
以绝对真空为零点起算的压强为绝对压强;以当地同高程的大气压强Pa为零点起算的压强为相对压强;当相对压强为负值时负压,负压的绝对值称为真空度Pv表示5压强的三种度量单位6常用的液柱测压计:测压管,压差计,微压计第三1.描述流体运动的两种方法:a拉格朗日法,b 欧拉法对比拉格朗日法和欧拉法的不同变量,可以看出两者的区别:前者以a,b,c为变量,是以一定质点为对象;后者以x,y,z为变量,是以固体空间点为对象。
2.非恒定流动:流速等物理量的空间分布与时间有关的流动。
恒定流动:运动平衡的流动,流场中各点流速不随时间变化,由流速决定的压强,黏性力和惯性力也不随时间变化的流动称为恒定流动。
3.流线:在采用欧拉法描述流体运动时,为了反映流场中的流速,分析流场中的运动,常采用形象化的方法直接在流场中绘出反映流动方向的一系列线条。
流体力学知识点
第一章流体流动§1.1.1、概述1、流体—液体和气体的总称。
流体具有三个特点①流动性,即抗剪抗张能力都很小。
②无固定形状,随容器的形状而变化。
③在外力作用下流体内部发生相对运动。
2、流体质点:含有大量分子的流体微团。
流体分子自由程<流体质点尺寸<设备大小,流体质点成为研究流体宏观运动规律的考察对象。
3、流体连续性假设:假设流体是由大量质点组成的彼此间没有空隙,完全充满所占空间的连续介质。
连续性假设的目的是为了摆脱复杂的分子运动,而从宏观的角度来研究流体的流动规律,这时,流体的物理性质及运动参数在空间作连续分布,从而可用连续函数的数学工具加以描述。
流体流动规律是本门课程的重要基础,这是因为:①流体的输送研究流体的流动规律以便进行管路的设计、输送机械的选择及所需功率的计算。
②压强、流速及流量的测量为了了解和控制生产过程,需要对管路或设备内的压强、流量及流速等一系列的参数进行测量,这些测量仪表的操作原理又多以流体的静止或流动规律为依据的。
③为强化设备提供适宜的流动条件化工生产中的传热、传质过程都是在流体流动的情况下进行的。
设备的操作效率与流体流动状况有密切的联系。
因此,研究流体流动对寻找设备的强化途径具有重要意义。
本章将着重讨论流体流动过程的基本原理及流体在管内的流动规律,并运用这些原理及规律来分析和计算流体的输送问题。
第二节流体静力学方程流体静力学是研究流体在外力作用下处于平衡的规律。
本节只讨论流体在重力和压力作用下的平衡规律。
§1.2.1流体的密度和比容1、流体的密度:单位体积的流体所具有的质量。
/m V ρ=∆∆当V ∆趋近于零时,/m V ∆∆的极限值为流体内部某点的密度,可以写成:0limV mVρ∆→∆=∆各种流体的密度可以从物理化学手册和有关资料中查得。
气体具有可压缩性及膨胀性,故其密度随温度及压强而变化,因此对气体密度必须标出其所处的状态。
从手册中查出的气体密度是某指定状态下的数值 ,应用时一定要换算到操作条件下的数值。
流体力学基础知识
流体力学基础知识第一节流体的物理性质一、流体的密度和重度流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m3。
流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m3,两者之间的关系为gγ=,g为重力加速度,通常g=9.806m/s2ρ流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。
因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。
对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。
对于气体来讲,压力和温度对密度和重度的影响就很大。
二、流体的粘滞性流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。
所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。
所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。
运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。
气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。
液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。
但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。
故轴承回油温度一般保持在以60℃下。
第二节液体静力学知识一、液体静压力及其特性液体的静压力是指作用在单位面积上的力,其单位为Pa。
平均静压力是指作用在某个面积上的总压力与该面积之比。
点静压力是指在该面积某点附近取一个小面积△F,当△F逐渐趋近于零时作用在△F面积上的平均静压力的极限叫做该面积某点的液体静压力。
平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示某点的实际液体静压力就需要引出点静压力的概念。
流体力学基础知识
流体力学基础知识(总15页) -本页仅作为预览文档封面,使用时请删除本页-第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,k g;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103k g/m32Ρ水银=×103k g/m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N;V——流体的体积,m3。
∵G=m g∴γ=ρg常温,一个标准大气压下γ水=×103k g/m3γ水银=×103k g/m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+d u,d u为相邻流层的速度增值,设相邻流层的厚度为d y,则d u/d y叫速度梯度。
全国自考流体力学知识点汇总
3347 流体力学全国自考第一章绪论1、液体和气体统称流体,流体的基本特性是具有流动性。
流动性是区别固体和流体的力学特性。
2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。
3、流体力学的研究方法:理论、数值和实验。
4、表面力:通过直接接触,作用在所取流体表面上的力。
5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。
重力是最常见的质量力。
6与流体运动有关的主要物理性质:惯性、粘性和压缩性。
7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。
8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。
粘性是流体的内摩擦特性。
粘性又可定义为阻抗剪切变形速度的特性。
9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。
10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。
11、压缩性:流体受压,分子间距离减小,体积缩小的性质。
12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。
13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。
14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。
第二章流体静力学1、精致流体中的应力具有一下两个特性:应力的方向沿作用面的内法线方向。
静压强的大小与作用面方位无关。
2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。
3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、4、相对压强是以当地大气压强为基准起算的压强。
5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个•又称负压,这种状态用真空度来度量。
6工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。
因此,先跪压强又称为表压强或计示压强。
7、z+p/ p g=C:z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。
流体力学知识点
流体力学知识点一、填空题1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。
2.在现实生活中可视为牛顿流体的有水和空气等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
6.空气在温度为K,压强为mmHg时的密度和容重分别为kg/m3和N/m3。
7.流体受压,体积缩小,密度增大的性质,称为流体的压缩性;流体受热,体积膨胀,密度减少的性质,称为流体的热胀性。
8.压缩系数的倒数称为流体的弹性模量,以来表示9.1工程大气压等于98.07千帕,等于10m水柱高,等于735.6毫米汞柱高。
10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。
11.流体静压强的方向必然是沿着作用面的内法线方向。
12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
15.在微压计测量气体压强时,其倾角为,测得cm 则h=10cm。
16.作用于曲面上的水静压力的铅直分力等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18.流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
19.静压、动压和位压之和以表示,称为总压。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
21.由紊流转变为层流的临界流速小于由层流转变为紊流的临界流速,其中称为上临界速度,称为下临界速度。
(完整版)流体力学
第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
流体力学知识点总结
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力 切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质(1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学-知识点
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
流体力学知识点
流体力学1.学流体力学的任务:①流体自身运动规律(质量守恒、能量守恒、相互作用);②流体与相邻物体之间的相互作用。
2.作用在一般流体上的力:表面力和质量力。
3.表示流体压缩性的物理量有:体积压缩系数,体积弹性模量(二者互为倒数)4.描述流体运动的方法:拉格朗日法和欧拉法。
5.拉格朗日法的基本思想:着眼于流体质点(系)跟踪描述该质点随时间的运动情况。
拉格朗日法的基本思想几何表达法:迹线。
6.欧拉法的基本思想:着眼于流体质点(系)占有的空间点(区域)研究该流体(质点)通过该空间点(区域)的运动情况。
欧拉法的基本思想几何表达法:流线。
7.流体运动的分解:平动、转动、线变形、角变形。
8.流线与迹线的不同:迹线反映的是一个流体质点,不同时刻运动留下的轨迹流线反映的是同一时刻,不同质点的速度方向曲线9.雷诺实验所探讨的流体流态有:层流和紊流。
10.判别流态的标准是:下临界雷诺数(不是2300,受管截面的影响)。
11.不可压缩流体连续性方程的微分形式:ðu xðx +ðu yðy+ðu zðz=012.流体管道中的能量损失包括:沿程损失和局部损失13.流程损失的因素有:管道的粗糙度,流体的粘性,流态即ℎf=λLd v2 2gλ:沿程阻力系数:与流体的流态,雷诺数有关系,与管道的粗糙度有关层流区,层流紊流过渡区,紊流光滑区,紊流过渡区,紊流粗糙区14.流体的能量方程(重力场中的伯努利方程):Z+Pρg +u22g=C物理意义:单位重量的流体沿着流线机械能保持不变15.粘性流体的能量方程(在重力场中沿流线运动时的伯努利方程):Z1+P1+u12=Z2+P2+u22+ℎw物理意义:粘性流体的总水头线沿流程逐渐下降。
16.理想流体总水头线保持不变。
17.测压管水头线有高有低(受管径的影响)。
重力场中静止均质不可压缩流体的静压强方程:P=P0+ρgℎ18.静压强的性质:①静压强产生静压力的方向必沿着作用面内法线方向;②平衡流体内部任意一点处的静压强在各个方向相等。
流体力学知识点大全
流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线;(),0dr U x t dr U ⇒⨯=r rP迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线;涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=r r r rr r P涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。
流体力学基础知识共26页文档
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
流体力学基础知识
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涡量:速度矢量的旋度,
角速度:
1 1V 22
V 0 无旋流动
流体力学 - 4
V VV B F
t
B : 体积力, F 面积力;
3)、 能量方程:单位时间流入流体的能量、外界传入的热量、外力做功的总和, 等于控制体内能量的增加。
E
t 增加量
EV 流入量
BV 体积力做功
PV 表面力做功
D* t
*t
质量体内的 生成热 : qdV
D* t
边界面上因 热传导输入 的热量: n TdA
*t
e)、热力学第二定律 dS dQ 0,
T
S 是系统的熵
2、有积分形式到微分形势的方程,有三种方法:
(1)、应用矢量的微积分;
(2)、积分应用于体积元,有体积元趋于零,取极限推得;
(3)、将系统的方程直接应用体积元,再将积分表达式取极限;
第一章 绪论
1、牛顿流体: 剪应力和速度梯度之间的关系式称为牛顿关系式, 遵守 牛顿关系式 的流体是牛顿 流体。 2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。此时,流体内部 没有内摩擦,也就没有 内耗散和损失 。 层流:纯粘性流体,流体分层,流速 比较小 ; 湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。因
为流速增加导致层流出现不稳定性。 定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变, 3、欧拉描述:空间点的坐标; 拉格朗日:质点的坐标; 4、流体的粘性引起剪切力,进而导致耗散。 5、无黏流体 —无摩擦 —流动不分离 —无尾迹。
流体力学 - 1
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体: D 0
1)、流体的每个质点都处于静止状态, ==整个系统无加速度; 2)、质点相互之间都没有相对运动, ==整个系统都可以有加速度; 由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有: 体积力 (重力、磁场力 )和表面力 (压强和剪切力 )存在。 3、表面张力:两种不可混合的流体之间的分界面是曲面,则在曲面两边存在一
dQ dWs dt dt
ed t C .V
ep
C .S
V dA
D EdV
f UdV
Dt D* t
D* t
Tn UdA
qdV
*t
D* t
n TdA
*t
流体力学 - 3
质量体内的总能量增长率: D
EdV ,
Dt D* t
E e 1U 2 2
体积力 所作的功率:
f UdV ; 表面力 所作的功率: Tn UdA
个压强差。
dp 4、正压流场:流体中的密度只是压力 (压强 )的单值函数。
p
5、涡量不生不灭定理 拉格朗日定理: 理想正压流体在势力场中运动时, 如某一时刻连续流场无旋, 则
流场始终无旋。
ndA 0,
U,
有斯托克斯公式得:
Ux
ndA 0,
A
l0
流体力学 - 2
拉格朗日定理是判断 理想 正压 流体在 势力场 中运动是否无旋的理论依据。 涡量的产生原因 : (A) 流体的粘性;非理想流体; (B) 非正压流体;大气和海洋中的密度分层 (非正压 )导致漩涡; (C) 非有势力场;气流科氏力 (非有势力 )作用导致漩涡; (D) 流场的间断,高速气流中的曲面激波后,产生有旋流流场;
Dt
const 是针对流体中的 同一质点在不同时刻保持不变 ,即不可压缩流体的密
度在任何时刻都保持不变。是一个过程方程。 7、流体的几种线 流线 :是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线;
dr U x, t
dr U 0
迹线 :流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线;
2)、动量方程: 单位时间流入控制体的动量以及作用于控制体上的外力之和, 等 于控制体动量的增加。 应力张量:代表剪应力和正应力;
应力张量一定是对称的;否则,当体积元收缩成无限小时,必将以无 限大的角速度旋转。因此,应力张量只能有六个分量。
局部加速度:非定常流动,对流加速度:面积的变化; 欧拉坐标系和拉格朗日中的速度和加速度其大小和方向都不会改变;
涡线 :涡量场的向量线,
U , dr x,t
dr
0
涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团 准刚体转动方向的连线, 形象的说:涡线像一根柔性轴把微团穿在一起。
第二章流体静力学
1、压强: p lim F dF A 0 A dA
静止流场中一点的应力状态只有 压力 。 2、流体的平衡状态:
C .S
C .V
r t C.V
每一项物理意义: r dFs :控制面上的力对原点的力矩,
C .S
r B d :体积力对原点的力矩,
C .V
Vd
r
量,控制体内流体的总角动量,
t C.V
r VV dA :通过控制面的角动量流出率,
C .S
d)、能量守恒 (热力学第一定律 ) Q W E
第三章流体运动的数学模型
1、积分型的流体方程 a)、质量守恒定律 :
物理意义:流出控制体表面的 净质量流量 等于控制体内质量对 时间的减少率 。
V dA
C .S
b)、动量守恒:牛顿第二定律
d t C.V
Fs 表面力 + B d 体积力
C .V
F
Vd t C .V
VV dA
C .S
c)、角动量
r dFs + r B d
流体力学 -笔记
参考书籍: 《全美经典 -流体动力学》
《流体力学》张兆顺、崔桂香 《流体力学》吴望一 《一维不定常流》 《流体力学》课件清华大学王亮主讲
目录:
第一章绪论 第二章流体静力学 第三章流体运动的数学模型 第四章量纲分析和相似性 第五章粘性流体和边界层流动 第六章不可压缩势流 第七章一维可压缩流动 第八章二维可压缩流动气体动力学 第九章不可压缩湍流流动 第十章高超声速边界层流动 第十一章磁流体动力学 第十二章非牛顿流体 第十三章波动和稳定性
欧拉坐标 ,即:笛卡尔坐标, V V r , t V x, y, z,t ;
拉格朗日 ,刚体描述,速度、加速度分别为: r ,r
3、微分型的流体方程 1)、 连续性方程:单位时间流入控制体的质量等于控制体内质量的增加。
t
V0
定常流
t0
V0
不可压缩: D Dt 0
V0
一维定常流: 1A1V1 2 A2V2
q
qR
热传导 非传导热
E e 1V2, 2
q= T , Fourier 热传导定律