ABAQUS应用梁单元计算简支梁

合集下载

abaqus梁单元的应用

abaqus梁单元的应用

6.1.1
截面计算点
梁横截面的几何形状和尺寸确定后,就要在分析过程中计算横截面的工程性面上的计算点来计算梁单元的响应。横截面计算点的编号以 及位置详见 ABAQUS/标准用户手册中 15.3.9 节。单元的变量如应力和应变等,可在任意 一个横截面计算点上输出。然而,默认的输出点只在几个指定的横截面计算点上给出, ABAQUS/标准用户手册中 15.3.9 节中有详细描述。 矩形横截面的计算点如下图 6-2 所示。
第六章
梁单元的应用
对于某一方向尺度 (长度方向)明显大于其它两个方向的尺度,并且以纵向应力为主 的结构,ABAQUS 用梁单元对它模拟。梁的理论是基于这样的假设:结构的变形可以全部 由沿梁长度方向的位置函数来决定。当梁的横截面的尺寸小于结构典型轴向尺寸的 1/10 时,梁理论能够产生可接受的结果。典型轴向尺寸的例子如下: ·支承点之间的距离。 ·有重大变化的横截面之间的距离。 ·所关注的最高振型的波长。 ABAQUS 梁单元假定梁横截面与梁的轴向垂直,并在变形时保持为平面。 切不要误解为横截面的尺寸必须小于典型单元长度的 1/10,高度精细的网格可能包 含长度小于横截面尺寸的梁单元,不过并不推荐这种方式,这种情况下实体单元更适合。
图 6-1
梁横截面形状
在定义梁横截面的几何形状时,ABAQUS/CAE 会提示输入所需尺寸,不同的横截面类 型会有不同的尺寸要求。 如果梁的外形与梁横截面的截面性质有关时, 可以要求在分析过 程中计算横截面的工程性质, 也可以要求在分析开始前预先计算横截面的工程性质。 当材 料的力学特性既有线性又有非线性时(例如,截面刚度因塑性屈服而改变) ,可以选用第 一种方式,而对线弹性材料,第二种方式效率更高。 也可以不给出横截面尺寸, 而直接给出横截面的工程性质 (面积、 惯性矩和扭转常数) , 这时材料的力学特性既可以是线性的也可以是非线性的。 这样就可以组合梁的几何和材料 特性来定义梁对荷载的响应,同样,响应也可以是线性或非线性的。详情可参考 ABAQUS/ 标准用户手册中 15.3.7 节。

ABAQUS简支梁分析梁单元和实体单元

ABAQUS简支梁分析梁单元和实体单元

ABAQUS简支梁分析梁单元和实体单元梁单元是ABAQUS中常用的一种单元类型,适用于对梁结构进行分析。

它是一维元素,具有沿一个坐标轴的长度、截面积和转动惯量等属性。

梁单元适用于对纤维偏离主轴较小的梁进行建模。

与梁单元相比,实体单元更适用于对复杂几何形状的梁进行建模。

实体单元是三维元素,它在三个坐标轴上都具有长度,并且可以定义复杂的几何形状。

实体单元适用于对纤维偏离主轴较大的梁、异形梁和复杂梁进行建模。

梁单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如截面形状、材料参数等。

2.创建草图:使用ABAQUS提供的工具创建梁单元的草图,定义梁的几何形状和尺寸。

3.定义截面:将截面属性应用到梁单元上,包括截面形状和尺寸。

4.创建网格:使用ABAQUS的网格划分工具将梁的草图划分为网格,生成梁单元。

5.设置材料属性:为梁单元定义材料属性,包括弹性模量、泊松比等。

6.施加边界条件:为梁单元定义边界条件,如支撑和加载情况。

7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。

8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。

实体单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如材料参数等。

2.创建草图:使用ABAQUS提供的工具创建梁的草图,定义梁的几何形状和尺寸。

3.创建几何图形:使用ABAQUS的几何模块创建复杂的实体几何形状。

4.定义材料属性:为实体单元定义材料属性,包括弹性模量、泊松比等。

5.生成网格:使用ABAQUS的网格划分工具将实体几何形状划分为网格,生成实体单元。

6.施加边界条件:为实体单元定义边界条件,如支撑和加载情况。

7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。

8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。

梁单元和实体单元在ABAQUS中都提供了丰富的分析功能和选项,可以根据实际需要使用不同的单元类型来建模和分析梁结构。

ABAQUS简支梁分析报告(梁单元和实体单元)

ABAQUS简支梁分析报告(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。

另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。

对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。

不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。

可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。

对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。

现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。

材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。

图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。

在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。

然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。

图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。

ABAQUS计算指导0应用梁单元计算简支梁的挠度

ABAQUS计算指导0应用梁单元计算简支梁的挠度

ABAQUS计算指导0:应用梁单元计算简支梁的挠度对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。

文件与路径:顶部下拉菜单File, Save As ExpAbq00。

一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。

3 退出:Done。

二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。

2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。

3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。

ABAQUS简支梁分析(梁单元和实体单元)

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于ABAQUS2016,首先用梁单元分析了梁受力作用下的应 力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。

另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。

对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae, odb , inp 文件。

不过要注意的是本文采用的是 ABAQUS2016 进行计算,低版本可能打不开,可以自己提交 inp 文件自己计算即可。

可以到 小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件 下载。

对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径 D=180mm ,小直径d=150mm ,a=200mm ,b=300mm , l=1600mm , F=300000N 。

现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。

材料采用 45#钢,弹性模量E=2.1e6MPa,泊松比 v=0.28。

1.梁单元分析ABAQUS2016 中对应的文件为 beam-shaft.cae , beam-shaft.odb , beam-shaft.inp 。

在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图 2所示lbb aaA ACBA图1简支梁结构简图图2建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。

然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2, n 1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。

图3创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。

反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。

(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。

三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。

(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。

ABAQUS例题

ABAQUS例题

对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。

文件与路径:顶部下拉菜单File, Save As ExpAbq00。

一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。

3 退出:Done。

二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。

2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。

3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。

反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。

(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。

三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。

(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。

ABAQUS简支梁分析报告(梁单元和实体单元)

ABAQUS简支梁分析报告(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。

另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。

对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。

不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。

可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。

对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。

现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。

材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。

图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。

在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。

然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。

图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。

ABAQUS简支梁分析

ABAQUS简支梁分析

ABAQUS简支梁分析梁单元是一种一维元素,用于模拟梁结构的性能。

这些单元只在一维方向上有自由度,并且可以模拟杆、梁、桁架等结构的变形和应力响应。

梁单元的计算速度相对较快,且具有较高的精度,适用于较长且较细的结构中,如钢筋混凝土构件、悬索桥、高层建筑等。

实体单元是一种三维元素,用于对立方体、球体、柱体等实体结构的性能进行分析。

实体单元具有六个自由度,分别为三个平移自由度和三个旋转自由度,能够充分模拟结构的各向异性、非线性和复杂几何形状等特性。

实体单元可以用来分析基础、墙体、桥梁、汽车车身等各种结构的力学响应和变形特性。

在ABAQUS中,梁单元和实体单元的使用方式类似,首先需要定义节点坐标和单元拓扑关系,并指定材料属性、边界条件和加载方式等。

然后,可以进行求解并获取结构的应力、应变、位移和变形等结果。

以下内容将详细介绍如何使用ABAQUS进行简支梁的分析。

1. 创建模型:首先,在ABAQUS的Preprocessing环境中创建模型。

选择适当的单位系统,并定义节点坐标和单元拓扑关系。

在创建节点时,需要注意节点编号和坐标的设置,以确保准确的节点连接关系。

2. 定义材料属性:根据实际材料的力学性质,在Material Manager中定义材料的弹性模量和泊松比等参数。

如果需要考虑材料的非线性行为,可以添加相应的本构模型。

3. 指定边界条件:根据简支梁的边界条件,使用Boundary Conditions Manager指定约束条件。

通常,简支梁的两个端点应变为零,即不存在位移和转角。

在指定边界条件时,需要选择适当的边界条件类型并将其应用到相关节点上。

4. 定义加载方式:根据实际加载情况,在Load Manager中定义加载方式。

对于简支梁,可以施加集中载荷、均布载荷、自重载荷等。

在定义载荷的时候,需要指定作用方向、大小和加载位置等。

5. 设置求解选项:在Step Manager中设置求解选项,包括求解器类型、收敛准则和迭代次数等。

ABAQUS简支梁分析(梁单元和实体单元)

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。

另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。

对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。

不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。

可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。

对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。

现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。

材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。

图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。

在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。

然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。

图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。

ABAQUS简支梁分析(梁单元和实体单元)

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。

另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。

对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。

不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。

可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。

对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。

现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。

材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。

图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。

在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。

然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。

图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。

(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

Abaqus分析实例(梁单元计算简支梁的挠度)精讲ABAQUS计畀捲导0 : 应用梁单元计算简支梁的挠度o对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,尸0.28, p=7850kg/m3 (在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I =2.239 X 10-5m, w中=2.769 X 10-3m B边=2.077 X 10-3。

文件与路径:顶部下拉菜单File, Save As ExpAbq00 。

一部件1 创建部件:Module, Part, Create Part, 命名为Prat-1; 3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2绘模型图:选用折线,从(0,0)T(2,0)T(4,0)绘出梁的轴线。

3 退出:Done。

二性质1 创建截面几何形状:Module , Property, Create Profile ,命名为Profile-1,选I 型截面,按图输入数据,1=0.1 , h=0.2 , b l =0.1 , b2=0.1 , t l=0.01 ,t 2 = 0.01 , t 3=0.01 ,关闭。

2 定义梁方向:Module , Property , Assign Beam Orientation ,选中两段线段,输入主轴 1 方向单位矢量(0,0,1)或(0,0,-1) ,关闭。

3 定义截面力学性质:Module ,Property ,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1 ,输入E=210e9 (程序默认单位为N/m2,92GPa=10 N/m),G=82.03e9 , v0.28,关闭。

ABAQUS应用梁单元计算简支梁

ABAQUS应用梁单元计算简支梁

ABAQUS应用梁单元计算简支梁梁是一种常用的结构元素,广泛应用于建筑、桥梁、机械等领域中。

在工程实践中,经常需要对梁进行计算分析,以确定其受力状态和变形情况。

ABAQUS是一种常用的有限元分析软件,可以用于求解梁结构的力学问题。

本文将介绍如何使用ABAQUS进行简支梁的计算分析。

首先,我们需要将梁模型导入ABAQUS软件中。

梁的几何形状可以使用线、点或者直接输入坐标点的方式进行定义。

梁的截面信息(如截面类型、尺寸等)也需要进行定义。

在ABAQUS中,可以选择多种截面类型,例如矩形、圆形等。

根据实际情况选择合适的截面类型,并根据设计要求输入相应的尺寸。

在模型定义完成后,需要定义边界条件。

对于简支梁而言,端点处的位移应设定为零。

在ABAQUS中,可以通过选择固定边界条件或者施加等效约束条件来实现。

选择固定边界条件需要定义节点的自由度受限情况,而施加等效约束条件则可以直接将节点的位移限制为零。

在定义了几何形状、截面信息和边界条件后,需要定义材料参数。

梁的弹性模量、泊松比和密度等参数需要根据实际材料性质进行设定。

在ABAQUS中,可以选择多种材料模型,例如线弹性模型、双线性弹塑性模型等。

根据实际需求选择合适的材料模型,并输入相应的参数。

模型导入并定义完毕后,需要进行网格划分。

在ABAQUS中,可以选择多种网格划分算法,例如四边形单元、六面体单元等。

根据实际需求选择合适的网格划分算法,并根据划分精度设定网格尺寸。

在进行网格划分时,需要注意保证梁模型的几何形状和截面信息的精确性,避免过度简化导致计算结果的不准确。

完成网格划分后,可以进行加载条件的定义。

在ABAQUS中,可以定义多种加载条件,例如集中力、均布载荷等。

根据实际需求选择合适的加载条件,并输入相应的加载参数。

完成加载条件的定义后,可以进行求解运算。

在ABAQUS中,可以选择静力分析或者动力分析方法进行求解。

根据实际需求选择合适的求解方法,并进行计算。

ABAQUS算例2

ABAQUS算例2

对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。

文件与路径:顶部下拉菜单File, Save As ExpAbq00。

一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。

3 退出:Done。

二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。

2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。

3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。

反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。

(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。

三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。

(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。

反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。

(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。

三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。

(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABAQUS应用梁单元计算简支梁
对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:
因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。

文件与路径:
顶部下拉菜单File, Save As ExpAbq00。

一部件
1 创建部件:Module,Part,Create Part,
命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。

3 退出:Done。

二性质
1 创建截面几何形状:Module,Property,Create Profile,
命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。

2 定义梁方向:Module,Property,Assign Beam Orientation,
选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。

3 定义截面力学性质:Module,Property,Create Section,
命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),
G=82.03e9,ν=0.28,关闭。

4 将截面的几何、力学性质附加到部件上:Module,Property,Assign Section,
选中两段线段,将Section-1信息注入Part-1。

三组装
创建计算实体:Module,Assembly,顶部下拉菜单Instance,Create,
Create Instance,以Prat-1为原形,用Independent方式生成实体。

四分析步
创建分析步:Module,Step,
Create Step,命名为Step-1,静态Static,通用General。

注释:无,时间:不变,非线性开关:关。

五载荷
1 施加位移边界条件:Module,Load,Create Boundary Condition,
命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角,Continue。

选中梁左端,Done,约束u1、u2、u3、u R1、u R2各自由度。

命名为BC-2,在分析步Step-1中,性质:力学,针对位移和转角,Continue。

选中梁右端,Done,约束u2、u3、u R1、u R2各自由度。

2 创建载荷:Module,Load,Create Load,
命名为Load-1,在分析步Step-1中,性质:力学,选择集中力Concentrated Force,Continue。

选中梁中点,Done,施加F y(CF2)=-10000(程序默认单位为N)。

六网格
对实体Instance进行。

1 撒种子:Module,Mesh,顶部下拉菜单Seed,Instance,
Global Seeds,Approximate global size 0.2全局种子大约间距0.2。

2 划网格:Module,Mesh,顶部下拉菜单Mesh,Instance,yes。

七建立项目
1 建立项目:Module,Job,Create Job,Instance,
命名为ExpAbq00,选择完整分析,其余先不变,OK。

2 计算:Module,Job,Job Manager,
Submit,可以用Monitor进行求解进程观察,算完。

八观察结果
1 看图:
打开结果文件ExpAbq00.odb,看位移彩图,学习修改图形参数。

2 看数据:计算结果w中=2.853×10-3m,θ边=2.083×10-3。

学习显示节点号等信息,学习存储结果数据文件,学习查找节点、单元数据结果。

命令流
** Job name: ExpAbq00int Model name: Model-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
*Part, name=Part-1
*End Part
**
** ASSEMBL Y
*Assembly, name=Assembly
*Instance, name=Part-1-1, part=Part-1
*Node
1, 0.0, 0.0, 0.0
21, 4.0, 0.0, 0.0
*Ngen, ,Nset=Part1
1, 21, 1, , , , ,0.0,1.0,0.0
*Element, type=B31
1, 1, 2
*Elgen, Elset=Part1
1, 20, 1, 1
** Section: Section-1 Profile: Profile-1
*Beam General Section, elset=Part1, poisson = 0.28, section=I 0.1, 0.2, 0.1, 0.1, 0.01, 0.01, 0.01
0.,0.,-1.
2.1e+11, 8.203e+10
*End Instance
**
*Nset, nset=A, internal, instance=Part-1-1
1,
*Nset, nset=B, internal, instance=Part-1-1
21,
*Nset, nset=C, internal, instance=Part-1-1
11,
*End Assembly
** ----------------------------------------------------------------
** STEP: Step-1
*Step, name=Step-1
*Static
1., 1., 1e-05, 1.
** BOUNDARY CONDITIONS
** Name: BC-1 Type: Displacement/Rotation
*Boundary
A, 1, 5
** Name: BC-2 Type: Displacement/Rotation
B, 2, 5
** LOADS
** Name: Load-1 Type: Concentrated force *Cload
C, 2, -10000.
** OUTPUT REQUESTS
*Restart, write, frequency=0
** FIELD OUTPUT: F-Output-1
*Output, field, variable=PRESELECT
** HISTORY OUTPUT: H-Output-1
*Output, history, variable=PRESELECT
*End Step。

相关文档
最新文档