中国农业大学赵士铎版普通化学课件5
普通化学 赵士铎 (第三版)习题答案,DOC
普通化学(第三版)习题答案中国农业大学1.1(1(2)(3)1.21.31.41.5b?T b=Tb?T f=Tf1.6?=cRT1.71.82.1(1)2.2(1/4??f m r m r m=(1/4)[-1107kJ?mol-1-(-1150kJ?mol-1)]=90kJ?mol-12.3(1/4)[反应式(3)-反应式(4)+3?反应式(2)-反应式(1)]得:N 2(g)+2H2(g)=N2H4(l) (5)??f H m?(N2H4,,g)=(1/4){?r H m?(3)-?r H m?(4)+3??r H m?(2)-?r H m?(1)}=(1/4){-143kJ?mol-1-(-286kJ?mol-1+3?(-317kJ?mol-1)-(-1010kJ?mol-1))=50.5kJ?mol-12?反应式(4)-反应式(5)得:N 2H4(l)+)O2(g)=N2(g)+2H2O(l)?r H m ?=2??r H m ?(4)-?r H m ?(5)=2?(-286kJ ?mol -1)-50.5kJ ?mol -1=-622.5kJ ?mol -1 2.4?r H m ?=2?f H m ?(CO 2,g)+3?f H m ?(H 2O,l)+(-1)??f H m ?(CH 3OCH 3,l)+(-3)?f H m ?(O 2,g)??f H m ?(CH 3OCH 3,l)=2?f H m ?(CO 2,g)+3?f H m ?(H 2O,l)-?r H m ?=-183kJ ?mol -1 2.5C(s)+O 2(g)?r H m ?(1)CO 2(g) ?r H m ?(2)?r H m ?(3) CO(g)+(1/2)O 2(g)由题意知,?r H m ?(1)<0,?r H m ?(2)<0,?r H m ?(3)<0 ?r H m ?(1)=?r H m ?(2)+?r H m ?(3)?r H m ?(1)-?r H m ?(3)=?r H m ?(2)<0?r H m ?r H m ?r 2.72.82.9 ?H ??G ??S ?S n (白锡)=S n (灰锡)?r H m ?(298K)=?f H m ?(灰锡)+(-1)??f H m ?(白锡)=-2.1kJ ?mol -1<0 ?r S m ?(298K)=S m ?(灰锡)-S m ?(白锡)=-7.41J ?mol -1K -1<0 ?反应在标准状态,低温自发。
普通化学赵士铎第五版答案及解析
普通化学赵士铎第五版答案及解析赵士铎,1923年12月生于河北廊坊。
曾任中国化学工业公司高级工程师、高级顾问。
1953年获上海交通大学工学博士学位;1955年被选为中国科学院学部委员。
1986年任香港浸会大学名誉博士论文指导教授。
1989年获国务院颁发的政府特殊津贴。
1995年至2001年任中国科学院化学所所长(其间1998至2000年间曾担任该所所长)、总工程师,并兼任中国科学技术协会理事,中国科学院化学研究所副所长,中国工程院院士,上海市人民政府顾问、上海市科学技术协会副主席等职。
2001年7月3日当选为国际化学联合会(IUPAC)理事;2001年11月27日当选为国际化学工业理事会理事长(2002年12月1日当选为 IUPAC主席);2003年6月4日当选为国际化学工业理事会副理事长(2005年11月5日当选为 IUPAC主席,2010年10月28日就任第16届国际化学大会主席);2010年3月4日被评为中国科学院“百人计划”特聘专家;2016年4月25日被授予终身名誉院士称号。
1.什么是溶解题干:当溶液中存在氢气时,溶液中的物质就会溶解。
水溶液的溶解指的是溶解于水时,化学键被破坏、反应终止的过程。
解析:溶剂的溶解指水溶液中,存在着一个或多个溶解性大构型物质。
溶解性大构型物质在水中可以溶解。
这些溶于水的物质通常是水分子和氢原子。
这些溶于水的物质在水中可以形成溶解性大构型。
如:碳酸氢钠的大颗粒沉淀是水溶大构型。
例如:碳酸钠与氯化钠溶液都是酸性体系等。
氢离子和氧离子均能在水溶胶体系中溶解。
2.还原性有机反应的化学计量比解答:还原性有机反应的化学计量比在计算上有很大的学问,要根据反应的官能团的大小、类型、数量、浓度和反应速率等条件来确定。
例如,在一个反应中,若一种官能团可以通过化学计量比获得,则该反应的化学计量比就是 O。
但这种官能团必须在不同官能团间作转换作用才能获得:① O原子由亲核原子构成;② O原子分子大小随O2数量变化;③ O原子分子为一个共价键。
中国农业大学赵士铎版普通化学课件6
三者在界面、密度、分子间距离、分子间吸引力、分 子运动等方面存在差别。
普通化学 2001-2004
9:58:25
6 溶液和胶体
溶液和胶体
6.1
基本概念 6.1.1 物质的聚集态 6.1.2 相 6.1.3 分散系 6.1.4 溶液的组成标 度 6.2 稀溶液的通性 6.2.1 溶液的蒸汽压 下降 6.2.2 溶液的沸点上 升和凝固点下降
相变 物质从一个相转变到另一个相的过程
普通化学 2001-2004
9:58:25
6 溶液和胶体
6.1 基本概念
分散系
分散系 一种或多种物质分散到另一种物质中所构成的系
统 被分散的物质称为分散质(或分散相) 包含分散质的物质叫分散剂(或分散介质) 分散系的分类 按聚集态 分散剂 | 气 | 固 | 液 | 分散质 | 气 固 液 | 气 固 液 | 气 固 液 | 按分散质粒子大小 粗分散系(直径>100nm)—悬(乳)浊液 多相系统 胶体分散系(1~100nm) 单相系统 分子(或离子)分散系(<1nm)。
普通化学 2001-2004
9:58:25
6 溶液和胶体
6.2 稀溶液的通性
溶液的沸点上升和凝固点下降
沸点上升 Tb(溶液沸点) > Tb°(纯溶剂沸点) 沸点上升 ΔTb = Tb - Tb° ΔTb = KbbB (难挥发非电解质稀溶液) Kb(比例常数)——(摩尔)沸点上升常数,与
溶质的本性无关,而只随溶剂的不同而不同 凝固点下降 Tf(溶液凝固点) < Tf°(纯溶剂凝固点) 凝固点下降 ΔTf = Tf° - Tf ΔTf = Kf bB (难挥发非电解质稀溶液) Kf(比例常数)——(摩尔)凝固点下降常数, 与溶质的本性无关,而只随溶剂的不同而不同
5普通化学_课件_中国农业大学
HCO3-的水溶液显碱性。
31
分析NH4Ac水溶液的酸碱性
NH H 2O H 3O NH 3 K ( NH 3 ) 1.8 10
4
b
5
Ac H 2O OH HAc K ( HAc ) 1.8 10
(1) 水的质子自递反应(autoionization of water) H2O +H2O = H3O+ +OH也可简写为: H2O = H+ + OH- (与水的酸碱半反应区别开) (水的自递反应)
其反应的标准平衡常数表达式为
c( H ) c(OH ) KW c c
KW称为水的离子积常数(ion product constant) 。
c θ 2.14 10 4
K
θ b2
Kw K a1
c( H 2 C O3 )
cθ c( HC O ) 3
c(O H ) cθ
c θ 2.29 10 8
19
近似处理
当 Ka1>> Ka2>> Ka3
Ka1/ Ka2>101.6
多元弱酸碱的离解以第一步为主,其他次 级的离解可忽略。
θ K a ca
ca x ca
14
弱一元碱
B + H2O=HB+ + OH-
cb / c 2.81 10 Kb c ( OH ) / c K b cb / c
15
例2 计算0.1mol.L-1HAc溶液中c(H3O+)及离解度。 HAc Ka =1.8.×10-5
中国农业大学赵士铎版普通化学普化作业4-6
8:31:42
4 原子结构和周期系
第四章作业
7.4量子力学中用波函数ψ来描述微观粒子运动状态,
并用其值的平方表示几率密度。
7.5下列各组两指数合理的为:
(1) n =2,l =1,m = 0,ms= +1/2;√ (2) n =3,l =3,m = -1,ms= -1/2;× (3) n =3,l =0,m = 0,ms= 0; × (4) n =2,l =0,m = +1,ms= -1/2; × 7.7某元素基态原子,在n=5的轨道中仅有2个电子,则
4 原子结构和周期系
例题
4.4 原子的电子层结构和元素周期系
例1:写出 30A的 1)电子分布式、2)外层电子构型、 3)周期和族、 4)分区、5)金属性、6)最高氧化值。
答: 30A 1s2 2s2 2p6 3s2 3p6 4s2 3d10 1) 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4) ds区
普通化学 2001-2004
IB ⅡB
8:31:42
4 原子结构和周期系
第四章作业
7.1电子等微观粒子有别于宏观物体的二特性:物理量量子
化、波粒二象性,分别可由原子光谱和电子衍射实验事实 证明。
7.2电子衍射实验中,小孔直径约小,即粒子的空间坐标越 准确,则粒子的动量越不准确,故经典力学中用牛顿力学
该原子n=4的轨道中含有电子:
a、8个;b、18个;c、8~18个;d、8~23个。
7.10第四能级组中所包含的原子轨道是4s、3d、4p。
普通化学 2001-2004
8:31:42
4 原子结构ቤተ መጻሕፍቲ ባይዱ周期系
第四章作业
7.11元素周期表中的周期是依能级组划分的,族是依外 层电子排布划分的,主族元素与副族元素原子结构上的 区别在于外层电子填入(n-1)d轨道。
普通化学__赵士铎_(第三版)习题答案
普XX学〔第三版习题答案中国农业大学无机及分析化学教研组编第一章分散系1.1 〔1 溶液的凝固点下降(2)土壤溶液浓度过大,渗透压大于植物根细胞液的渗透压(3)溶液的凝固点下降1.2沸点不断上升,至溶液达到饱和后,沸点恒定;蒸气凝结温度恒定,等于溶剂的沸点.1.31.4 凝固点自高至低顺序:葡萄糖溶液、醋酸溶液、氯化钾溶液1.5b = 1.17 mol⋅kg-1∆T b = K b b = 0.52K⋅kg⋅mol-1⨯1.17 mol⋅kg-1 = 0.61KT b = 373.76K = 100.61℃∆T f = K f b = 1.86K⋅kg⋅mol-1⨯1.17 mol⋅kg-1 = 2.18KT f = 270.87K = - 2.181.6 π = cRT = RT VMm / 1.7化合物中C 、H 、O 原子数比为21:30:2 故该化合物的化学式为C 21H 30O 2 1.8第二章 化学热力学基础2.1 <1>错误;<2>正确;<3> 错误;〔4错误;<5>正确;<6>正确;<7> 错误;〔8错误2.2 〔1/4[反应式〔1-反应式<2>]得:<1/2>N 2<g>+<1/2>O 2<g>=NO<g>∴∆f H m θ<NO,g>=<1/4>{ ∆r H m θ<1> - ∆r H m θ<2>} =<1/4>[-1107kJ ⋅mol -1-<-1150 kJ ⋅mol -1>] =90 kJ ⋅mol -12.3 〔1/4[反应式〔3-反应式<4>+3⨯反应式<2>- 反应式<1>]得:N 2<g>+2H 2<g>=N 2H 4<l> <5>∴∆f H m θ<N 2H 4,,g>=<1/4>{ ∆r H m θ<3> - ∆r H m θ<4>+ 3⨯∆r H m θ<2> - ∆r H m θ<1>} =<1/4>{-143kJ ⋅mol -1-<-286kJ ⋅mol -1+3⨯<-317kJ ⋅mol -1>-<-1010kJ ⋅mol -1>>=50.5 kJ ⋅mol -12⨯反应式〔4-反应式〔5得: N 2H 4<l>+ >O 2<g>= N 2<g>+2H 2O<l>∆r H m θ=2⨯∆r H m θ<4>- ∆r H m θ<5>=2⨯<-286 kJ ⋅mol -1>- 50.5kJ ⋅mol -1= -622.5 kJ ⋅mol -1 2.4∆r H m θ=2∆f H m θ<CO 2,g>+3∆f H m θ<H 2O,l>+<-1>⨯∆f H m θ<CH 3OCH 3,l>+<-3>∆f H mθ<O2,g>∴∆f H mθ<CH3OCH3,l> =2∆f H mθ<CO2,g> +3∆f H mθ<H2O,l>- ∆r H mθ=-183 kJ⋅mol-1 2.5C<s>+O2<g> ∆r H mθ<1> CO2<g>∆r H mθ<2> ∆r H mθ<3>CO<g>+<1/2>O2<g>由题意知,∆r H mθ<1><0, ∆r H mθ<2><0, ∆r H mθ<3><0∆r H mθ<1>= ∆r H mθ<2>+ ∆r H mθ<3>∆r H mθ<1>-∆r H mθ<3>= ∆r H mθ<2><0即:以碳直接作燃料时放热较多2.6 C<s>+H2O<g>=CO<g>+H2<g>∆r H mθ= ∆f H mθ<CO,g>+ <-1>∆f H mθ<H2O,g>=-110.5 kJ⋅mol-1 -<->241.8 kJ⋅mol-1=131.3 kJ⋅mol-1C<s>+O2<g>+H2O<g> ∆r H mθ<1> CO2<g> +H2O<g>∆r H mθ<2> ∆r H mθ<3>CO<g>+H2<g>+O2<g>∆r H mθ<1>= ∆r H mθ<2>+ ∆r H mθ<3>∴∆r H mθ<1> - ∆r H mθ<3> = ∆r H mθ<2>>0由题意知,∆r H mθ<1><0, ∆r H mθ<3><0 故:以水煤气作燃料时放热较多2.7 均为熵增过程.2.8 标准状态下:2.9 〔2〔反应为气体物质的量增加的过程,∆r S mθ>02.10 不可以.因为物质的S mθ,不是指由参考状态的元素生成该物质〔νB=+1反应的标准摩尔熵.2.11∆Hθ: -40 kJ -40 kJ∆Gθ: -38kJ -38 kJ∆Sθ: -6.7J⋅K-1-6.7 J⋅K-12.12S n<白锡>=S n<灰锡>∆r H mθ<298K>= ∆f H mθ<灰锡>+〔-1⨯∆f H mθ<白锡>=-2.1kJ⋅mol-1<0∆r S mθ<298K>= S mθ<灰锡>-S mθ<白锡>=-7.41J⋅mol-1K-1<0∴反应在标准状态,低温自发.在转变温度,∆r G mθ<T>=0∆r G mθ<T>≈∆r H mθ<298K>-T∆r S mθ<298K>T≈[∆r H mθ<298K>/ ∆r S mθ<298K>]≈283K2.132Fe2O3<S>+3C<S>=4Fe<S>+3CO2<g>∆r H mθ<298K>=3∆f H mθ<CO2,g>+<-2>⨯∆f H mθ< Fe2O3,s>=467.87kJ⋅mol-1∆r S mθ<298K>=4⨯ S mθ<Fe,s>+3 S mθ<CO2,g>+<-2>⨯ S mθ< Fe2O3,s>+<-3>⨯ S mθ<C,s>=557.98J⋅mol-1⋅K-1反应在标准状态下自发进行:∆r G m θ<T>≈∆r H m θ<298K>-T ∆r S m θ<298K> T>[∆r H m θ<298K>/ ∆r S m θ<298K>] , 即T>839K故以木炭为燃料时,因最高温度低于839K,反应不可能自发. 2CuO<s>+C<s>=2Cu<s>+CO 2<g>∆r H m θ<298K>=-79.51 kJ ⋅mol -1>0 ∆r S m θ<298K>=189 J ⋅mol -1⋅K -1>0 ∴反应在标准状态, 任意温度均自发 2.14 <略>2.15 2AsH 3<g>=2As<s>+3H 2<g>∆r H m θ<298K>=-132.8kJ ⋅mol -1<0 ∆r S m θ<298K>=15.71J ⋅mol -1⋅K -1<0∴标准状态, 任意温度下AsH 3的分解反应均自发.加热的目的是加快反应速率.第三章 化学平衡原理3.1 〔1 正确, 〔2 错误, 〔3 错误. 3.2 K = 403.33.4 4×<3> - 2×<1> - 2×<2> 得所求反应式故:Δr G m = 4Δr G m <3> - 2Δr G m <1> - 2Δr G m <2>222}/)H ({}/)H (}{/)Fe ({Θ+ΘΘ+Θ=c c p p c c K 224)}2({)}1({)}3({ΘΘΘΘ=K K K K3.5 pV = nRT故对于反应 H 2<g> + I 2<g> = 2HI<g> 3.6(1)O 2<g> = O 2<aq>P <O 2> = 21.0kPa 时:故: c <O 2,aq> = 2.88×10-4 mol ·L -1 <2> K = 85.5/1.37×10-3 = 6.24×1043.7 Q = 4 逆向自发 Q = 0.1 逆向自发 3.8 Ag 2CO 3<s> = Ag 2O<s> + CO 2<g>Δr G m <383K> = 14.8kJ·mol -1ln K <383K> = -Δr G m <383K>/RT = -4.65K <383K> = 9.56×10-3K = p <CO 2>/p为防止反应正向自发,应保证 Q > KkPa 6.91)H ()I (HI)(kPa2.12mol20.0116kPamol 021.0)I ()H ()I (0.021mol L 10L mol 0021.0)I ()H ()I (kPa116L10K 698K mol L 8.31kPa mol 20.0222221-2221-1=--==⨯=⋅===⨯⋅====⨯⋅⋅⋅⨯==-p p p p p x p p V c n n V nRT p 321037.121.0/)O (K)293(-ΘΘ⨯==c c K故: p <CO 2> > 9.56×10-1 kPa3.9 CCl 4<g> CCl 4<l>Δf H m /kJ ·mol -1 -102.93 -135.4S m /J ·K -1·mol -1 309.74 216.4CCl 4<g> = CCl 4<l>Δr H m = 32.47kJ ·mol -1Δr S m = 0.09334 kJ ·mol -1·K -1所以CCl 4的正常沸点为T 1 = 348K根据克拉贝龙——克劳休斯方程计算,可得在20kPa 时,其沸点为304K.第四章 化学反应速率4.1 不能4.2 A 的物理意义为 P Z 0,f 的物理意义为 相对平均动能超过E c 的A 、B 分子间的碰撞频率与A 、B 分子间碰撞频率的比值. 4.3 Z 0基本不变, P 不变, f 大 , k 大,v 大. 4.4 直线 4.5 ,s L mol 0.4)N (,s L mol 0.6)H (112112----⋅⋅=-⋅⋅=-dtdc dtdc 4.6 略 4.7 解:1142111-4311-421115211411511114-1211511s L mol 105.1)L mol 500.0(s L mol 100.6sL mol 100.6)L mol 200.0(2/s L mol 108.4)NOCl (2s L mol 1092.1s L mol 108.4L mol 400.0L mol 200.0)2/()1(s L mol 21092.1)L mol 400.0()2(s L mol 2108.4)L mol 200.0()1()NOCl (---------------------------⋅⋅⨯=⋅⨯⋅⋅⨯=⋅⋅⨯=⋅⋅⋅⨯==≈⋅⋅⨯⋅⋅⨯=⋅⋅⋅⋅⨯=⋅=⋅⋅⨯=⋅==υυυυυc k m k k kc m mmm )(得:速率方程为4.8 4.9 解:16315320503201032011-51-15203010s 106.2)7.2(s 103.1 7.2sL mol 103.1s L mol 105.3 ----⨯+----⨯+⨯=⨯⨯=⨯====⋅⋅⨯⋅⋅⨯==r k k r k k r r rk kr k kntn t4.10 解:171113115121212s 101.6 )K600K 650K 600K 650(K mol J 314.8mol J 10226s 100.2ln )(ln ------⨯=⨯-⋅⋅⋅⨯=⨯-=k k T T T T R E k ka第五章 原子结构5.1 原子发射光谱, 电子衍射 5.2 确定, 动量, 不确定, 轨道 5.3 <2>, <4>正确5.4 波函数, 电子的几率密度 5.5 <1> 5.65.7 <3>5.8 He+E<3s> = E<3p> = E<3d> < E<4s>K E<3s> < E<3p> < E<4s> < E<3d>Mn E<3s> < E<3p> < E<3d> < E<4s>5.9 <略>5.10 4s, 3d, 4p5.11 能级组, 外层电子结构, 主族元素基态原子内层轨道,或全满,或全空<稳定构型> 5.12 一,二,三主族元素,镧系元素, 第六周期镧后元素5.13 He > H, Ba > Sr, Ca > Sc, Cu > Ni, La > Y, Zr > Ti, Zr > Hf5.14 <3>, <2>5.15 Mg失去2个最外层s电子后成稳定的电子构型,故I3明显大于I2,常见氧化数为+2;Al失去3个最外层电子后成稳定的电子构型,故I4明显大于I3,常见氧化数为+3.Mg元素第一、第二电离能之和小于Al元素第一、第二、第三电离能之和,所以气态Mg原子的金属性强于Al.第六章化学键与分子结构6.1 <1> 错, <2> 错, <3> 错, <4> 错, <5> 对, <6> 错6.2 离子, BeO>MgO>CaO>SrO>BaO,BaCO3>SrCO3>CaCO3>MgCO3>BeCO36.3 Fe2+ : [Ar]3d6, 9~17,Fe3+ : [Ar]3d5, 9~17,Pb2+ : [Xe]5d106s218+2,Sn4+ : [Kr]4d10, 18,Al3+ : [He]2s22p6, 8,S2- : [Ne]3s23p6, 8,Hg2+ : [Xe]5d10, 18.6.4 OF2 : 非等性sp3杂化, V型, 极性;NF3 : 非等性sp3杂化, 三角锥, 极性;BH3 :等性sp2杂化, 正三角型, 非极性;SiCl4 : 等性sp3杂化, 正四面体, 非极性;NH3 : 非等性sp3杂化, 三角锥, 极性;HCN : 等性sp杂化, 直线型, 极性;PCl3 : 非等性sp3杂化, 三角锥, 极性;PCl5 : sp3d杂化, 三角双锥, 非极性;CS2 : sp杂化, 直线型, 非极性;SnCl2: 非等性sp3杂化,V型,极性.6.5 C2H6 : sp3; C2H4 : sp2;CH3CCH : sp3sp sp;CH3CH2OH : sp3; H2CO: sp2; COCl2: sp2.6.6 正丁烷:否;1,3-丁二烯:否;2-丁炔:是6.7 HF HCl HBr HI; HF HCl HBr HI; HI HBr HCl HF; HF HI HBr HCl 6.8 <1> ~ c; <2> ~ d; <3> ~ a; <4> ~ b6.9 <1> Fe3+电荷高、半径小,极化力大于Fe2+;(2)Zn2+ 18电子构型,极化力、变形性大于Ca2+;(3)Cd2+ 18电子够型,极化力、变形性大于Mn2+.6.10 ClO- ,ClO2- ,ClO3- ,ClO4- .6.11 HClO酸性强于HBrO.成酸元素原子电负性大,含氧酸酸性强.第七章酸碱反应1〔略2H3O+ , OH-3<2>4<2>5H+ + OH- = H2O, 1/K wH+ + B = HB<略去电荷>, K b / K wHB + OH- = B- + H2O, K a / K wHA + B = A + HB<略去电荷> K a K b / K w6<1> K <正> = 1.9×105 > K <逆>,易于正向反应〔2 K <正> = 2×10-11 < K <逆>,易于逆向反应〔3 K <正> = 1.4×102 > K <逆>,易于正向反应〔4 K <正> = 6.2×10-8 < K <逆>,易于逆向反应7 6.4×10-5 , 1.7×10-13 , 小于7.8 7.97.10C 6H 5NH 2 + H + = C 6H 5NH 3+c <C 6H 5NH 3+> = 0.020mol ·L -1K a < C 6H 5NH 3+> = K w / K b < C 6H 5NH 2> = 2.2×10-5应用最简式计算溶液酸度: c <H +> = 6.6×10-4mol/LpH = 3.27.11K b1 / K b2 > 101.610.57pH 1074.3)/(/)OH (10/4-81.2=⨯==>-ΘΘΘΘΘc c K c c K c c b b 1-4-1-51-5205225L mol 101.0 L mol 105.8L mol 106.1)HNO ( 106.1/}/)H ({/)HNO (105.8/)H (⋅⨯=⋅⨯+⋅⨯=∴⨯==⨯=---ΘΘ+Θ-Θ+c K c c c c c c a eq 81.210/>aK c c 81.24110107/>⨯=ΘΘb Kc c所以可忽略第二步离解,按最简式计算:c <C 10H 14N 2> = 0.050mol·L -1 - 1.9×10-4 mol·L -1 = 0.050 mol·L -1c <C 10H 14N 2H +> = c <OH -> = 1.9×10-4 mol·L -1c <C 10H 14N 2H 22+> = c K b2 = 1.4×10-11 mol·L -17.12K b1 <S 2-> = K w / K a2 <H 2S> = 1.4K b2 <S 2-> = K w / K a1 <H 2S> = 7.7×10-8经判断,可忽略第二步离解,依近似式计算S 2- + H 2O = HS - + OH -C eq / mol·L -1 0.10-x x xx= 0.094即:c <OH -> = 0.094 mol·L -1pH = 12.97c <S 2-> = 0.10 mol·L -1 - 0.094 mol·L -1 = 0.01 mol·L -1c <HS -> = c <OH -> = 0.094 mol·L -1c <H 2S> = c K b2 = 7.7×10-8 mol·L -17.13pH = 1.3010.27pH 109.1050.0100.7//)OH (471-=⨯=⨯⨯=⨯=--ΘΘΘcc K c c b 4.110.021=-=Θxx K b故:c <S 2-> = 3.7×10-20 mol·L -17.147.15 pOH = 5.00c <NH 4+> = 0.10mol/L /0.56 = 0.18mol/LM {<NH 4>2SO 4} = 0.5c<NH 4+>V <NH 4+>M {<NH 4>2SO 4}=11.9g20-2222221-2103.7 050.010.0102.9}/)H ({}S)/H ({/)S (⨯=⨯⨯==-Θ+ΘΘΘΘc c c c K K c c a a 17)Cit H (Cit)H (23.192.115.3)Cit H (Cit)H (lg)Cit H (Cit)H (lgp pH -23-23-231=∴=-=-=Θc c c c c c K a 2-2-2-2-2-2-22100.7)Cit H ()Cit H ( 85.292.177.4)Cit H ()Cit H (lg )HCit ()Cit H (lg p pH ⨯=∴=-=-=Θc c c c c c K a 56.0)NH ()NH ( 25.000.575.4)NH ()NH (lg )NH ()NH (lg )NH (p pOH 4343433=∴-=-=-=+++Θc c c c c c K b7.16因系统中含有2缓冲对,且酸与碱的浓度比均在缓冲范围内,所以此溶液具有酸碱缓冲能力.若两级酸常数相差较大,则酸碱浓度比将超出缓冲范围,失去缓冲性质.7.17 甘氨酸:不移动;谷氨酸:向正极运动;赖氨酸:向负极运动第八章 沉淀—溶解反应8.1K sp <AgBr> = {c <Ag +>/c }{ c <Br ->/c }K sp <Ag 2S> = {c <Ag +>/c }2{ c <S 2->/c }K sp {Ca 3<PO 4>2} = {c <Ca 2+>/c }3{ c <PO 43->/c }K sp <MgNH 4AsO 4> = {c <Ca 2+>/c }{ c <NH 4+>/c }{c <AsO 43->/c }8.2<1><2> <3> 20.0)HA ()A ( 7.0)p p (21p -pH )HA ()A (lg )HA ()A (lg p pH 20.0)HA (A)H ( 7.0)p p (21pH p )HA (A)H (lg )HA (A)H (lg p pH 7.3)p p (21 pH --2212--2--22-2211-2-2121=-=-==∴+==-=-=-=∴-==+=ΘΘΘΘΘΘΘΘΘΘc c K K K c c c c K c c K K K c c c c K K K a a a a a a a a a a mol/L1012.1443-ΘΘ⨯==sp K cs8.3 PbCO 3计算结果偏低8.4 因氢氧化铁在水中溶解度极小,溶液pH 约等于7.08.5〔28.6CaF 2 = Ca 2+ + 2F -F - + H + = HF 根据:2c <Ca 2+> = c <HF> + c <F -> = 2s ,得:c <F -> = 2s /1.028 K sp <CaF 2> = <s/c ><2s/1.028c >2S = 3.38×10-4mol/L8.7 CaF 2、CaCO 3和MnS, KClO 48.8 此系统为多重平衡系统,所以:mol/L102.1/)Mg (2)OH (2152--Θ+ΘΘ⨯===c c K c c s spmol/L 106.2)100.1(mol/L 1064.2}/)OH ({)Fe (1837393-3---ΘΘΘ+⨯=⨯⨯=⨯==c c K c c s sp028.0)F (HF)( )F (HF)(lg- HF)(p pH --=∴=Θc c c c K a mol/L 101.36mol/L )100.2(1046.11096.4)CO (}/)F ({/)CO ()CaF ()CaCO (6-24109-232--2323⨯=⨯⨯⨯⨯==---ΘΘΘΘc c c c c K K sp sp8.9 c <NH 3> = 0.050mol/L故有氢氧化镁沉淀生成.为防止沉淀生成,c <OH ->/c 的最大值为:8.10故不被沉淀的离子M 2+的硫化物的溶度积最小为:K sp = {c <M 2+>/c }{c <S 2->/c }=0.01×1.0×10-21=1×10-23,所以,Mn 2+, Ni 2+ 不被沉淀. 离子被完全定性沉淀时,c <M 2+>≤10-5mol/L,g 故可被沉淀完全的硫化物溶度积的最大值为:K sp = 10-5×1×10-21 = 10-26所以可被沉淀完全的离子为:Pb 2+,Cd 2+,Hg 2+,Cu 2+.8.11 欲使Fe<OH>3沉淀完全:欲使Fe<OH>2不发生沉淀:所以应控制pH 约在2.8~6.5 范围.8.12 〔略8.13 CuCO 3<计算得CuCO 3的溶解度为1.2×10-5mol/L,即CuCO 3饱和水溶液的体积浓度为0.76mg/L>8.14 c <CO 32->/c = K a2 <H 2CO 3> = 5.61×10-11}M g(OH){103.2)105.9(25.0}/)OH (}{/)M g ({ 105.900501076.1)/(/)OH (27242-245-Θ--ΘΘ+--ΘΘΘ>⨯=⨯⨯=⨯=⨯⨯==∴sp b K c c c c c c K c c 6.49pH 103.12 /)OH (05.0}Fe(OH){ /)OH (8--2-〈⨯〈〈ΘΘΘc c K c c sp{ c <Ca>/c }{ c <CO 32->/c }=5.61×10-12 < K sp <CaCO 3>所以无沉淀生成,不能用硝酸钙溶液代替氢氧化钙溶液来检验CO 2 .原因是溶液碱度较低,CO 32-不是CO 2的主要存在形体,即其浓度过低.8.15 〔有关数据:K sp <CaCO 3>=4.96×10-9, K sp <ZnCO 3>=1.19×10-10,K sp <MgCO 3>=6.82×10-6, K sp <NiCO 3>=1.3×10-7, K sp {Ca<OH>2}=5.5×10-6,K sp {Zn<OH>2}=6.68×10-7, K sp {Mg<OH>2}=5.61×10-12,K sp {Ni<OH>2}=5.47×10-16,K sp {Fe<OH>3}=2.64×10-39>在c <CO 32-> = 0.10mol/L 的碳酸钠水溶液中:对于两价离子M 2+的氢氧化物:Q = {c <M 2+>/c }{ c <OH ->/c }2 = 1.78×10-6对于两价离子的碳酸盐:Q = {c <M 2+>/c }{ c <CO 32->/c } = 10-2所以生成的沉淀是:CaCO 3, Mg 2<OH>2CO 3 , Zn 2<OH>2CO 3 , Ni 2<OH>2CO 3对于三价离子Fe 3+:Q = {c <Fe 3+>/c }{ c <OH ->/c }3 = 7.0×10-9 > K sp {Fe<OH>3}341-1012.40101078.110.0/)OH (--ΘΘ⨯=⨯⨯=⨯=b K c c所以生成Fe<OH>316 <4>17 溶度积,离子浓度,沉淀类型.8.18K sp 〔CaSO4= 7.10×10-5K sp 〔CaSO4= <s/c >2得:s = 8.4×10-3 mol/Ls = c<SO42->M<SO42-> = 8.4×10-3mol/L×9.6×104mg/mol = 806mg/L所以不可饮用.第九章氧化还原反应9.3还原, 氧化9.4不变, 不变, 变为{K }n9.5<1>9.6<2>9.7<4>9.8<3>9.9<1> 2Fe3+ + Sn2+ = 2Fe2+ + Sn4+(2)2Fe3+ + Cu = 2Fe2+ + Cu2+(3)2MnO4- + 10Cl- + 16H+ = 2Mn2+ + 5Cl2 + 8H2O(4)H2O2 + 2Fe2+ + 2H+ = 2Fe3+ + 2H2O(5)PbO2 + 2Cl- + 4H2O = Pb2+ + Cl2 + 2H2O(6)Hg2Cl2 + Sn2+ = 2Hg + Sn4+ + 2Cl-(7)2MnO4- + 3Mn2+ + 2H2O = 5MnO2 + 4H+9.10<1>Zn | Zn 2+<0.020mol/L> ||Ni 2+<0.080mol/L>| Ni<2> Cl -<1.0mol/L> | Cl 2<100kPa>||Fe 3+<0.10mol/L>,Fe 2+<1.0mol/L>ε= 1.36V – 0.71V = -0.65V <3> Cl -<1.0mol/L> | Cl 2<100kPa>||Cr 2O 42-<1.0mol/L>,H +<10mol/L>,Cr 3+<1.0mol/L>〔结果说明,在强酸性介质中,重铬酸根亦可以氧化氯离子9.11 〔1Δr G m = -2F {-0.138V -<-0.126V>}= 2.32×103J/mol0.53V (-0.81V) -0.28V - V 81.0020.0lg 20.059V 0.76V - }/)Zn (lg{22.303Zn)/Zn (Zn)/Zn (V 28.0080.0lg 20.059V 0.25V - }/)Ni (lg{22.303Ni)/Ni (Ni)/Ni (222222==-=⨯+=+=-=⨯+=+=Θ++Θ+Θ++Θ+εϕϕϕϕc c FRT c c F RT V 71.00.110.0lgV 059.00.77V }/)Fe ({}/)Fe ({lg 2.303Fe)/Fe ()Fe /Fe (23323=⨯+=+=Θ+Θ++Θ++c c c c F RT ϕϕ0.01V1.36V )Cl /Cl ()Cl /Cl (V 37.110lg 60.059V 1.23V }/)Cr ({}/)H (}{/)O Cr ({lg 62.303)Cr /O Cr ()Cr /O Cr (-2-2142314-2723-2723-272====⨯+=+=ΘΘ+Θ+Θ+Θ+εϕϕϕϕc c c c c c F RT 0.126V- /Pb)Pb (0.138V- Sn)/Sn (22==+Θ+ΘϕϕΔr G m = -2F {-0.176V -<-0.135V>}= 7.91×103J/molK = 0.39因为:ϕ<Sn 2+/Sn> < ϕ <Pb 2+/Pb>或因: Δr G m > 0或因: Q = 10 > K所以反应逆向自发进行.〔2ϕ <NO 3-/NO> = 0.957Vϕ <Fe 3+/Fe 2+> = 0.771VΔr G m = -3F {ϕ <NO 3-/NO> -ϕ <Fe 3+/Fe 2+>}=-3×96500C/mol ×{0.957V -0.771V>}= -5.38×104J/molΔr G m = -3F {ϕ <NO 3-/NO> -ϕ<Fe 3+/Fe 2+>}= -3×96500C/mol ×{0.721V -0.771V>}=1.45×104J/mol因为:ϕ<NO 3-/NO> < ϕ <Fe 3+/Fe 2+>或因: Δr G m > 0407.0V 059.0(-0.126V)}-{-0.138V 2 303.2/Pb)}Pb (-/Sn)Sn ({2lg 22-=⨯==+Θ+ΘΘRTF K ϕϕ 0.771V Fe)/Fe ()Fe /Fe (V 721.0)100.1lg(30.059V0.957V }/)NO ({}/)H (}{/)NO ({lg 32.303NO)/NO (NO)/NO (323434-3-3-3===⨯⨯+=+=+Θ++-ΘΘ+ΘΘϕϕϕϕp p c c c c F RT或因:Q = 1.0×1012 > K所以反应逆向自发进行结果说明,定性分析中利用棕色环法检验NO3-,若在pH约等于3的醋酸介质中,反应不能进行.该反应应在浓硫酸介质中进行.〔3ϕ <HNO2/NO> = 0.983Vϕ <Fe3+/Fe2+> = 0.771VΔr G m = -F{ϕ <HNO2/NO> -ϕ <Fe3+/Fe2+>}= -96500C/mol×{0.983V -0.771V>}= -2.05×104J/molΔr G m= -F{ϕ<HNO2/NO> -ϕ<Fe3+/Fe2+>}= -96500C/mol×{0.806V -0.771V>}= -3.38×103J/mol因为:ϕ<HNO2/NO> > ϕ <Fe3+/Fe2+>或因:Δr G m < 0或因:Q = 1.0×103 < K所以反应正向自发进行.结果说明,可在pH约等于3的醋酸介质中利用棕色环反应定性检验亚硝酸根.9.129.13Pb2+ + 2e- = PbPbSO4 = Pb2+ + SO42-所以:9.14所以不能利用反应Cu 2+ + Br -制备CuBr.同理可证,不能利用Cu 2+ + Cl -制备CuCl.所以可利用反应CuCl 2 + Cu = 2CuCl 制备CuCl.9.15答案:若〔1为正极,c <H +> = 0.054mol/L若〔2为正极,c <H +> = 0.187mol/L9.16 〔所求实际为c <H +>=10-14mol/L 时,O 2/H 2O 电极的电极电势84sp 4sp 4sp 241027.1)PbSO (90.7V059.00.126V)V 359.0(2)PbSO (lg )PbSO (lg 22.303 /Pb)Pb ( /Pb)PbSO (-ΘΘΘ+ΘΘ⨯=-=+-⨯=+=K K K FRT ϕϕ/CuBr)Cu (V 07.1)/Br Br (V 666.0)10lg(2.00.059V -0.153V CuBr)(lg 2.303 )/Cu Cu ( /CuBr)Cu (2-29-sp 22+ΘΘΘ++Θ+Θ>==⨯⨯=-=ϕϕϕϕK F RT CuCl/Cu)( /CuCl)Cu ( V 186.0)10lg(2.00.059V 0.522V CuCl)(lg 2.303 /Cu)Cu ( CuCl/Cu)(V489.0)10lg(2.00.059V -0.153V CuCl)(lg 2.303 )/Cu Cu ( /CuCl)Cu (26-sp 6-sp 22Θ+ΘΘ+ΘΘΘ++Θ+Θ>=⨯⨯+=+==⨯⨯=-=ϕϕϕϕϕϕ K FRT K F RT V 403.0)100.1lg(40.059VV 229.1)/OH O (414-2=⨯⨯+=-Θϕϕ <Hg 2Cl 2/Hg> = 0.281V所以:ϕ<H + /H 2> = ϕ <Hg 2Cl 2/Hg> -ε= 0.281V - 0.48V = -0.20V9.18 若亚汞离子为Hg + ,则电极反应为:Hg + + e - = Hg根据此电极反应,可写出二电极的Nernst 方程并可计算电池电动势:计算结果与实验数据不符.若亚汞离子为Hg 22+ ,则电极反应为:Hg 22+ + 2e - = 2Hg根据此电极反应,可写出二电极的Nernst 方程并可计算电池电动势:计算结果与实验数据相符,故可知亚汞离子为Hg 22+.642222107.1}/)HB (/)H (mol/L101.4)H (}/)H (lg{0.059V 0.20V /)H (}/)H ({lg 2303.2)/H H ( )/H H (-ΘΘΘΘ+-+Θ+ΘΘ++Θ+⨯=∴⨯=⨯=⨯=∴+=a a K c c K c c c c c p p c c F RT ϕϕV 059.010lg 303.2)()(}10/)Hg (lg{303.2)(}/)Hg (lg{303.2)(==--+=+=-+=+Θ+ΘΘ+ΘF RT c c FRT c c FRT ϕϕεϕϕϕϕV 03.010lg 2303.2)()(}10/)Hg (lg{2303.2)(}/)Hg (lg{2303.2)(2222==--+=+=-+=+Θ+ΘΘ+ΘF RT c c FRT c c FRT ϕϕεϕϕϕϕHg 22+ = Hg 2+ + Hg9.20根据标准电极电势图:ϕ <PbO 2/Pb 2+> = 1.455Vϕ <O 2/H 2O 2> = 0.695Vϕ <H 2O 2/H 2O> = 1.76V下列反应可自发进行:(1) PbO 2 + H 2O 2 + 2H + = Pb 2+ + O 2 + 2H 2O(2) Pb 2+ + H 2O 2 = PbO 2 + 2H +(1) + <2>:2H 2O 2 = 2H 2O + O 2故PbO 2 〔MnO 2等可催化过氧化氢歧化分解.9.22<1> KClO 3 + 6HCl = 3Cl 2 +KCl + 3H 2O<2> 3I 2 + 6KOH = KIO 3 + 5KI + 3H 2O<3> 2H 2S + SO 2 = 3S + 2H 2O1101)Hg ()Hg (/)Hg (/)Hg (102.9034.2303.2)}/Hg Hg (-/Hg)Hg ({lg 222222322222=∴=⨯=-==++Θ+Θ+Θ-Θ++Θ+ΘΘc c c c c c K K RT F K ϕϕ<4> Bi<OH>3 + Cl2 + 3NaOH = NaBiO3 + 2NaCl + 3H2O<5> Sn + 4HNO3 = SnO2 + 4NO2 + 2H2O<6> Pb + 4HNO3 = Pb<NO3>2 + 2NO2 + 2H2O<7> MnSO4 + O2 + 4NaOH = Na2MnO4 + Na2SO4 + 2H2O(8)2Pb2+ + Cr2O72-+ H2O = 2PbCrO4 + 2H+<9> 2Cr<OH>4-+ 3HO2-= 2CrO42-+ 5H2O + OH-<10> 2MnO4-+ 3Mn2+ + 2H2O = 5MnO2 + 4H+<11> Hg<NO3>2 = Hg + 2NO2 + O2<12> 2Cu<NO3>2 = 2CuO + 4NO2 + O2<13> 2KNO3 = 2KNO2 + O2<14> Cr2O72-+ 3H2O2 + 8H+ = 2Cr3+ + 3O2 + 7H2O<15> Cr2O72-+ 4H2O2 + 2H+ = 2CrO5 + 5H2O第十章配位化合物10.2A[Co<SO4><NH3>5]BrB [CoBr<NH3>5]SO410.3 <2>10.4<4>10.5<1> Zn2+ : 3d104s04p0,sp3杂化, 正四面体〔2Hg2+ : 5d104s04p0 , sp3杂化, 正四面体〔3Mn2+ : 3d54s04p04d0sp3d2杂化, 正八面体〔4Co 3+ : 3d 64s 04p 0d 2sp 3杂化, 正八面体10.6 〔410.7 <3>10.8 <3>10.9 <1>10.10 <4>10.11 <3>10.12 <1>10.13Ag + + 2NH 3 = Ag<NH 3>2+c 0/mol ·L -1 0.10 0.40 0c eq / mol ·L -1 x 0.40-2<0.10-x> 0.10-x 10.14Ag + + 2NH 3 = Ag<NH 3>2+1-77-7223L mol 103.2)Ag (102.3x 101.120.010.0})Ag(NH {⋅⨯=∴⨯=⨯=⨯=-++Θc x K fc eq / mol ·L -1 0.0010 x 0.09910.15开始生成沉淀时:Ag + + 2NH 3 = Ag<NH 3>2+c eq / mol ·L -11.77×10-9 x 0.1010.16Ag + + 2S 2O 32- = Ag<S 2O 3>23-c eq /mol ·L -1 x 0.10 0.050即:c <Ag +> =1.7×10-13mol ·L -17.76 pH 24.652.176.4)NH ()NH (lg)NH (p pOH L mol 099.0L mol 100.3L mol 0020.0L mol 10.0)NH ( L mol 100.3)NH (100.3x 101.10010.0099.0})Ag(NH {4331-1-31-1-41-333-7223==-=-=⋅=⋅⨯-⋅+⋅=⋅⨯=∴⨯=⨯==+Θ-+-+Θc c K c c xK b f 910-sp 1077.110.01077.1/)Cl (AgCl)(/)Ag (--ΘΘΘ+⨯=⨯==c c K c c 9.18 pH 82.4)NH ()NH (lg )NH (p pOH L mol 7.2L mol 3.2L mol 0.5)NH ( L mol 3.2)NH (3.2x 101.11077.1010})Ag(NH {4331-1-1-41-372923==-=⋅=⋅-⋅=⋅=∴=⨯=⨯⨯=+Θ+-+Θc c K c c x K b f 13132107.1 109.210.0050.0-Θ⨯=⨯=⨯=x x K f欲生成沉淀所需KCl和KI的浓度分别为:10.17Cu<OH>2+ 4NH3= Cu<NH3>42++ 2OH-K = K sp {Cu<OH>2} K f {Cu<NH3>42+}=2.2×10-7反应难于自发进行Cu<OH>2 + 2NH3 + 2NH4+ = Cu<NH3>42+ + 2H2OK = K sp {Cu<OH>2} K f {Cu<NH3>42+}{1/ K b <NH3>}2=1.4×103反应易于自发进行,原因为NH4+与生成的OH-结合为NH3 ,化学平衡正向移动.10.18 不能, Co3+, +3, 小于, 大于10.19Zn2++ 4NH3= Zn<NH3>42+c eq/mol·L-1x 0.10 0.10Cu2++ 4NH3= Cu<NH3>42+c eq/mol·L-1x 0.10 0.1010.20CuCl+= Cu2++ Cl-c eq/mol·L-1 1.5-x x 1.5+xc<CuCl+> = 1.0 mol·L-1 c<Cu2+> = 0.50 mol·L-110.21AgCl + Cl-= AgCl2-c eq/mol·L-1x 0.10m<NaCl> = c<NaCl>VM<NaCl> = 1.1×104g加入沉淀剂过多,可能由于配合物的生成反而使沉淀溶解度增大.10.22(1)Zn2++ 4NH3= Zn<NH3>42+c eq/mol·L-1 1.0×10-4x 0.20即:c<NH3> = 0.029mol·L-1(2)同理可计算得,当c<Zn2+ > = 1.0×10-15mol·L-1时:c<NH3> = 16mol·L-1c<OH-> = 0.017mol·L-1向含有Zn2+离子的溶液中滴加氨水,开始有白色Zn<OH>2沉淀生成,继而沉淀溶解,得到无色的Zn<NH3>42+溶液.。
中国农业大学赵士铎版普通化学课件5
杂化轨道理论
5.3 杂化轨道理论
杂化轨道理论的提出
1931年鲍林为了更好地解释多原子分子的空间构型, 在价键理论的基础上,提出了杂化轨道理论。并且很 好地解释了甲烷分子的空间构型和其稳定性。
鲍林从电子运动具有波动性的这一特征出发,认为不 同形状的波可以相互叠加,而得到新的波形(新的波 函数形式)。
杂化:在形成分子时,由于原子间的相互影响,同一 原子的若干不同类型、能量相近的原子轨道相互混合 组成一组新轨道。这种轨道的重新组合过程称为杂化, 所形成的一组新轨道(能量相同、简并)为杂化轨道。
排斥态
d
5 化学键和分子结构
共价键的本质和特征
5.2 共价键的价键理论
价键理论(VB法)要点
❖典型共价键的形成是由于相邻两原子之间通过自 旋相反的未成对电子相互配对(共用),原子轨道
相互重叠,核间几率密度增大,而使系统能量降
低,趋于稳定的结果—共价键的本质;
❖只有波函数符号(波相)相同的轨道之间,才能发 生有效重叠;
1927年海特勒和伦敦将量子力学应用于分子结构, 又经鲍林发展形成了现代价键理论(电子配对法)。 继续发展提出了杂化轨道理论。
1932年密立根和洪特通过将分子整体考虑,提出了 完全不同于价键理论的分子轨道理论。
价键理论简单明了;分子轨道理论可定量计算。
普通化学 2001-2004
5 化学键和分子结构
➢ 同族中从上至下离子半径依次增大。
Li+<Na+<K+<Rb+<Cs+; F-<Cl-<Br-<I-
➢ 同周期中,从左至右阳离子电荷增加离子半径减小,阴离子 电荷减少离子半径减小。Na+>Mg2+>Al3+;N3->O2->F-
中国农业大学赵士铎普通化学普化作业
8.8 解:
Fe3+沉淀完全(10-5)的最低pH:
KspΘ[Fe(OH)3]≤[c(Fe3+)/cΘ][c(OH-)/cΘ]3 c(OH-)/cΘ= 3 2.6410-39/(10-6/ c ) =6.4×10-12 pH=14-11.2=2.8
Fe2+不沉淀的最高pH:
KspΘ[Fe(OH)2]≥[c(Fe2+)/cΘ][c(OH-)/cΘ]2 c(OH-)/cΘ = 4.871017 /(0.05/c ) =3.1×10-8
Hபைடு நூலகம்
+
)
=
8
.
5
×
1
0
-
5
=
c
(
N
O
2
)
;
HNO2== H+ + NO- ;
Kaθ= c(H+)×c(NO2-)/c eq(HNO2)
=[8.5×10-5]2/4.6×10-4=1.57×10-5;
因此,雨水中亚硝酸的总浓度
c总(HNO2)=1.57×10-5+8.5×10-5=1.07×10-4
第6页/共23页
(Kw/Ka1)=1.0×10-14/5.90×10-2=1.69×10-13,因此NaHC2O4水溶液的pH<7.0。
第5页/共23页
7 酸碱平衡
第七章作业
• 7.4一酸雨样品,pH=4.07。设此酸性完全因水中含HNO2所致,计算c(HNO2)。 Ka=4.6×10-4
解
:
p
H
=
4
.
0
7
,
c
(
Kaθ=Kwθ/Kbθ=2.17×10-5;c/K>500,可以使用近似式 c(H+)= pH=3.03
普通化学 PPT课件-绪论第一章
对于化学反应: 0 B B, 反应进度的定义式: nB
1 B B
1 H 2 ( g ) O2 ( g ) H 2O( g ), rH m 285.6 KJ mol 1 2 1 2 H 2 ( g ) O2 ( g ) 2 H 2O( g ), rH m 571.2 KJ mol
律的一门基础科学,简而言之,化学是研究
物质变化的科学 .
化学最初被划分为两个分支学科: 无机化学和有
机化学;
后来又被分为四个分支学科: 以研究碳氢化合物及其衍生物为对象的有机化学; 以研究所有元素及其化合物为对象的无机化学; 以研究物质化学组成的鉴定方法及其原理为内
容的分析化学;
取样分析后,其中n(NH3)=0.320mol,n(O2)=0.180mol,
n(N2)=0.700mol。混合气体的总压 p=133.0kPa。试计算各
组分气体的分压。
解:n= n(NH3)+n(O2)+n(N2) =0.320mol+0.180mol+0.700mol
=1.200mol
nNH3 p( NH3 ) p n
第一章 气体和溶液
教学目标 掌握理想气体状态方程式及其应用
掌握理想气体分压定律的应用
了解均相分散系和多相分散系的概念 熟练掌握各种溶液的组成标度及有关计算 掌握稀溶液的通性,有关计算及应用 胶体溶液 了解表面活性物质和乳浊液的基本知识
1.1 气体 1.1.1 理想气体状态方程式
气体的最基本特征: 具有可压缩性和扩散性。 理想气体分子之间没有相互吸引和排斥,分子本身 的体积相对于气体所占有体积完全可以忽略,分子之间 及分子与器壁之间发生的碰撞不造成动能损失。 人们将符合理想气体状态方程式的气体,称为理想气体。
普通化学1章气体溶液和胶体
化学发展史 —— 四次革命
教学内容。
物质的存在状态 化学热力学
化学动力学
1.基本知识和理论 化学平衡-电离、沉淀、氧化还
普
原、 络合物
通
电化学
化
物质结构
学
2. 单质、化合物的基本性质
3. 胶体化学 4. 化学实验
教学基本要求:
深刻理解和掌握原子、分子的结构和性质, 络合物的结构和性能,化学反应动力学、热力 学基础,溶液中离子平衡及相关化学学科最基 础概念;
解:根据理想气体状态方程pV = nRT
设苯的摩尔质量为M,
pV m RT M
M mRT 0.616 8.314 (100 273.2)
pV
98.9 247.2 /1000
78.17g/mol
苯的最简式CH的摩尔式量为12+1=13g/mol 78.17/13=6 苯的分子式为C6H6
1、稀溶液的依数性 2、胶体的胶团结构、性质
依数性的计算、胶团结构的 书写、胶粒的电性
• 1.1.1理想气体状态方程 • 1.1.2Dalton分压定律 • 1.1.3气体分子的速度和能量
1.1.1 理想气体状态方程
低压、高温条件下的实际气体的性质 非常接近于理想气体性质。
pV = nRT 称为理想气体状态方程。p是气体 压力,V是气体体积,n是气体的物质的量 (mol),T是热力学温度(K), R为摩尔气 体常数。
了解物质状态,胶体的一般概念和金属元 素、非金属元素的一般知识;
掌握化学实验的基本操作,认识化学反应 的直观变化;
教学方法
教学过程的注意事项
课程安排: 本课程授课时数为66学时,实验课另
设为实验化学,其中普化实验占31学时。 考试为期末闭卷考试。课程成绩=期末考 试成绩(80%)+作业成绩(20%)。 实验为单双周。
《普通化学》(第二版)赵士铎主编 习题答案
普通化学(第二版)赵士铎主编习题答案中国农业大学无机及分析化学教研组编第一章 气体和溶液1.1 (1) 溶液的凝固点下降(2) 土壤溶液浓度过大,渗透压大于植物根细胞液的渗透压 (3) 溶液的凝固点下降1.2 沸点不断上升,至溶液达到饱和后,沸点恒定;蒸气凝结温度恒定,等于溶剂的沸点。
1.3%6.1)O H (/1)O H ()O H ()O H ()O H ()O H ()O H (kg mol 91.097.0%mol kg 034.0/%0.3)O H (1)O H (/)O H ()O H (Lmol 88.0mol 34g L g 1000%0.3)O H ()O H ()O H (2222222222221-1-222222221-1--1222222=+=+=⋅=⋅=-=⋅=⋅⋅⨯==M b b n n n x w M w b M w c ρ1.4 凝固点自高至低顺序:葡萄糖溶液、醋酸溶液、氯化钾溶液 1.5b = 1.17 mol ⋅kg -1∆T b = K b b = 0.52K ⋅kg ⋅mol -1⨯1.17 mol ⋅kg -1 = 0.61K T b = 373.76K = 100.61℃∆T f = K f b = 1.86K ⋅kg ⋅mol -1⨯1.17 mol ⋅kg -1 = 2.18K T f = 270.87K = - 2.18 1.6 π = cRT =RT VMm / 1-4-1-1m ol g 100.2kPa499.0L 10.0K 300K m ol L 8.31kPa g 40.0⋅⨯=⨯⨯⋅⋅⋅⨯==πV mRT M1.721:2: 30 1280.3 : 1610.2 : 15.9= 化合物中C 、H 、O 原子数比为21:30:21--1A b B f mol g 3105.00g0.33K g 100.0mol kg K 12.5⋅=⨯⨯⋅⋅=∆=m T m K M故该化合物的化学式为C 21H 30O 2 1.81-B 2BB 22222m o lg 4.342)O H (/)O H (}CO )NH {(/}CO )NH {(⋅=∴=M m M m m M m第二章化学热力学基础2.1 (1)错误;(2)正确;(3) 错误;(4)错误;(5)正确;(6)正确;(7) 错误;(8)错误2.2 (1/4)[反应式(1)-反应式(2)]得:(1/2)N2(g)+(1/2)O2(g)=NO(g)∴∆f H mθ(NO,g)=(1/4){ ∆r H mθ(1) - ∆r H mθ(2)}=(1/4)[-1107kJ⋅mol-1-(-1150 kJ⋅mol-1)]=90 kJ⋅mol-12.3 (1/4)[反应式(3)-反应式(4)+3⨯反应式(2)- 反应式(1)]得:N2(g)+2H2(g)=N2H4(l) (5)∴∆f H mθ(N2H4,,g)=(1/4){ ∆r H mθ(3) - ∆r H mθ(4)+ 3⨯∆r H mθ(2) - ∆r H mθ(1)} =(1/4){-143kJ⋅mol-1-(-286kJ⋅mol-1+3⨯(-317kJ⋅mol-1)-(-1010kJ⋅mol-1)) =50.5 kJ⋅mol-12⨯反应式(4)-反应式(5)得:N2H4(l)+ )O2(g)= N2(g)+2H2O(l)∆r H mθ=2⨯∆r H mθ(4)- ∆r H mθ(5)=2⨯(-286 kJ⋅mol-1)- 50.5kJ⋅mol-1= -622.5 kJ⋅mol-12.4 ∆r H mθ=2∆f H mθ(CO2,g)+3∆f H mθ(H2O,l)+(-1)⨯∆f H mθ(CH3OCH3,l)+(- 3)∆f H mθ(O2,g)∴∆f H mθ(CH3OCH3,l) =2∆f H mθ(CO2,g) +3∆f H mθ(H2O,l)- ∆r H mθ= -183 kJ⋅mol-12.5CO(g)+(1/2)O2(g)由题意知,∆r H mθ(1)<0, ∆r H mθ(2)<0, ∆r H mθ(3)<0∆r H mθ(1)= ∆r H mθ(2)+ ∆r H mθ(3)∆r H mθ(1)-∆r H mθ(3)= ∆r H mθ(2)<0即:以碳直接作燃料时放热较多2.6 C(s)+H2O(g)=CO(g)+H2(g)∆r H mθ= ∆f H mθ(CO,g)+ (-1)∆f H mθ(H2O,g)=-110.5 kJ⋅mol-1 -(-)241.8 kJ⋅mol-1=131.3 kJ⋅mol-1CO2(g) +H2O(g)∆r H mθ(2) ∆r H mθ(3)CO(g)+H2(g)+O2(g)∆r H mθ(1)= ∆r H mθ(2)+ ∆r H mθ(3) ∴∆r H mθ(1) - ∆r H mθ(3) = ∆r H mθ(2)>0由题意知,∆r H mθ(1)<0, ∆r H mθ(3)<0 故:以水煤气作燃料时放热较多2.7 均为熵增过程。
中国农业大学赵士铎版普通化学课件
第二章 化学平衡
化学反应进行的限度 化学平衡原理及其计算 化学平衡的移动—— · 查德 理原理
普通化学 2001-2004
9:31:21
2 化学平衡
2 化学平衡
2.1 标准平衡常数
❖2.1.1 化学平衡状态
❖2.1.2 标准平衡常数
❖2.1.3 反应商判据
2.2 多重平衡系统
普通化学 2001-2004
v正 v逆
v正= v逆
9:31:21
2 化学平衡
化学平衡状态
2.1 标准平衡常数
化学平衡的特征
❖化学平衡是有条件的; ❖平衡状态是一定条件下反应所能进行到的
最大限度; ❖是一种动态平衡; ❖平衡组成与达到平衡的途径无关.
普通化学 2001-2004
9:31:21
2 化学平衡
化学平衡状态
2.1 标准平衡常数
例:水煤气反应:CO2 + H2 == CO +H2O; T=1473K
M起始
M平衡
cCO2 cH2 cCO cH2O CO2 H2 CO H2O 1、 0.01 0.01 0 0 0.004 0.004 0.006 0.006
2、 0.01 0.02 0 0 0.0022 0.0122 0.078 0.078
解:设O2的起始的物质的量为x .
2NO(g) + O2(g)
起始的量 mol·L-1 0.04
x
=
2NO2(g)
0
平衡时的量mol·L-1
0.04(1-0.4)
x(1-
1 2
×0.4×0.04)
0.4×0.04
K (cN(c /O c N 2 )O /2c c O )22 /c(0.0(0 4 .0 4 . 6)0 2 ,0 x)0 4 .08
中国农业大学赵士铎版普通化学普化作业1-3
因此,在此条件下,反应逆向进行。 在2000K时,根据方程式得:
Θ K Θ (T1 ) Δr H m T1 T2 ln ( ) Θ K (T2 ) R T1T2 Θ Δr H m T T2 lnK (T2 ) ( 1 ) lnK (T1 ) R T1T2
2 9 0.2 5 1 03 2000 2273 ( ) ln 0.1 3.6 8.314 2000 2273
ΔfHmΘ(298K) -1676 SmΘ(298K) 50.92
ΔrHmΘ(298K)=3/2(-393.51)-(-1676)=1085.7 kJ· mol-1 ΔrSmΘ(298K)=3/2(213.6)+2(28.33)-3/2(5.74)-50.92=317 J· mol-1· K- 1 ΔrGmΘ(T)≈ΔrHmΘ(298K)-TΔrSmΘ(298K) =0 T=ΔrHmΘ(298K)/ΔrSmΘ(298K)= 3420 K
-) 2 (4) : 2N2(g) O2(g) 2N2O4(g) 2N2O(g) 4NO2(g)
2N2O(g)+3O2(g)=2N2O4(g) 总反应的ΔrGmΘ= 4 ΔrGmΘ(3)–2[ΔrGmΘ(1)+ ΔrGmΘ(2)]
K总
普通化学 2001-2004
4 ( K3 ) 2 [ K1 K2 ]
普通化学 2001-2004
2 化学平衡
第二章作业
3.7解:反应 N2(g) + O2(g) = 2NO(g);ΔrHmΘ=2ΔfHmΘ p 2 ( NO ) 2 (20 / 100 ) p K 0.1 Q 4K pN pO 2 ( 10 / 100 ) ( )( ) p p
中国农业大学赵士铎版普通化学普化作业4-6
该原子n=4的轨道中含有电子: a、8个;b、18个;c、8~18个;d、8~23个。
7.10第四能级组中所包含的原子轨道是4s、3d、4p。
普通化学 2001-2004
8:31:42
4 原子结构和周期系
第四章作业
7.11元素周期表中的周期是依能级组划分的,族是依外
普通化学 2001-2004
8:31:42
5 化学键和分子结构
第五章作业
8.1判断下列叙述是否正确:
(1)A,B两元素化合,能形成离子型晶体得要条件是:A的 电离能小于B的电子亲合能。× (2)离子晶体晶格能大小仅与离子电荷、离子半径有关。 ×(见P.163)
(3)基态原子外层未成对电子数等于该原子能形成的共价键 数,此即所谓共价键的饱和性。×
层电子排布划分的,主族元素与副族元素原子结构上的 区别在于外层电子填入(n-1)d轨道。
7.12活泼金属主要集中于周期表中 s 区,惰性金属大都
集中于周期表 ds 区 。
7.13判断下列各对原子哪个半径较大,并查表核对是否
正确。 (1)H与He;(2)Be与Sr;(3)Se与Ca;(4)Cu与Ni;(5)Y与La
普通化学 2001-2004
8:31:42
5 化学键和分子结构
第五章作业
8.8由于水分子间存在较强的氢键,使水具有很多特
殊的物理性质,对生物体的存在有着非常重要的意 义。以下分别列出一些水的物理性质(1~4)以及对生 命现象的影响(a~b).试将性质与影响一一对应,并作 简单解释。 (1)高热容:~c.人体可基本保持体温恒定。 (2)密度大于冰:~d.河流、湖泊在冬季仅在表面结冰。
普通化学赵士铎课后习题答案
普通化学(第二版)习题答案中国农业大学无机及分析化学教研组编第一章 气体和溶液1.1 (1) 溶液的凝固点下降(2) 土壤溶液浓度过大,渗透压大于植物根细胞液的渗透压 (3) 溶液的凝固点下降1.2 沸点不断上升,至溶液达到饱和后,沸点恒定;蒸气凝结温度恒定,等于溶剂的沸点。
1.3%6.1)O H (/1)O H ()O H ()O H ()O H ()O H ()O H (kg mol 91.097.0%mol kg 034.0/%0.3)O H (1)O H (/)O H ()O H (Lmol 88.0mol 34g L g 1000%0.3)O H ()O H ()O H (2222222222221-1-222222221-1--1222222=+=+=⋅=⋅=-=⋅=⋅⋅⨯==M b b n n n x w M w b M w c ρ1.4 凝固点自高至低顺序:葡萄糖溶液、醋酸溶液、氯化钾溶液 1.5b = 1.17 mol ⋅kg -1∆T b = K b b = 0.52K ⋅kg ⋅mol -1⨯1.17 mol ⋅kg -1 = 0.61K T b = 373.76K = 100.61℃∆T f = K f b = 1.86K ⋅kg ⋅mol -1⨯1.17 mol ⋅kg -1 = 2.18K T f = 270.87K = - 2.18 1.6 π = cRT =RT VMm / 1-4-1-1mol g 100.2kPa499.0L 10.0K 300K mol L 8.31kPa g 40.0⋅⨯=⨯⨯⋅⋅⋅⨯==πV mRT M1.721:2: 30 1280.3 : 1610.2 : 15.9= 化合物中C 、H 、O 原子数比为21:30:21--1A b B f mol g 3105.00g0.33K g 100.0mol kg K 12.5⋅=⨯⨯⋅⋅=∆=m T m K M故该化合物的化学式为C 21H 30O 2 1.81-B 2BB 22222m o lg 4.342)O H (/)O H (}CO )NH {(/}CO )NH {(⋅=∴=M m M m m M m第二章化学热力学基础2.1 (1)错误;(2)正确;(3) 错误;(4)错误;(5)正确;(6)正确;(7) 错误;(8)错误2.2 (1/4)[反应式(1)-反应式(2)]得:(1/2)N2(g)+(1/2)O2(g)=NO(g)∴∆f H mθ(NO,g)=(1/4){ ∆r H mθ(1) - ∆r H mθ(2)}=(1/4)[-1107kJ⋅mol-1-(-1150 kJ⋅mol-1)]=90 kJ⋅mol-12.3 (1/4)[反应式(3)-反应式(4)+3⨯反应式(2)- 反应式(1)]得:N2(g)+2H2(g)=N2H4(l) (5)∴∆f H mθ(N2H4,,g)=(1/4){ ∆r H mθ(3) - ∆r H mθ(4)+ 3⨯∆r H mθ(2) - ∆r H mθ(1)} =(1/4){-143kJ⋅mol-1-(-286kJ⋅mol-1+3⨯(-317kJ⋅mol-1)-(-1010kJ⋅mol-1)) =50.5 kJ⋅mol-12⨯反应式(4)-反应式(5)得:N2H4(l)+ )O2(g)= N2(g)+2H2O(l)∆r H mθ=2⨯∆r H mθ(4)- ∆r H mθ(5)=2⨯(-286 kJ⋅mol-1)- 50.5kJ⋅mol-1= -622.5 kJ⋅mol-12.4 ∆r H mθ=2∆f H mθ(CO2,g)+3∆f H mθ(H2O,l)+(-1)⨯∆f H mθ(CH3OCH3,l)+(- 3)∆f H mθ(O2,g)∴∆f H mθ(CH3OCH3,l) =2∆f H mθ(CO2,g) +3∆f H mθ(H2O,l)- ∆r H mθ= -183 kJ⋅mol-12.5CO(g)+(1/2)O2(g)由题意知,∆r H mθ(1)<0, ∆r H mθ(2)<0, ∆r H mθ(3)<0∆r H mθ(1)= ∆r H mθ(2)+ ∆r H mθ(3)∆r H mθ(1)-∆r H mθ(3)= ∆r H mθ(2)<0即:以碳直接作燃料时放热较多2.6 C(s)+H2O(g)=CO(g)+H2(g)∆r H mθ= ∆f H mθ(CO,g)+ (-1)∆f H mθ(H2O,g)=-110.5 kJ⋅mol-1 -(-)241.8 kJ⋅mol-1=131.3 kJ⋅mol-1CO2(g) +H2O(g)∆r H mθ(2) ∆r H mθ(3)CO(g)+H2(g)+O2(g)∆r H mθ(1)= ∆r H mθ(2)+ ∆r H mθ(3) ∴∆r H mθ(1) - ∆r H mθ(3) = ∆r H mθ(2)>0由题意知,∆r H mθ(1)<0, ∆r H mθ(3)<0 故:以水煤气作燃料时放热较多2.7 均为熵增过程。
中国农业大学赵士铎版普通化学课件10解剖
❖10.3.1 配位平衡和稳 定常数
❖10.3.2 配位平衡的移 动
❖10.2.1 基本要点
❖10.2.2 杂化轨道和配 离子空间构型
❖10.2.3 外轨型配合物 和内轨型配合物
普通化学 2001-2004
10:14:29
10 配位化合物
前言
一个元素的微粒(原子或离子)与同该微粒相结合的
配位体,常由于形成配位化合物后,而改变了它们
内界之间的结合为配位键,结合牢固,不易电离。 内外界之间以离子键结合,在水溶液中完全电离。
普通化学 2001-2004
10:14:29
10 配位化合物
配合物的组成
10.1 配合物的基本概念
中心离子(原子)
❖占据配离子中心位置的简单阳离子或中性原子,又 叫形成体。
❖中心离子要存在接受外来孤电子对的空轨道,多为 过渡金属元素。绝大多数是金属离子,也可以是金 属原子或高氧化数的非金属元素。
OHH2O
O
H2[PtCl6]
六氯合铂 (IV) 酸
Pt (IV) 6 -2 Cl- Cl
普通化学 2001-2004
10:14:29
10 配位化合物
螯合物
10.1 配合物的基本概念
多基配位体与中心离子形成的具有环状结构的配合
物称为螯合物,又叫内配合物。
❖螯 合 物 一 般 形 成 五 元 环 或
❖只含有一个配位原子的配位体称为单基(齿)配位
体;CN-、NH3、CO、H2O。
❖含一个以上配位原子的配位体称为多基(齿)配位
体。H2NCH2CH2NH2(乙二胺)
乙二胺四乙酸 HOOCCH2
CH2COOH
NCH2CH2N
HOOCCH2
中国农业大学赵士铎版普通化学课件4
主量子数等重要的原子结构概念。
量子力学理论建立在微观粒子的量子性和运动规律的统
计性这两个基本特征上的。
普通化学 2001-2004
8:31:42
4 原子结构和周期系
4.1 微观粒子的运动特征
微观粒子的波粒二象性
光的本性
既有波动性又具有微粒性——波粒二象性 波动性:干涉、衍射, 0= h v; 粒子性:光电效应, 0= m c2。 h h 光子具有的动量 p mc c c p:光子的动量(代表光的粒子性); λ:光子的波长(代表光的波动性)。
4 原子结构和周期系
第四章 原子结构和周期系
本章从微观角度讨论化学变化的本质。 了解原子核外电子运动的基本特征,s、p、d轨
道波函数及电子云的空间分布情况。 掌握原子核外电子分布的一般规律及其与元素 周期表的关系(元素性质的周期性变化规律)。 了解元素按s、p、d、ds、f分区的依据及各区元 素的共性。
为量子数。n、l、m 均有确定的值时,波函数才能表 示电子运动的某一确定状态。
普通化学 2001-2004
8:31:42
4 原子结构和周期系
4.2 核外电子的运动状态
波函数及量子数
波函数ψ是量子力学中描述核外电子在空间运动状
态的数学表达式,是空间坐标的函数。只有当山的 量子数n,l,m均有确定值时,波函数ψn,l,m(r,θ,φ)才能 表示核外电子运动的某一稳定状态。
2001-2004
8:31:42
4 原子结构和周期系
4.1 微观粒子的运动特征
量子化和原子的玻尔模型
根据玻尔假设,可推导得到氢原子的各级轨道半径和能
量。(代入量子化条件)
半径的推导是:离心力 = 库仑引力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ →- 极性共价键是分子具有极性的必要条件。
H—Cl 但分子是否具有极性,需考虑分子构型。
非极性共价键 极性键
离子键
成键元素 电负性差值
H—H H—Cl Na+[Cl-] Cs+[F-]
0
0.9 1.7 2.1
3.3
共价性增强 ← → 离子性增强
共价键
离子键
普通化学 2001-2004
5 化学键和分子结构
σ键与π键的比较
❖单键总是键;可单独存在。
❖多重键中必有一σ键,其余为π键;
❖单键可旋转,重键不能旋转;
❖π键比σ键弱,易发生化学反应。
配位键 由一个原子(给予体)提供电子对,另一个原
子(接受体)提供空轨道,形成的共价键。
如: H3N→H+ 形成 NH4+离子
普通化学 2001-2004
5 化学键和分子结构
❖ 18+2电子构型:第5、6周期中ⅣA、ⅤA、ⅥA 金属离子(P区的低价态金属离子)
83Bi3+ [Kr]5s25p65d106s26p0、Pb2+、Sn2+等 ❖ 9 — 17电子构型(不规则构型): 过渡区低价态离子
22Ti2+ [Ne]3s23p63d24s0、Fe2+、Fe3+、Cr3+、Mn2+
❖原子轨道总是尽可能地达到最大限度的重叠—最
大重叠原理。
最有效的
共价键的特征 ❖饱和性 ❖方向性
++ 无效的重叠方向
重叠方向
不理想的 重叠方向
普通化学 2001-2004
5 化学键和分子结构
共价键的本质和特征
5.2 共价键的价键理论
如果A、B两原子各有一个自旋相反的未成对电子,
则可相互配对形成一个共价单键。并随成键原子的
普通化学 2001-2004
5.1 离子键
5 化学键和分子结构
离子的特征
5.1 离子键
根据结构理论推算出正负离子的半径,其变化规律如下:
➢ 阳离子半径小于相应的原子半径;简单阴离子半径大于相 应的原子半径。
➢ 同一元素的原子能形成不同价态的阳离子时,高价离子半 径小于低价离子半径。Fe3+<Fe2+
XA-XB=1.7;具有50%的离子键属性 在CsF中离子性约占92%。
晶格能U
❖由气态离子生成一摩尔稳定的固态晶体所放 出的能量
❖反映离子键的强弱。U值越大,晶体越稳定, 其熔点越高,硬度也越大。
普通化学 2001-2004
5 化学键和分子结构
离子键的形成和特征
5.1 离子键
晶格能可应用波恩-哈伯循环计算得到:
➢ 同族中从上至下离子半径依次增大。
Li+<Na+<K+<Rb+<Cs+; F-<Cl-<Br-<I-
➢ 同周期中,从左至右阳离子电荷增加离子半径减小,阴离子 电荷减少离子半径减小。Na+>Mg2+>Al3+;N3->O2->F-
离子半径的大小是影响离子化合物性质的重要因素之一,半 径越小,正负离子间的引力越强,晶体的晶格能越大,离 子化合物的熔点越高。
共价键的本质和特征
氢分子的形成 ❖1927年,海特勒和伦敦解 H2分子的薛定谔方程发现: 两个氢原子靠近时,未成 对电子
➢自旋平行,出现斥态, 系统能量高;
➢自旋相反,出现基态, 能量降低。
❖基态H2分子 ➢Es= - 436kJ·mol-1。
➢d=74pm < 2a0=106pm
普通化学 2001-2004
1927年海特勒和伦敦将量子力学应用于分子结构, 又经鲍林发展形成了现代价键理论(电子配对法)。 继续发展提出了杂化轨道理论。
1932年密立根和洪特通过将分子整体考虑,提出了 完全不同于价键理论的分子轨道理论。
价键理论简单明了;分子轨道理论可定量计算。
普通化学 2001-2004
5 化学键和分子结构
❖5.3.1 基本要点
普通化学 2001-2004
5.4 分子轨道理论简介 ❖5.4.1基本要点 ❖5.4.2类型和能级 ❖5.4.3实例
5.5 分子间作用力 ❖ 5.5.1 分子的极性 ❖ 5.5.2 分子间力 ❖ 5.5.3 氢键 ❖ 5.5.3 离子的极化
5 化学键和分子结构
化学键和分子结构
普通化学 2001-2004
5 化学键和分子结构
杂化轨道理论基本要点
5.3 杂化轨道理论
基本要点
❖成键时同一原子中原来能量不同,但相近的价电子 轨道混合平均化,组成一组新轨道——杂化轨道。
❖杂化前后轨道数目不变;
5 化学键和分子结构
第五章 化学键和分子结构
化学键是现代化学的一个中心问题。参与化学变化的基 本单元是分子,物质的分子是由原子组成。但分子中的 原子并不是简单堆积的,而是按一定的规律结合形成。 将分子中直接相连的两个(或多个)原子之间的强烈作用 称为化学键,有三种基本类型: 离子键、共价键、金属键
物质的性质主要决定于分子的性质,而分子的性质由分 子内部的结构所决定。分子结构的内容包括: 分子中原子间的强烈作用—化学键;分子(或晶体)的空间 构型(几何形状);分子间的作用力;分子结构与物质的化 学、物理性质的关系等。
➢ 成键原子化合价:化合物 SeF6 键能Se-F(kJ/mol) 284.9
SeF4 SeF2 310 351
➢ 原子电负性;ΔX越大,键的极性越强,键能越大。
➢ 此外成键的原子轨道类型、键型等都产生影响。
普通化学 2001-2004
5 化学键和分子结构
键参数
5.2 共价键的价键理论
键级:分子中键连原子间的成键数目。键级越高,键能 越强,结合越牢固。
在19世纪初,建立了原子分子论,但不能解释化学 键的本质。
20世纪初,德国化学家科塞尔根据稀有气体具有稳 定结构的事实,提出了离子键理论。较好地解释了 离子型化合物的形成和性质。
1916年路易斯提出了共价键理论,以原子间共享电 子对的形式,形成分子,成功地解释了同核双原子 分子的形成和性质。
1927年海特勒和伦敦将量子力学概念应用到氢分子 的结构计算上,从理论上定量地解决了化学键的一 系列问题。从而发展成为现代化学键理论。
电子排布 F: 1s2, 2s2, 2p5; H:1s1
原子轨道能量 -696.3, -40.1, -18.6; -13.6eV
普通化学 2001-2004
5 化学键和分子结构
共价键的类型
5.2 共价键的价键理论
σ键
沿核间连线方向 (“头碰头”方式)重叠
π键
在核间连线两侧平行(“肩并肩”方式)重叠
98.4° 100.5° 101°104.5°92.2°91° 89.5°
普通化学 2001-2004
5 化学键和分子结构
键参数
5.2 共价键的价键理论
键矩(键的极性)
❖非极性共价键:正、负电荷中心重合—同种元素
❖极性共价键:正、负电荷中心不重合—不同种元素
❖键矩是矢量:方向 正→负;大小 电负性之差
键长:分子中两键连原子的核间平 衡距离(核间距)。一般来说,两原
子之间形成的化学键越短,表示键
越强越牢固。
影响因素:原子半径、有效核电荷、电负性和轨道类型等。
键角:分子中同一原子上两键之间的夹角,是反映分子 空间构型的重要数据。
影响因素:键级对其影响较大,重键的键角大于单键的。
甲醛为平面三角形分子∠HCO=122.1°>∠HCH=115.8° 电负性ABn型AsCl3、AsBr3、AsI3; H2O、H2S、H2Se、H2Te
离子的电子层构型直接影响化合物的化学性质。如: ⅠA和ⅠB两者的性质相差极大,NaCl和AgCl另外, Pb4+具有强氧化性,Pb2+具有弱还原性。
这些性质都是由不同的电子层构型引起的。
普通化学 2001-2004
5 化学键和分子结构
离子半径 ❖离子在晶 体中的接 触半径
离子的特征
❖ r+<r原<r-
排斥态
d
5 化学键和分子结构
共价键的本质和特征
5.2 共价键的价键理论
价键理论(VB法)要点
❖典型共价键的形成是由于相邻两原子之间通过自 旋相反的未成对电子相互配对(共用),原子轨道
相互重叠,核间几率密度增大,而使系统能量降
低,趋于稳定的结果—共价键的本质;
❖只有波函数符号(波相)相同的轨道之间,才能发 生有效重叠;
❖ 没有方向性:离子带电体是球型对称 ❖ 没有饱和性:正负离子通过静电引力作用结合
普通化学 2001-2004
5 化学键和分子结构
离子键的形成和特征
5.1 离子键
键的离子性与元素电负性的关系
离子键形成的重要条件是相互作用的原子的电负性 差值较大。一般电负性差值越大,形成键的离子性 越强。以电负性差值为1.7作标准。
杂化轨道理论
5.3 杂化轨道理论
杂化轨道理论的提出
1931年鲍林为了更好地解释多原子分子的空间构型, 在价键理论的基础上,提出了杂化轨道理论。并且很 好地解释了甲烷分子的空间构型和其稳定性。
鲍林从电子运动具有波动性的这一特征出发,认为不 同形状的波可以相互叠加,而得到新的波形(新的波 函数形式)。
杂化:在形成分子时,由于原子间的相互影响,同一 原子的若干不同类型、能量相近的原子轨道相互混合 组成一组新轨道。这种轨道的重新组合过程称为杂化, 所形成的一组新轨道(能量相同、简并)为杂化轨道。
普通化学 2001-2004
5 化学键和分子结构