应用VAR模型时的15个注意点
VAR模型的适用范围:用于时间序列的情况
VAR模型的适用范围:用于时间序列的情况VAR模型的适用范围:用于时间序列的情况下各个变量之间的相互关系,对于随机扰动变量系统进行动态分析。
一个VAR(p)模型的数学形式为: 这里是一个k维的内生变量,是一个d维的外生变量。
,…,和B是待估计的系数矩阵。
扰动向量。
他们之间相互可以使同期的关系,但不与自己的滞后值相关及不与等式右边的变量相关。
等式的右边是内生变量的滞后值,减少了出现同期性的可能。
由最小二乘法得到一致的估计。
此时即使扰动项与同期性相关, OLS依然有效,原因是所有的方程式有相同的回归量,与GLS是等同的。
实际上,由于任何序列相关都可以通过增加更多的滞后项而被调整,所有扰动项序列不相关的假设并不严格。
VAR模型稳定的条件:对于VAR(1),Yt = c + 1 Yt-1 + ut 模型稳定的条件是特征方程 |1- I |=0的根都在单位圆以内,或相反的特征方程|I–L1|= 0的根都要在单位圆以外。
对于k>1的VAR(k)模型可以通过矩阵变换改写成分块矩阵的VAR(1)模型形式。
Yt = C + A Yt -1 + Ut模型稳定的条件是特征方程 |A-I| =0的根都在单位圆以内,或其相反的特征方程 |I-LA|=0的全部根都在单位圆以外。
VAR模型应用的顺序:在使用VAR模型的过程中,遵循这样的步骤:1、对解释变量的回归参数做相关的检验统计量。
2、分解解释变量的方差,方差分解的目的是找出每一个解释变量的方差中,其他解释变量所占解释比例。
3做脉冲响应函数,脉冲响应函数解释了变量是如何对各种冲击做出反映的。
为了构建方差分解和脉冲响应函数,理论上,解释变量应该按照对被解释变量的重要性来排列。
文中采用了双变量滞后k期的VAR模型,来研究FDI和经济增长各个效应之间的动态关系,形式如下:方程变量的解释:是2×1阶列向量;表示d×1阶确定项向量(d表示确定性变量个数);用来描述常数项Ц;时间趋势项t;季节虚拟变量(如果需要和其他一些有必要设置的虚拟变量;, …均为2×2阶参数矩阵;Ф是确定性变量;的2×d阶系数矩阵;[ ]是2×1阶随机误差列向量;在模型中,每一个元素都是非自相关的,但是不同的方程对应的随机变量之间可能存在相关性。
风险管理中的VaR方法
风险管理中的VaR方法VaR(Value at Risk)是一种常用的金融风险管理方法,能够对投资组合中的每个资产及整个组合的风险程度进行全面且精准的测量。
VaR方法旨在确定对于一定置信水平下的投资组合损失额度上限,以帮助投资者合理配置资金,减少投资风险。
一、VaR方法的定义和计算VaR是指以一定的置信水平(例如95%、99%等)为概率级别,在特定的时间周期内,所能承受的最大不利市场风险。
VaR方法的核心是通过对历史资产收益率数据的分析,来确定未来几天或几周内的可能最大损失额度上限。
VaR方法还可以在不同的置信水平下计算投资组合的风险程度,例如50%或90%等。
VaR方法的计算通常采用历史模拟法、蒙特卡罗模拟法和基于分布函数的方法等。
历史模拟法是通过对历史数据进行统计分析,得出每个资产的收益率分布,并利用这些数据模拟未来的市场风险,从而计算投资组合的VaR。
蒙特卡罗模拟法则是通过对各种因素进行随机抽样,模拟未来市场的走势,并计算投资组合的VaR。
基于分布函数的方法是利用一定形式的概率分布函数,来计算投资组合的VaR。
二、VaR方法的优缺点VaR方法具有下列优点:1. 通过计算不同置信水平下的VaR,可以灵活地控制投资组合的风险程度;2. VaR方法可以帮助投资者理解市场风险的本质,并预测未来损失的可能规模和概率;3. VaR方法可以提供决策层所需要的信息,帮助他们进行风险把握和资产配置。
VaR方法也存在以下缺点:1. VaR无法考虑极端事件的发生概率和损失程度,因此可能出现无法预测的风险;2. VaR方法的计算过程需要使用大量的历史数据和复杂的模型计算,因此可能存在计算误差和模型风险;3. VaR无法估计与市场事件无关但对投资组合损失的潜在风险,例如盈余管理、财务舞弊等。
三、VaR方法的应用VaR方法广泛应用于金融市场、投资银行、基金管理和风险管理等领域。
在基金管理中,VaR方法可用于测量基金的风险和确定合理的资产配置。
金融风险管理中VaR模型的应用
金融风险管理中VaR模型的应用摘要:随着全球金融化趋势日渐明显,全球经济发展速度不断加快,金融市场的不确定性大幅度提高,高效管理金融风险迫在眉睫。
与此同时,VaR模型优势特征明显,已被频繁应用到金融领域,成为新经济形势下金融风险测量的关键性模型。
因此,本文在分析VaR模型的基础上从不同角度入手客观探讨了其在金融风险管理过程中的应用,将金融风险最小化的同时最大化提升经济效益。
关键词:VaR模型;金融风险管理;应用我国金融领域高速发展的同时金融风险也日趋严重,金融风险具有其客观性,在金融大环境下,高效管控金融风险是金融机构与企业运营发展中面临的重要任务,也是社会大众关注的重要方面。
在多方面因素影响下,VaR模型应运而生的同时有效发展,在度量金融风险等方面有着重要作用,要全面、深入剖析金融风险管理具体情况,通过多样化路径科学运用VaR模型,最大化发挥优势作用,优化投资策略制定、资金配置等环节,从源头上降低金融风险发生系数,在实现经济效益目标中增强市场核心竞争力。
1VaR模型VaR模型就是在资产组合既定条件下,在未来一定时间内,任一金融工具、金融品种的市场价格波动之后潜在的最大损失,是当下比较流行的风险量化技术,通常情况下,中文译为在险价值、风险价值。
VaR模型是数学、经济学两大领域有机融合下的产物,也是JP摩根公司用来准确计量市场风险的产物,也就是说,VaR模型最初只是应用在市场风险度量方面,随着其持续发展,已被广泛应用到金融风险管理的多个方面。
在新形势下,经济学领域中数学学科的应用日趋日渐深入以及扩大,VaR模型可以说是数学在经济领域成功应用的客观折射。
与此同时,VaR模型和传统风险度量模式有着根本上区别,是一种以统计分析为基础的风险量化技术,优势特征鲜明,能够有效弥补传统风险度量模式实际应用中呈现的缺陷。
在VaR模型产生以及作用下,人们的投资、经营、管理等观念发生了质的变化,常将VaR模型应用到开展的投资活动中,准确度量投资对象风险,在深化把握风险大小、自身风险承受能力等基础上制定可行性较高的投资方案、投资策略,确保投资更加科学、有效,防止因盲目投资造成严重的经济损失。
应用VAR模型的15个注意点
应用VAR模型的15个注意点金融计量知识:应用VAR模型时的15个注意点(笔记)向量自回归(VAR,Vector Auto regression)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。
VAR方法通过把系统中每一个内生变量,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。
Engle和Granger (1987a)指出两个或多个非平稳时间序列的线性组合可能是平稳的。
假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
VAR模型对于相互联系的时间序列变量系统是有效的预测模型,同时,向量自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。
如果变量之间不仅存在滞后影响,而不存在同期影响关系,则适合建立VAR模型,因为VAR模型实际上是把当期关系隐含到了随机扰动项之中。
注意点:1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
全面风险管理VaR计算方法知识点梳理
全面风险管理VaR计算方法知识点梳理:VaR的含义——⼀个特定时期内,⼀定置信区间下的最⼤损失。
例如,某⼀天某交易在95%置信⽔平下,最⼤损失40万美元。
这里的40万就是该交易在当天的VaR。
VaR的计算⽅法1.历史模拟法历史模拟法——根据历史数据直接预测将来可能发⽣的情形。
这种⽅法的出发点是,将历史记录看作未来情况的路径之⼀,通过对不同路径的比较,得出所需结果。
第⼀,将最后⼀个数据当作是当前值,⽽将这500天的数据看做是未来1天的500种可能路径,依次求出每天的变化率与当前值的乘积,作为未来⼀天变化的可能值第⼆,根据表中计算得到的数据,求出组合的价值。
如果所求的VaR是99%置信度下,损失不超过某数值。
则可以将最坏的五种情形列出,VaR就是第五个值。
如果是N天的持续期,则在此基础上乘以T1、Excele历史模拟法单资产步骤: 选定当日资产价格,按照公式一次计算依次求出每天的变化率与当前值的乘积,(结果见J列)。
结果VaR(1,95%)值是选取的模拟结果按照从小到大排序第25个值,用的公式为:small(选中J列,25)2、Excele历史模拟法双资产步骤:假定A、B两资产投资额分别为5000和2000. 选定A、B 的当前资产价格,资产模拟结果(I列)公式为:依次为5000*A历史资产价格/11022.06+2000*B 历史资产价格/5179 ;再用small 公式(选中I列,25)补充:老师又计算资产组合的变化率,用公式:(模拟结果值-7000)/7000;VaR(1,95%):再用small 公式选出我们预估的变化率。
再用公式7000*(1+变化率)。
2.蒙特卡洛模拟法蒙特卡洛模拟法——假设资产价格的变动服从某种随机过程,利用计算机模拟,在目标时间范围内产⽣随机价格的路径,并⼀次构建资产报酬分布,进⽽推算VaR。
映射与投资组合的VaR3. Excele蒙特卡洛单资产步骤:原理是运用公式:St=St-1+ St-1*(μΔt+δ*ε)补充说明:老师的excel结果是按照课件案例做法做的部分步骤。
线性回归模型的使用技巧和注意事项
线性回归模型的使用技巧和注意事项线性回归模型是一种常用的统计分析方法,用于研究自变量与因变量之间的关系。
在实际应用中,我们需要注意一些技巧和注意事项,以确保模型的准确性和可靠性。
一、数据预处理在应用线性回归模型之前,我们首先需要对数据进行预处理。
这包括数据清洗、缺失值处理和异常值处理等。
数据清洗是为了去除无效数据,确保数据的质量。
缺失值处理是为了填补缺失数据,常用的方法有均值填补、中位数填补和插值法等。
异常值处理是为了排除异常数据对模型结果的影响,可以使用箱线图和散点图等方法来检测和处理异常值。
二、特征选择在构建线性回归模型时,我们需要选择合适的自变量。
特征选择是为了筛选出对因变量影响显著的自变量。
常用的特征选择方法有相关系数法、方差分析法和逐步回归法等。
相关系数法可以用来衡量自变量与因变量之间的线性关系强度,方差分析法可以用来比较不同自变量对因变量的影响程度,逐步回归法可以通过逐步添加和删除自变量来选择最佳模型。
三、模型评估在构建线性回归模型后,我们需要对模型进行评估。
常用的模型评估指标有均方误差(MSE)、决定系数(R-squared)和残差分析等。
均方误差可以用来衡量模型的预测误差大小,决定系数可以用来衡量模型对因变量变异的解释程度,残差分析可以用来检验模型的假设是否成立。
通过模型评估,我们可以判断模型的拟合效果和预测能力。
四、模型改进在实际应用中,线性回归模型可能存在一些问题,如多重共线性、异方差性和自相关等。
多重共线性是指自变量之间存在高度相关性,会导致模型参数估计不准确。
异方差性是指模型的误差项方差不恒定,会影响模型的预测精度。
自相关是指模型的误差项之间存在相关性,会导致模型的参数估计不准确。
针对这些问题,我们可以采取一些改进方法,如主成分回归、加权最小二乘法和时间序列分析等。
五、模型应用线性回归模型在实际应用中具有广泛的应用价值。
它可以用于预测和分析各种现象和问题,如经济增长、市场需求和人口变化等。
金融风险管理中的var模型及其应用
金融风险管理中的var模型及其应用金融风险管理是金融机构在业务运作中面临的一种重要挑战。
为了有效地管理金融风险,金融机构需要采用适当的风险测量模型和工具来评估和控制风险水平。
其中,Value at Risk (VaR) 模型是金融风险管理中最为常用的模型之一。
VaR模型是一种用来衡量金融投资组合或金融机构面临的风险程度的方法。
它可以用来估计在给定置信水平下,投资组合或资产在未来一段时间内可能出现的最大损失额。
VaR模型的核心思想是通过对历史数据的分析,计算出在未来一定时间内资产或投资组合的价值变动的可能范围,从而提供投资者或金融机构制定风险管理策略的依据。
VaR模型的应用十分广泛。
首先,在投资组合管理中,VaR模型可以帮助投资者评估不同投资组合的风险水平,并选择合适的投资策略。
通过计算不同投资组合的VaR值,投资者可以比较不同投资组合的风险敞口,并选择相对较低风险的投资组合来降低整体风险。
在金融机构的风险管理中,VaR模型可以用来评估机构面临的市场风险、信用风险和操作风险等。
金融机构可以通过计算VaR值来确定自身的风险敞口,并采取相应的风险管理措施。
例如,当VaR值超过机构预先设定的风险限制时,机构可以采取风险对冲、减仓或停止某些高风险业务等措施来控制风险。
VaR模型还可以用于金融监管。
监管机构可以要求金融机构报告其投资组合的VaR值,以评估机构的风险水平,并采取相应的监管措施。
同时,VaR模型也可以用于制定宏观风险管理政策,帮助监管机构评估整个金融系统的风险敞口,及时发现和应对系统性风险。
然而,VaR模型也存在一些局限性。
首先,VaR模型基于历史数据,对未来的不确定性无法完全捕捉。
其次,VaR模型假设资产收益率的分布是对称的,忽视了极端事件的可能性。
最后,VaR模型无法提供损失的概率分布,只能给出在一定置信水平下的最大损失额。
为了克服VaR模型的局限性,研究者们提出了许多改进和扩展的模型。
例如,Conditional VaR (CVaR) 模型可以提供在VaR水平以上的损失分布信息,对极端风险有更好的衡量能力。
系统性风险管理中的VaR模型分析
系统性风险管理中的VaR模型分析一、前言在金融行业,风险管理一直是一项非常重要的工作。
为了更好地管理风险,一些模型被开发出来,VaR模型是其中之一。
在本文中,我们将深入研究VaR模型,并分析其在系统性风险管理中的应用。
二、VaR模型的概念VaR模型是风险管理领域中一种广泛使用的测量金融资产风险的方法。
VaR代表“风险价值”,是指在一定的时间内,某一特定的金融资产或投资组合在给定的置信水平下可能经历的最大亏损额度。
依据VaR模型,金融机构可以计算出一个金融产品的最大亏损额和极端亏损概率,从而评估该金融产品的风险。
VaR模型的一般思路是:建立一个历史模型来评估某一资产或投资组合的风险。
这种模型需要以下数据:资产价值,历史价格波动率和置信水平。
三、VaR模型的类型VaR模型有三种类型:历史模拟方法,参数模型方法和混合方法。
1.历史模拟方法历史模拟方法是VaR模型中最简单的一种,同时也是最易于理解的。
该方法使用历史数据来模拟金融产品在未来的变化情况,因此仅适合于稳定的市场。
如果市场非常崩溃,历史模拟方法就会失效。
2.参数模型方法参数模型方法是使用模型来计算金融产品未来的波动率和标准差。
这种方法基于假设,例如收益率服从正态分布或t分布等等。
由于使用参数化模型的方法,因此它往往需要更多的数据,并且需要广泛的金融知识和量化技能。
3.混合方法混合方法是基于历史和参数模型的方法,是VaR模型中比较广泛使用的一种方法。
混合方法结合了历史模拟方法和参数模型方法。
它使用历史收益率来计算金融产品的波动率,并通过模型来计算未来波动率。
四、VaR模型在系统性风险中的应用系统性风险是市场范围内的风险,由于这种风险造成的影响,市场中的许多不同的资产都会体现出相似的收益和亏损。
VaR模型可以帮助金融机构管理系统性风险。
以混合方法为例,金融机构可以使用历史收益率来计算系统性风险,并使用模型来计算未来波动率。
这样做可以帮助金融机构更好地理解系统性风险的潜在影响,并在必要时采取行动。
VAR模型应用案例解析
VAR模型应用案例解析
摘要
VAR模型,即向量自回测模型,是一种时间序列技术,它可以用来证明一些财务和非财务变量之间的关联,从而让研究者更了解潜在的经济变量如何影响市场上的另一个变量。
本文将对VAR模型在实际经济和财务应用中的应用情况进行分析和讨论。
首先,将介绍VAR模型的概念和构成,然后分析它与传统经济学和金融学研究中的应用情况,最后介绍具体的案例(欧元区和美国)。
关键词:VAR模型,实际应用,时间序列技术,传统经济学和金融学一、VAR模型简介
VAR模型最早由Christopher Sims提出,他是1981年诺贝尔经济学奖得主,它在计量经济学中的发展非常迅速,并成为经济学家们最常用的时间序列分析方法之一、VAR模型的核心就是建模变量之间的动态关系,而这些变量可以是财务变量(如股价、收益率和利率),也可以是非财务变量(如汇率、消费者物价指数等)。
var模型构建思路
var模型构建思路在计算机科学领域中,模型是解决问题的重要工具。
其中,var模型是一种常用的模型构建方法,用于描述和解释现实世界中的问题。
本文将介绍var模型的构建思路,以及如何利用该模型解决实际问题。
一、var模型简介var模型是向量自回归模型(Vector Autoregressive Model)的缩写,它是一种多变量时间序列模型。
在这个模型中,每个变量都可以被其它变量的过去值解释。
通过观察和分析多个变量之间的关系,可以推断出它们之间的因果关系,进而预测未来的值。
二、var模型的构建思路要构建var模型,首先需要明确模型的输入变量和输出变量。
输入变量是影响输出变量的因素,输出变量是我们希望预测的变量。
其次,需要收集足够的时间序列数据,以便分析变量之间的关系。
接下来,可以利用统计软件或编程语言,如Python或R,进行模型的构建和分析。
在构建var模型时,需要考虑以下几个步骤:1. 确定变量的数量和类型:根据问题的需求,确定需要包含的变量数量和类型。
可以是经济学中的宏观变量,也可以是其他领域中的相关指标。
2. 收集时间序列数据:收集包含所需变量的时间序列数据,通常需要多个时间点的观测值。
3. 数据预处理:对收集到的数据进行预处理,包括数据清洗、缺失值处理、平稳性检验等。
确保数据的准确性和可靠性。
4. 确定滞后阶数:滞后阶数是指在模型中考虑的时间间隔,即过去几个时间点的值对当前值的影响。
可以通过观察自相关图和偏自相关图,选择合适的滞后阶数。
5. 估计var模型参数:利用最小二乘法或最大似然估计等方法,估计var模型的参数。
这些参数描述了变量之间的关系和影响程度。
6. 模型诊断:对构建的模型进行诊断,包括检验模型的拟合优度、残差序列的自相关性和正态性等。
如果模型存在问题,可以进行修正或调整。
7. 模型应用:根据构建的var模型,可以进行预测和决策分析。
通过输入变量的变化,预测未来输出变量的值,帮助决策者做出合理的决策。
VaR模型的特点及应用
VaR 模型的特点及应用1.VaR的产生背景伴随着金融一体化、经济全球化的进程,全球经济发展迅速,金融市场经常出现不同程度的波动,于是大量资源都被投放到风险管理中,金融工具也不断增多,其中所蕴含的风险也越来越多样化,所以金融机构对金融风险的评估和测量的要求也越来越高,风险管理技能早已成为衡量金融机构之间竞争的能力。
从90年代开始,就出现了很多测量风险的工具,例如Delta、Gamma、Vega,系数、久期,还有方差和协方差等,但是这些风险测度对交易员特别重要,且并不能成为金融机构的高管及金融机构的监管人员提供一个关于整体风险的完整图像。
比如方差和协方差,在应用时就过分的依赖于投资收益分布的假设,它们并没有考虑到风险偏好和投资组合的潜在损失,而且也没有能够清晰地表现出风险大小。
而系数和久期,以及Delta、Gamma、Vega的使用范围比较有限,都是只能用在特定的市场和金融工具中,不能够如实的反映风险承担状况,它们仅仅是对衍生金融证券和利率性金融产品的一种指标。
但是随着金融风险管理的不断发展,金融市场急需一种方便操作、准确度高且直观明了的技术,需要这门技术可以全面的反映金融机构中不同的投资组合所承担的风险。
迫于这种压力下,VaR技术诞生了。
1.1 VaR的定义VaR(Value at Risk),“处于风险中的价值”,即风险价值,它是一种试图对金融机构的资产组合提供一个单一的风险度量,而这一风险度量恰好能够将金融机构的整体风险反映出来。
具体定义为:在一定的置信水平(置信度)下,金融资产和证券组合在一特定期限内,预期的最大损失。
用数学表达式表示如下:其中,为置信度,为相关组合在持有期内的损失函数1。
VaR可以由交易组合在时间内的损益分布求得。
从定义中我们可以清楚的知道,VaR有两个至关重要的元素,即置信度和持有期。
这两个元素对VaR来说都非常重要。
(1)置信度(概率):一般地,置信度的选择可以在一定程度上反映出金融机构对风险的偏好程度。
VaR方法下金融度量模型的简单介绍及其应用的局限性
VaR方法下金融度量模型的简单介绍及其应用的局限性VaR方法下金融度量模型的简单介绍及其应用的局限性一、背景介绍:近二十年来,由于受经济全球化与金融一体化、现代金融理论及信息技术、金融创新等因素的影响,全球金融市场迅猛发展,金融市场呈现出前所未有的波动性,工商企业、金融机构面临着日益严重的金融风险.金融风险不仅严重影响了工商企业和金融机构的正常运营和生存,而且还对一国乃至全球金融及经济的稳定发展构成了严重的威胁.20世纪90年代以来,国际金融市场发生的一些列风波,如东南亚的金融危机、英国的巴林银行倒闭案、美国的加州橙县破产案,以及新世纪的美国次贷危机等,进一步引起了全球工商企业、金融机构、政策当局及学术界对金融风险的密切关注,金融风险管理已成为工商企业和金融机构管理的核心能力之一.风险是指未来净收益的不确定程度.关于风险的度量,人们的认识在不断深化,从方差、相关系数、协方差到半方差、半协方差到绝对偏差,相对偏差,经历了几十年,发展出不同的方法.随着对金融风险的深入研究,VaR方法逐渐成为一种度量风险的关键方法.VaR(Value at Risk)风险管理技术产生于1994年,在一连串举世瞩目的衍生品灾难以后,金融行业需要一种工具来计算风险市场.由J.P.Morgan银行于1994年公布的VaR Risk Metrics系统能够测评全世界30个国家140种金融工具的VaR值.国际清算银行巴塞尔委员会1996年发布的“市场风险补充规定”及美联储1995年的“事前承诺模型”都基于VaR模型.目前在美国,评估机构如Moody’s 与标准普尔(S&P),金融会计标准委员会,以及证券与交易委员会(SEC)都宣传支持VaR.VaR几乎可以适应于所有的金融风险,包括市场风险、营业风险、环境风险、行为风险、信用风险.凭借着VaR概念的简单,并在量化风险和动态监管方面具有独特的优势,因而在金融界广受欢迎,目前已被全球各主要银行、非银行金融机构、公司和金融监管机构广泛采用, 并已逐渐成为金融行业风险度量和风险管理的标准.然而随着2007年下半年美国次贷危机的爆发,金融机构动辄减记数百亿美元的风险损失, 备受推崇的VaR 方法并没能有效地预测和降低市场风险和信用风险造成的损失, 因而, 需要重新审视基于VaR 方法的金融风险度量模型, 分析其在实际应用中的局限性.二、关于VaR 的介绍VAR 方法(Value at Risk ,简称VaR ),称为风险价值模型,也称受险价值方法、在险价值方法.VaR( Value- at- Risk) 风险管理技术是近年来在国外兴起的一种金融风险评估和计量模型, 目前已被全球各主要银行、非银行金融机构、公司和金融监管机构广泛采用, 并已逐渐成为金融行业风险度量和风险管理的标准.1、VaR 的定义:VAR(Value at Risk):在市场正常波动下,某一金融资产或证券组合的最大可能损失.更为确切的说,是指在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失.2、VaR 数学定义:Pr()1t V VaR α??>=-确定置信度下投资组合的损失大于其可能的损失上限的概率t V ??:投资组合在持有期t ?内的损失α:给定的置信水平Pr :资产价值损失小于可能损失上限的概率VaR :置信水平α下处于风险中的价值,及可能的损失上限3、VaR 的数学表述:考虑一个投资组合V ,设0V 为初始价值,r 为投资回报率,μ为期望收益率,在给定置信水平α下,投资组合的最小价值是0(1)V V r **=+,其中r *表示最低回报率.此时,VaR 为投资组合的期望价值与最小值之差即:()VaR E V V *=-,而:00()+E V V V μ=?,0(1)V V r **=+,所以0()VaR V r μ*=--.根据以上定义,现在考虑投资组合未来回报行为的随机过程,假定其未来回报的概率密度函数为22()21()=2V f V e μσπσ--,2V μσ (,).在给定的置信水平α下,低于V *的概率为:()1r r P P V V α*=≤=-确定置信度下投资组合的价值小于投资组合的价值下限的概率-()=()()1c r V V P V V P x dx μμφασσ**∞--≤<==-?()x φ为标准正态分布的概率密度函数,V c μσ*-=.所以有:000a ()()V R V r V c c V μμσμσ*=-=--=-因此,计算VaR 就相当于计算投资组合最小值V *或最低的回报率r *.因此,置信水平大小、持有期的长短、未来资产收益的分布及其尾部特征,成为能否准确计算VaR 值得关键因素.4.VaR 的计算原理:首先使用市场因子当前的价格水平,利用定价公式对投资组合进行估值,然后预测市场因子未来的一系列的可能价格水平(为一概率分布),并对投资组合重新估值,在此基础上计算投资组合的价值变化——衡量风险因素的波动性,并由此得到投资组合的损益分布,最后通过设置持有期和置信水平求出投资组合的VaR 值.假设某一资产期初值为0V ,在持有期[0,1](单期)内该资产回报为2,(,)r r N μσ ,则本期期末资产的随机价值为10(1)V V r =+.该资产在期末的最低价值为:0(1+)t V V r *=其中0r *<表示与置信水平α相对应的最小回报(回报的下α分位数).由正态分布的性质:()/Z r αμσ*-=-因此:00()t t VaR V V V Z ασμ*=-=-即为资产在给定置信水平α下的最大损失.在标准正态分布下,Zα为相应置信水平下的分位数,标准差σ表示收益率r *的波动率.进一步将单期扩展到多期T ,由集合回报的性质可以求出资产的期望和方差:1()()T T i i E R E r T μ===∑ 21()()TT i i D R D r T σ===∑其中21,2,,,.(,)i i T r ii dN μσ= .如果资产回报率的波动率受多个因素的影响,则以上情形发生变化.假设单一资产价值的变化受汇率的波动和资产本身价值的波动两个因素的影响,这两个因素不是独立的,此时有:2202VaR V Z T ααβαβαβσσρσσ=++?5.VaR 的三个重要参数:从VaR 的定义出发,要确定一个金融机构或资产组合的VAR 值或建立VAR 的模型,必须首先确定以下三个系数:一是持有期间t ?的长短;二是置信区间α的大小;三是观察期间.1、持有期t ?,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值.持有期的选择应依据所持有资产的特点来确定比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值.从银行总体的风险管理看持有期长短的选择取决于资产组合调整的频度及进行相应头寸清算的可能速率.巴塞尔委员会在这方面采取了比较保守和稳健的姿态,要求银行以两周即10个营业日为持有期限.2、置信水平.一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好.选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高.根据各自的风险偏好不同,选择的置信区间也各不相同.比如美洲银行选择95%,花旗银行选择95.4%,大通曼哈顿选择97.5%,Bankers Trust 选择99%.作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间,这与其稳健的风格是一致的.3、第三个系数是观察期间(Observation Period).观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window).这种选择要在历史数据的可能性和市场发生结构性变化的危险之间进行权衡.为克服商业循环等周期性变化的影响,历史数据越长越好,但是时间越长,收购兼并等市场结构性变化的可能性越大,历史数据因而越难以反映现实和未来的情况.巴塞尔银行监管委员会目前要求的观察期间为1年.综上所述,VaR实质是在一定置信水平下经过某段持有期资产价值损失的单边临界值,在实际应用时它体现为作为临界点的金额数目.6.VaR计算方法:参数法:方差-协方差方法、分析法、半参数法:厚尾模型、估计函数模型非参数法:历史模拟法、蒙特卡罗模拟法7.VaR的技术特点:1、可以用来简单明了表示市场风险的大小,没有任何技术色彩,没有任何专业背景的投资者和管理者都可以通过VaR值对金融风险进行评判.2、可以事前计算风险,不像以往风险管理的方法都是在事后衡量风险大小.3、不仅能计算单个金融工具的风险.还能计算由多个金融工具组成的投资组合风险,这是传统金融风险管理所不能做到的.三、VaR的应用在次贷危机中, 几乎所有在美国金融市场进行投资的金融机构都经历了风险损失, 通过各大金融机构的资产减记价值和当季最高VaR 值对比, 不难发现VaR 风险管理体系的局限性.在美国4家顶级投行中, 名义风险价值最小的美林成为亏损最严重的银行.对危机最严重的2007年第三季度和第四季度的VaR 值和实际亏损进行比较, 结果令人吃惊: 美林第三季度和第四季度的平均日VaR 值分别为7 600万美元和6 500万美元, 按照63天计算的季度VaR 值为58亿美元和41亿美元, 而同时期美林相关产品的资产减记却分别达到了79亿美元和115亿美元, 远远超出了其对在险价值的估计.同样, 花旗银行2007年第三季度和第四季度平均日VaR 值分别为1141亿美元和1169亿美元, 季度VaR 值分别为8818亿美元和10615亿美元, 但是花旗在2007年三季度和四季度分别减记了65亿美元和181亿美元.像历次极端情况一样, VaR 方法在次贷危机中失效了.美国美国四大投行VaR值与实际损失对比情况亿美元从上表可以看出, 高盛的风险管理比较成功,在2007年三季度, 高盛的盈利激升79% , 达到2815亿美元, 同时VaR 值同比增加51% 至1139亿美元.在次债危机中, 高盛是具有最高名义风险价值的投行, 同时也成为损失最小的投行.高盛第三、四季度业绩大增, 正是由于提早做空美国房地产抵押贷款, 从而大大抵消了已承诺杠杆贷款和抵押贷款相关头寸损失造成的影响.四、VaR方法的局限性:尽管VaR 方法是目前最全面的风险管理方法, 但必须认识到其局限性:第一, 在正常情况下,要制定详细的、严格的风险防范方案, 研究哪些部门、业务蕴含着巨大风险.复杂的VaR 方法模型系统、计算机程序不能替代尽职调查.第二, 当市场环境不确定性大幅增加或者变得越发困难时,必须审慎管理风险结构, 结合宏观经济和金融市场的趋势预测, 综合运用各种风险对冲工具减少风险敞口.2007年初, 当高盛认识到存在过度低估风险的状况时, 开始大规模进行风险对冲, 因而才能在危机中独善其身.第三, 由于风险的关联性, 当市场环境不确定性大幅增加时, 应扩大压力度, 并且风险管理部门的信用风险和市场风险管理团队要紧密合作, 综合考虑风险在各个金融市场的传递.第四, 在风险管理框架中, 不应将风险管理部门置于交易部门之下,必要时风险管理部门可直接向首席财务官进行汇报, 以强化风险管理部门的约束作用, 调整交易员的短期行为激励机制, 使得风险在事前和事后均得到恰当控制.测试和情境分析的范围, 充分估计风险的危害程总的来说,从在美国次贷危机中各大金融机构VaR风险管理体系所产生的实际效果来看,当前普遍应用的VaR模型及其管理体系在极端情况下存在有一定的局限性, 因此在运用VaR方法时必须结合对经济金融形势的综合判断才能取得较好的效果.五、参考文献:[1]戴天柱.投资银行运作,理论与实务.北京,经济管理出版社.2010年2月第2版.[2]阮垂玲,刘传哲,费芳.VaR方法在证券市场风险管理中的应用.金融市场,2008年,第4期.[3]朱海霞,潘支斌.基于g-h分布的投资组合VaR方法研究.中国管理科学,2005年8月第13卷第4期.[4]杨艳军,王永锋.基于GARCH模型的VaR方法在保证金设计中的应用.[5]甄建敏.VaR方法及其在我国证券市场风险管理中的应用.浙江大学硕士论文,2003年12月.[6]谷伟.金融市场风险管理中的VaR方法及其应用研究.华中科技大学硕士学位论文,2005年3月.[7]张桂香.VaR模型与VaR方法应用于证券市场风险管理的实证研究.浙江工业大学硕士学位论文,2003年11月.[8]刘晓星.基于VaR的商业银行风险管理.北京,中国科学社会出版社,2007年6月第1版.[9]李凤云.投资银行理论与案例.清华大学出版社,北京,2011年4月第1版.[10]Wikipedia:/doc/928230c44028915f804dc2ba.html /[11]百度百科,VaR方法:/doc/928230c44028915f804dc2ba.html/view/5143369.htm[12]Basle Committee on Banking Supervision Amendment to the cap ital accord to incorporate market risks.2008- 06- 10. /doc/928230c44028915f804dc2ba.html .[13]张世芹,武振杉,吴海燕.从雷曼、美林的风险管理看VAR 模型的运用.法治与社会,2009年5月.[14]J.P Morgan Bank. Risk Metrics Technical Manual. New York: J.P Bank, 1995.[15]李裕丰, 罗丹程, 王赫.基于VaR方法的金融风险度量模型及其应用.沈阳工业大学学报(社会科学版),第2卷第4期,2 0 0 9年1 0月.。
《VaR模型及其在金融风险管理中的应用》知识讲解
《VaR模型及其在金融风险管理中的应用》引言国际金融市场的日趋规范、壮大,各金融机构之间的竞争也发生了根本性变化,特别是金融产品的创新,使金融机构从过去的资源探索转变为内部管理与创新方式的竞争,从而导致了各金融机构的经营管理发生了深刻的变化,发达国家的各大银行、证券公司和其他金融机构都在积极参与金融产品(工具)的创新和交易,使金融风险管理问题成为现代金融机构的基础和核心。
随着我国加入WTO,国内金融机构在面对即将到来的全球金融一体化的挑战,金融风险管理尤显其重要性。
传统的资产负债管理(Asset-Liability Management)过份依赖于金融机构的报表分析,缺乏时效性,资产定价模型(CAPM)无法揉合新的金融衍生品种,而用方差和β系数来度量风险只反映了市场(或资产)的波动幅度。
这些传统方法很难准确定义和度量金融机构存在的金融风险。
1993年,G30集团在研究衍生品种基础上发表了《衍生产品的实践和规则》的报告,提出了度量市场风险的VaR( Value-at-Risk )模型(“风险估价”模型),稍后由JP.Morgan 推出了计算VaR的RiskMetrics风险控制模型。
在些基础上,又推出了计算VaR的CreditMetricsTM风险控制模型,前者用来衡量市场风险;JP.Morgan公开的CreditmetricsTM技术已成功地将标准VaR模型应用范围扩大到了信用风险的评估上,发展为“信用风险估价”(Credit Value at Risk)模型,当然计算信用风险评估的模型要比市场风险估值模型更为复杂。
目前,基于VaR度量金融风险已成为国外大多数金融机构广泛采用的衡量金融风险大小的方法。
VaR模型提供了衡量市场风险和信用风险的大小,不仅有利于金融机构进行风险管理,而且有助于监管部门有效监管。
⒈1995年巴塞尔委员会同意具备条件的银行可采用内部模型为基础,计算市场风险的资本金需求,并规定将银行利用得到批准和认可的内部模型计算出来的VaR值乘以3,可得到适应市场风险要求的资本数额的大小。
应用VAR模型时的15个注意点
应用VAR模型时的15个注意点向量自回归(VAR,Vector Auto regression)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。
VAR方法通过把系统中每一个内生变量,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。
Engle和Granger(1987)指出两个或多个非平稳时间序列的线性组合可能是平稳的。
假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
VAR 模型对于相互联系的时间序列变量系统是有效的预测模型,同时,向量自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。
如果变量之间不仅存在滞后影响,而不存在同期影响关系,则适合建立VAR 模型,因为VAR模型实际上是把当期关系隐含到了随机扰动项之中。
注意点:1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提)想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验 :①、EG两步法是基于回归残差的检验可以通过建立OLS模型检验其残差平稳性;②、检验是基于回归系数的检验,JJ检验前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立 ECM 进一步考察短期关系,Eviews 这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验请注意识别。
5、格兰杰检验只能用于平稳序列,这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,。
股指期货风险评估及VAR模型的应用(共5则)
股指期货风险评估及VAR模型的应用(共5则)第一篇:股指期货风险评估及VAR模型的应用股指期货风险评估及VaR模型的应用一、股票指数期货的风险1、股票指数期货的交易风险特征随着股指期货上市的日益临近,对股指期货交易风险的了解就更加迫切。
由于股指期货的功能特殊性,其自身的交易风险变得更加复杂多样。
与其它市场风险相比,股票指数期货的交易风险具有如下特点:⑴高风险性。
股指期货首先是一种风险管理工具,其重要的功能就是实现套期保值、回避价格风险,投机与套利只是辅助功能而已。
但正是由于期货市场上有高风险和高回报率的双重特征,才使得期货市场能吸引众多以高风险换取高回报的投机资本,从而为套期保值者转移风险创造了条件,使期货市场回避风险、发现价格的功能得以实现。
⑵风险来源广泛性和种类多样性。
在股指期货市场中除了交易自身产生的风险外,还有许多来源不同的风险。
既有股票市场转移过来的风险,又有来源于投资者、经纪公司的风险;还有来源于经纪公司、政府监管的风险。
同时,还有来源于国际市场的风险等等。
所有这些来源不同、种类多样的风险构成了股票指数期货的交易风险,这也成为了其风险的一个主要特点。
⑶股票指数期货交易风险的放大性及连锁性。
股票指数期货的保证金制度和每日无负债结算制度是期货市场特有的制度,商品和股票指数期货在这方面是相通的。
保证金制度提高了资金的使用效率,把投资者的风险、收益都成倍地放大,这也就是我们常说的杠杆交易。
投资者以小博大,投机性强,因此风险面扩大,风险度加剧,一旦出现亏损,数额是巨大的。
同时由于股票指数期货与股票现货市场有着非常紧密的联系,因此一旦出现亏损风险两个市场就会相互影响、相互作用,从而导致连锁反应,使风险加剧。
⑷股票指数期货交易风险的可预测性。
由于股票指数期货的产生和发展存在着自身的规律和变化趋势,因此在一定程度上可以通过对其历史数据、统计资料以及与其相关的因素(如标的指数价格、经济趋势等)进行分析,对其发展变化过程进行预测,了解和掌握其变化的预兆和可能产生的后果。
最全的VAR模型理论基础及其Eviews实现
计算复杂度较高,需要迭代优化算法 。
03
VAR模型的检验
平稳性检验
单位根检验
用于检验时间序列数据是否存在单位根,即是否平稳。常用的单位根检验方法有 ADF检验和PP检验。
趋势图检验
通过观察时间序列数据的趋势图,可以初步判断数据是否平稳。如果数据存在明 显的趋势或季节性,则可能需要进行差分或季节调整。
VAR模型的应用场景
总结词
VAR模型广泛应用于经济学、金融学和社会科学等领域,用于分析多个时间序列数据之间的相互关系 。
详细描述
在经济学中,VAR模型常用于分析不同经济指标之间的动态关系,如GDP、通货膨胀率和利率等。在 金融学中,VAR模型用于评估投资组合的风险和资产价格的预测。在社会科学中,VAR模型用于研究 不同社会现象之间的相互关系,如人口统计数据、犯罪率和教育水平等。
参数识别
VAR模型中的参数需要通过识别 或估计来确定,这可能会受到数 据质量和样本大小的影响。
解释难度
由于VAR模型涉及多个变量之间 的交互作用,解释模型结果相对 复杂,需要具备一定的经济理论 基础。
未来研究方向
扩展应用领域
VAR模型在各个领域都有广泛的应用 前景,未来可以进一步探索其在不同 领域的适用性和有效性。
EViews中VAR模型的参数估计与检验
EViews提供了多种参数估计方法,如最小二乘法、最大似然估计法等,用户可以根据需要选择合适的 估计方法。
在估计参数后,EViews还提供了多种检验方法,如平稳性检验、残差检验、异方差性检验等,以验证模 型的稳定性和可靠性。
用户可以通过EViews的图形和表格功能,直观地查看参数估计和检验的结果,并进行相应的分析和解释。
全面性
VAR——精选推荐
2 基于VaR的中间业务市场风险评估上文已经对VaR法做了简单阐述。
本章将介绍VaR的优缺点、估算原理、VaR 值计算方法以及VaR法在评估中间业务市场风险的应用。
2.1VaR法优缺点VaR法具有以下优点:把金融工具、资产组合及金融机构的风险具体化为一个可以比较的数字,简单明了的表示风险大小,使得没有专业背景的管理者和投资者可以通过VaR值判断风险。
VaR的缺点是其结果表明的只是一定置信度的最大损失,但是小概率事件仍有可能发生并造成极大损失。
2.2VaR估算原理要估算VaR首先要选取两个因素:基本时间段和置信水平。
VaR法对基本时间段和置信水平的选择是主观行为,时间段的理想选择是1天,而对置信水平的选择没有任何强制性原则,一般选择95%或99%。
表2-1归纳了一些银行和非金融机构采用的置信水平。
表2-1各机构采用的置信水平所选取的置信水平应反应公司对风险的回避程度及超过VaR的损失成本。
风险回避程度越高,损失成本就越大,表明弥补损失所需的资本量越大,从而置信水平就越高。
2.2.1 一般分布中的VaR在计算某一投资组合中的VaR之前,我们首先假设:(1)W0为初始投资额,R为投资回报率;(2)基本时间段末的投资组合价值为W=W0(0)(1+R);(3)预期收益与收益率的波动性为μ和ς。
:(4)在给定置信水平α下的投资组合最小价值为W*=W0(1+R*) 那么,根据VaR 的定义,VaR =E W −W ∗=−W 0 R ∗−μ (2-1)从上式中我们可看出,只要找到投资组合最小价值或最低投资收益率,就可以估算出相应的VaR 。
f w 投资组合价值的概率分布,在给定置信水平α下,投资组合最小价值为W ∗,超出这一水平的概率为α,表示为:α= f w dw ∞W *(2-2) 那么低于W ∗的概率p =1−α= f w dw W *−∞(2-3) 这种方法对任何分布均有效,从−∞到W ∗的面积必等于ρ。
应用VAR模型时的15个注意点
应用 VAR 模型时的 15 个注意点向量自回归( VAR,Vector Auto regression )常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。
VAR 方法通过把系统中每一个内生变量 ,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。
Engle 和 Granger (1987 )指出两个或多个非平稳时间序列的线性组合可能是平稳的。
假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
VAR 模型对于相互联系的时间序列变量系统是有效的预测模型 ,同时,向量自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。
如果变量之间不仅存在滞后影响 ,而不存在同期影响关系,则适合建立 VAR 模型 , 因为 VAR 模型实际上是把当期关系隐含到了随机扰动项之中。
、I •、、+: —注意点:1 、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接 OLS 容易导致伪回归。
2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验 ,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提)想进一步确定变量之间是否存在协整关系 ,可以进行协整检验 ,协整检验主要有EG两步法和JJ检验:①、EG两步法是基于回归残差的检验可以通过建立OLS模型检JJ 检验其残差平稳性;②、检验是基于回归系数的检验,验前提是建立 VAR 模型(即模型符合 ADL 模式)4、当变量之间存在协整关系时,可以建立ECM 进一步考察短期关系,Eviews 这里还提供了一个 Wald - Granger 检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验请注意识别。
风险管理var分析法的原理和应用
风险管理VAR分析法的原理和应用1. 简介1.1 什么是VAR分析法VAR(Value at Risk,风险价值)分析法是一种风险管理工具,用于衡量金融资产或投资组合在给定时间段内可能遭受的最大损失。
该方法基于历史数据和统计模型,通过计算在给定置信水平下的预期最大损失来辨识和评估风险。
1.2 VAR的应用范围VAR分析法在金融机构、投资管理、资产配置以及衍生品交易中广泛应用。
它帮助决策者了解风险暴露程度,制定风险限制和监控措施,有助于有效管理和控制投资组合的风险。
2. VAR分析法的原理VAR分析法的原理基于两个关键要素:置信水平和时间段。
2.1 置信水平置信水平是衡量VAR分析法结果可靠性的度量。
标准的置信水平通常为95%或99%,意味着在给定时间段内,有95%或99%的把握损失不会超过VAR值。
置信水平越高,VAR值越保守,反之亦然。
2.2 时间段时间段是VAR分析法用于计算预期最大损失的时间跨度。
例如,一天、一周或一个月等。
时间段的选择需要根据具体情况考虑,较短的时间段可以更快地反映市场风险变化,但也容易受到噪音的干扰,较长的时间段可以平滑市场波动,但可能无法及时捕捉到快速变化的风险。
3. VAR分析法的计算方法VAR值可通过多种计算方法得出,常见的方法包括历史模拟法、参数法和蒙特卡洛模拟法。
3.1 历史模拟法历史模拟法是根据历史数据来估计风险价值。
它基于假设:未来风险类似于过去的风险。
具体步骤如下: - 收集和整理历史收益率数据。
- 对收益率数据进行排序,找出相应置信水平下的VAR值。
3.2 参数法参数法通过拟合概率分布函数来估计风险价值。
常用的概率分布函数有正态分布、t分布和对数正态分布等。
具体步骤如下: - 根据历史数据拟合适当的概率分布函数。
- 利用拟合的概率分布函数计算VAR值。
3.3 蒙特卡洛模拟法蒙特卡洛模拟法通过随机生成符合设定概率分布的随机数来估计VAR值。
具体步骤如下: - 建立随机数生成器,根据设定的概率分布生成符合要求的随机数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用VAR模型时的15个注意点向量自回归(VAR,Vector Auto regression)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。
VAR方法通过把系统中每一个内生变量,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。
Engle和Granger(1987)指出两个或多个非平稳时间序列的线性组合可能是平稳的。
假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
VAR 模型对于相互联系的时间序列变量系统是有效的预测模型,同时,向量自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。
如果变量之间不仅存在滞后影响,而不存在同期影响关系,则适合建立VAR 模型,因为VAR模型实际上是把当期关系隐含到了随机扰动项之中。
注意点:1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提)想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验 :①、EG两步法是基于回归残差的检验可以通过建立OLS模型检验其残差平稳性;②、检验是基于回归系数的检验,JJ 检验前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立 ECM 进一步考察短期关系,Eviews 这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验请注意识别。
5、格兰杰检验只能用于平稳序列,这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
6、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。
所以,非平稳序列的因果关系检验就是协整检验。
7、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳则作协正检验。
2)协整检验中要用到每个序列的单整阶数。
3)判断时间学列的数据生成过程。
ADF 检验:1、view--unit root test,出现对话框,默认的选项为变量的原阶序列检验平稳性,确认后,若ADF 检验的P值小于 0.5,拒绝原假设,说明序列是平稳的,若P值大于0.5,接受原假设,说明序列是非平稳的;2、重复刚才的步骤,view--unit root test,出现对话框,选择1st difference,即对变量的一阶差分序列做平稳性检验,和第一步中的检验标准相同,若P值小于 0.5,说明是一阶平稳,若P值大于 0.5,则继续进行二阶差分序列的平稳性检验。
先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i 阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造 VEC 模型或者进行 Granger 因果检验,检验变量之间“谁引起谁变化”,即因果关系:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定;第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的;第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后进行协整,看变量是否存在长期均衡;第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。
8、单位根检验是检验数据的平稳性,或是说单整阶数。
9、协整是说两个或多个变量之间具有长期的稳定关系。
但变量间协整的必要条件是它们之间是同阶单整,也就是说在进行协整检验之前必须进行单位跟检验。
10、协整说的是变量之间存在长期的稳定关系,这只是从数量上得到的结论,但不能确定谁是因谁是果,而因果关系检验解决的就是这个问题。
单位根检验是检验时间序列是否平稳,协整是在时间序列平稳性的基础上做长期趋势的分析,而格兰杰检验一般是在建立误差修正模型后所建立的短期的因果关系。
故顺序自然是先做单位根检验,再过协整检验,最后是格兰杰因果检验。
单位根检验是对时间序列平稳性的检验,只有平稳的时间序列,才能进行计量分析,否则会出现伪回归现象;协整是考察两个或者多个变量之间的长期平稳关系,考察两者的协整检验通常采用恩格尔-格兰杰检验,两者以上则用 Johansen检验;格兰杰因果检验是考察变量之间的因果关系,协整说明长期稳定关系不一定是因果关系,所以需要在通过格兰杰因果检验确定两者的因果关系。
顺序一般是单位根检验,通过后如果同阶单整,再进行协整,然后在进行因果检验。
要特别注意的是只有同阶单整才能进行协整。
11、VAR建模时lag intervals for endogenous要填滞后期,但是此时你并不能判断哪个滞后时最优的,因此要试,选择不同的滞后期,至AIC或SC最小时,所对应着的滞后为最优滞后,此时做出来的VAR模型才较为可靠。
12、做协整检验前作VAR的原因是,协整检验是对滞后期和检验形式非常敏感的检验,首先需要确定最优滞后。
由于VAR是无约束的,而协整是有约束的,因此协整检验的最优滞后一般为VAR的最优滞后减去1,确定了最优滞后,再去诊断检验形式,最终才能做协整。
13、当确定了协整的个数后,往下看,有个标准化的结果,这个结果就是协整方程,由于在结果中各变量均在方程一侧,因此如果系数为正,则说明是负向关系,反之亦然。
14、协整表示变量间的长期均衡关系,貌似与你的OLS不矛盾。
(1)、如检验不协整,说明没长期稳定关系,可以做VAR模型,但是模型建立后要做稳定性分析:做AR根的图表分析,如所有单位根小于1,说明VAR 模型满足脉冲分析及方差分解所需条件之一:模型的因果关系检验,不过注意在做因果检验前要先确定滞后长度。
只有满足因果关系,加上满足条件一:稳定性,则可进行脉冲及方差分解;如不满足因果关系,则所有不满足因果关系的变量将视为外生变量,至此要重新构建VAR模型,新的VAR模型将要引入外生变量的VAR模型(2)、VAR与 VEC关系是:VEC是有协整约束(即有长期稳定关系)的VAR模型,多用于具有协整关系的非平稳时间序列建模。
15、简单说 VAR 模型建立时,第一步:不问序列如何均可建立初步的VAR 模型(建立过程中数据可能前平稳序列,也可能是部分平稳,还可能是没协整关系的同阶不平稳序列,也可能是不同阶的不平稳序列,滞后阶数任意指定。
所有序列一般视为内生向量),第二步:在建立的初步VAR 后进行①滞后阶数检验,以确定最终模型的滞后阶数②在滞后阶数确定后进行因果关系检验,以确定哪些序列为外生变量至此重新构建VAR模型(此时滞后阶数已定,内外生变量已定),再进行AR根图表分析,如单位根均小于1,VAR构建完成,可进行脉冲及方差分解;如单位根有大于1的,考虑对原始序进行降阶处理(一阶单整序列处理方法:差分或取对数,二阶单整序列处理方法:理论上可以差分与取对数同时进行,但由于序列失去了经济含义,应放弃此处理,可考虑序列的趋势分解,如趋势分解后仍然不能满足要求,可以罢工,不建立任何模型,休息或是打砸了电脑),处理过后对新的序列(包括最初的哪些平稳序列)不断重复第一步与第二步,直至满足稳定性为止;第三步:建立最终的 VAR 后,可考虑SVAR模型。
如果变量不仅存在滞后影响,还存在同期影响关系,则建立VAR 模型不太合适,这种情况下需要进行结构分析。
1、首先,如果变量都是平稳的,如增长率、cpi、实际汇率等少数变量则直接可以用VAR模型、格兰杰因果关系检验、脉冲响应、方差分解等;2、70年代以前的建模都是以“序列平稳”为隐含假设的,70 年代 GRANGER 提出“伪回归”问题,从此建模进入了“非平稳”与“协整”的时代,因此,现在对时间序列建模时不进行平稳性和非平稳序列协整性检验是不严格的;而且,如果序列非平稳或非协整,则建模的关键性检验—残差白噪声检验可能是不能通过的。
(有的文章不进行平稳性和协整性检验有三种情况:一是按传统方法建模;二是突出文章的经济学意义而简化方法;三是建模成功与否靠残差检验一锤定音),也就是说VAR模型(含因果关系检验模型前提是平稳或协整);3、早期的 VAR 是没有考虑平稳的问题,但是现在做VAR的步骤一般是这样的:第一步:单位根检验,UNIT ROOT TEST对全部的变量进行单位根检验,早期单位根检验:单位根检验用ARMA图看也可以,如果都平稳不用做协整检验和模型平稳性检验,则回到1;第二步:协整检验,在两个变量的情况下,用Engle-Granger method 和 Johansen协整检验或者Stock and Watson方法,但是在多个变量的情况下最好不要用Engle-Granger的方法,用Johansen方法,[回归出来的矩阵的rank,如果满秩,则所有的变量都为稳定的序列,直接使用VAR,如果是0秩,则所有的序列都进行一阶差分之后VAR(前提应该是全部的序列都是 I(1),如果处于这两者的中间,那么就用error correction model];第三步:滞后期确定,(操作见 EVIEWS6.0中var模型下view-lag structure 最后一列,多种准则比较选多数准则认同的最优滞后期,保证所有的残差都不存在自相关性,即white noise,然后进行格兰杰因果关系检验、脉冲响应、方差分解……);第四步:建立VAR模型:(因果关系检验),(操作见EVIEWS6.0中var模型下view-lag structure第一列),平稳性检验通过(单位根r<1),表明模型平稳,即脉冲响应(冲击)是收敛的(如果冲击是发散的,不符合实际经济系统,再分析则毫无经济意义),可做脉冲脉冲响应、方差分解等;如果没通过平稳性检验,则不能直接做脉冲响应和方差分解,可以以差分变量做VAR模型,再说脉冲响应和方差分解,也就是说只有平稳的VAR模型(非指序列平稳而是模型平稳,模型单位根小于1在单位圆内)才可以做脉冲响应、方差分解,VAR模型模型不平稳使用差分变量后建 VAR 模型。