2020年七年级数学上册图形认识初步单元试题附答案

合集下载

人教版七年级上册数学图形的初步认识单元测试题(含答案)-

人教版七年级上册数学图形的初步认识单元测试题(含答案)-

人教版七年级上册数学图形的初步认识单元测试题(含答案)-第四章:图形的初步认识一、精心选一选1、正确选项为A。

因为直线AB和直线BA在同一直线上,是同一条直线。

2、正确选项为D。

因为图中有四个角,分别为∠A、∠B、∠C、∠D,且∠A和∠D、∠B和∠C互余,共有三对互余角。

3、正确选项为B。

因为只有图中的第二个图形可以沿着虚线折叠成一个棱柱。

4、正确选项为A。

因为通过同一平面内的任意三点,只能画出一条直线。

5、正确选项为C。

因为20.25度比2018分和2015分30秒都小,所以∠A>∠C>∠B。

6、不能折成正方形的是第二个图片。

7、展开后得到的图形如右图所示。

8、正确选项为A。

因为钝角与锐角的差是一个锐角,不可能是钝角。

9、时针和分针的夹角为75度。

10、∠α余角的补角为116度。

11、∠α与∠γ互补。

12、错误选项为C。

因为OC方向是___°。

13、错误选项为D。

因为所有说法都正确。

14、∠AOD - ∠AOC = ∠COD。

15、绕虚线旋转一周得到的几何体是圆柱体。

二、细心填一填1、直线上的两个点可以确定一条线段。

2、一个角的大小与其两边的长短有关。

3、线段只有两个端点。

4、同角或等角的补角相等。

5、两个锐角的和一定小于直角。

6、OA方向是___°,OB方向是北偏西15°,OC方向是南偏东30°,OD方向是东南方向。

7、正方体展开后可以得到六个正方形。

8、一个角的补角是与其相加和为90度的角。

9、时针和分针的夹角为150度。

10、∠α余角的补角为64度。

11、∠α与∠γ互补。

12、选项A中OA方向应为___°。

13、线段上只有有限个点。

14、∠AOD - ∠AOC = ∠COD。

15、圆锥体。

16.将几何体分类:柱体有(1)圆柱、(2)棱柱;锥体有(3)圆锥、(4)棱锥。

17.已知∠1和∠2互补,且∠2+∠3=180°,则∠1=90°,因为两个互补角的度数和为90°。

华师大版2020-2021学年七年级数学上册第4章图形的初步认识单元同步试卷(含答案)

华师大版2020-2021学年七年级数学上册第4章图形的初步认识单元同步试卷(含答案)

华师大版数学七年级上册第4章图形的初步认识单元考试题总分:100分,时间:90分钟;姓名:;成绩:;一、选择题(3分×10=30分)1.下列图形中,是三棱锥的是()2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()3.钟表上,8点30分时,时针与分针的夹角是()A.90°B.85°C.75°D.60°4.用一副三角板的内角(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)可以画出大于0°且小于180°的不同度数的角共有( )A.8种B.9种C.10种D.11种5.两条直线相交,只有1个交点,三条直线相交,最多有3个交点,四条直线相交,最多有6个交点,10条直线相交,最多有()个交点.A.45B.42C.40D.366.点A、B、C都在同一条直线上,AB=8cm,BC=10cm,则线段AC长为()A.18cm 或2cm B 、18cm C.2cm D 、8cm 或10cm7.下列四个生活中产生的现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵的位置,就能确定同一行树所在的直线;③从A 地到B 架设电线,总是尽可能沿着线段AB 方向架设;④把弯曲的公路改直,就能缩短路程。

其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②③D.③④8.如图,OC 平分∠AOD ,OD 平分∠BOC ,下列等式不成立的是( )A. ∠AOC=∠BODB.∠COD=21∠AOBC.∠AOC=21∠AODD.∠BOD=21∠BOC9.下列说法正确的是( )A 、一个锐角的余角比这个角的补角小90°;B 、如果一个角有补角,那么这个角必是钝角;C 、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为了补角;D 、如果∠α和∠β互为余角,∠β与∠θ互为余角,那么∠α与∠θ互为余角。

2019—2020年人教版七年级数学第一学期第四章《图形认识初步》单元检测题A及答案.docx

2019—2020年人教版七年级数学第一学期第四章《图形认识初步》单元检测题A及答案.docx

第四章《图形认识初步》整章水平测(A)一、耐心填一填,一锤定音!(每小题3分,共30分)1.45°= 直角= 平角.2.15°-10°7′= .3.7.205°= °′″.4.如图1,是的展开图.5.类似于长方体的形状的实物有等.6.如果∠1=4°18′,∠2=3°79′,∠3=4.4°,则∠1、∠2、∠3的大小顺序是.(由小到大排列).7.如图2,图中小于平角的角共有个,其中能用一个大写字母表示的角是.8.两个角互补且相等,则这两个角分别是、.9.线段AD=76,BD=70,CD=19,点B、C在线段AD上,则AB= ,BC= .10.钟表的时针在任一时刻所在的位置作为起始位置,它旋转出一个平角至少需分钟.二、精心选一选,慧眼识金!(每小题2分,共20分)1.平面上有任意四点,经过其中两点画一条直线,共可画()A.1条直线B.4条直线C.6条直线D.1条或4条或6条直线2.从3时15分到3时30分,时针转了()A.7.5°B.15°C.90°D.10°3.一个角的补角是它的3倍,这个角是()A.30°B.45°C.50°D.60°4.如图3,是从正面、左面、上面看某几何体得到的平面图形,则该几何体是()A.六棱锥B.六棱柱C.长方体D.正方体5.下图中,是三棱柱的平面展开图的是()6.下列说法中,正确的个数是()①角是由两条射线组成的图形.②一条射线就是一个周角.③两点确定一条直线.④如果线段AB=BC,那么点B叫做线段AC的中点.A.1 B.2 C.3 D.47.点C在线段AB上,不能判断点C是线段AB中点的式子是()A.AB=2AC B.AC+BC=AB C.12BC ABD.AC=BC8.如图4,由A测B的方向是()A.南偏东30°B.北偏西30°C.南偏东60°D.北偏西60°9.如图5,∠AOB+∠BOC=90°,∠BOC与∠COD互余,那么∠AOB与∠COD的关系是()A.∠AOB>∠COD B.∠AOB=∠COD C.∠AOB<∠COD D.无法确定10.如图6,13AC AB=,14BD AB=,AE=CD,则CE为AB长的()A.16B.18C.112D.116三、用心做一做,马到成功!(本大题共70分)1.(本题10分)读句画图并填空:(1)画直线AB;(2)在线段AB上取一点O,用量角器画∠BOC=40°;(3)由图形可知,∠AOC= ;(4)画射线OC的反向延长线OD;(5)由图可知:∠AOD= ,∠DOB= .2.(本题10分)如图7,分别从正面、左面、上面观察该立体图形,能得到什么平面图形?3.(本题11分)如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.4.(本题12分)如图9,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.5.(本题12分)已知∠1和∠2互为补角,∠2度数的一半比∠1大45°,试求出∠1与∠2的度数.6.(本题15分)一个正方体小木块,六个面上分别标有1,2,3,4,5,6六个数字,我们从不同角度可以看到的正方体的一个面或几个面上的数字,最多可以有多少种不同的情况?参考答案:一、1.12,14 2.453' 3.7,12,184.圆锥 5.不惟一(略)6.123<<∠∠∠ 7.7;B ∠,C ∠ 8.90,909.6,51 10.360 二、1.D2.A 3.B 4.B 5.C 6.A 7.B 8.C 9.B 10.C 三、1.(3)140;(5)40,140.图略.2.略.3.渔船在C 处.4.90DOE =∠,76BOE =∠.5.130=∠,2150=∠.6.共有26种不同情况.。

华师大版2020-2021学年七年级数学上册第四单元 图形的初步认识 单元测试题及答案

华师大版2020-2021学年七年级数学上册第四单元 图形的初步认识 单元测试题及答案

七年级数学上册第四章测试卷(共100分)一、选择题(10×3=30分)1、.如图所示,该几何体的俯视图是()A. B. C. D.2、.下列说法上正确的是()A. 长方体的截面一定是长方形;B. 正方体的截面一定是正方形;C. 圆锥的截面一定是三角形;D. 球体的截面一定是圆。

3、立方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么该立方体盒子上,“强”相对的面上所写的文字是()A. 文B. 明C. 主D. 富4、如图,已知∠1=25°,∠AOC=90°,点B,O,D 在同一条直线上,则∠2 的度数为()A.105°B.115°C.125°D.65°CB2 1D O A5、有两根木棒,要挑出一根较长的木棒用于400 米接力比赛,选择的方法是()6、下列说法中错误的是()A.过两点有且只有一条直线B.把一条弯曲的公路改成直道可以缩短路程,利用的是两点之间线段最短C.若α+27°18′=90°,27.3°+β=90°,则α=βD.在线段、射线、直线中,直线最长7下列几何体中,同一个几何体的主视图与俯视图不同的是()A. B. C. D.8、某测绘装置上一枚指针原来指向南偏西50°(如图所示),把这枚指针按逆时针方向旋转周角,则指针的指向为()A、东偏南50°B、北偏东60°C、北偏西40°D、南偏东40°9、.已知AB=8cm,BC=3cm,且A,B,C三点在同一条直线上,则AC=()A. 11cmB. 5cmC. 8cm或3cmD. 5cm或11cm10、如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A. 五棱柱B. 六棱柱C. 七棱柱D. 八棱柱二、填空题(10×3=30分)1、1800-( 34054′+21033′)= 。

2019—2020年湘教版七年级上册数学《图形的认识》单元测试题及答案(试卷)(1).docx

2019—2020年湘教版七年级上册数学《图形的认识》单元测试题及答案(试卷)(1).docx

第4章图形的认识测试题(本试卷满分120分,含附加题20分)一、选择题(每小题3分,共30分)1. 把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2. 从左面观察图1所示的立体图形,能得到的平面图形是()A B C D 图13. 下列四个图中角的表示方法正确的是()4. 下列图形中,不是立体图形的是()A. 圆锥B. 六棱柱C. 圆D. 圆柱5.下列说法:①线段有两个端点,直线有一个端点;②角的大小与角的两边的长短无关;③线段上有无数个点;④同角或等角的补角相等;⑤两个锐角的和一定大于直角.其中错误的说法有()A.1个B.2个C.3个D.4个6.下列单位换算中,不正确的是()A. 1.5°=90′B. 120″=2′C. 2°5′=3900″D. 10.3°=36720″7. 已知M 是线段AB 的中点,下列结论错误的是( )A .AM+BM=AB B .AB=2AMC .BM=21AB D .AM=BM 8. 图2是一个正方体的展开图,把展开图折叠成正方体后,“你”字相对面上的字是( )A .我B .中C .国D .梦图2 图39. 如图3所示,把一张长方形报纸的一角斜折过去,使A 点落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD 的度数为( )A.85°B.90°C.75°D.80° 10.如图4,点C 在线段AB 上,BC:AC=1:3,AB=16 cm ,点M 从点A 出发,沿线段AB 方向以每 秒2 cm 的速度向点B 移动,有下列结论:①3秒时,点M 与线段AC 的中点重合;②6秒时,点M 与点C 重合;③3.5秒时,点M 、B 之间的距离为9 cm ;④7秒以前,CM <BM.以上结论正确的是( )A. ①②③B. ①③④C. ②③④D. ①②③④图4二、填空题(每小题4分,共24分)11. 西瓜可以近似看做常见的立体图形_______,从正面看西瓜得到的平面图形是_______.12.如图5,图中共有_________条线段.图5图613.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,其中相等的两角是________.14. 已知一个长方形的长为4,宽为2,若将该长方形绕它的长所在的直线旋转一周,得到的几何体是________,它的体积是________.(π取3)15.下列几何体:①圆柱;②六棱柱;③圆锥;④长方体.其中侧面展开图是长方形的几何体有:________.(填序号)16. 将一副三角尺按如图6所示的方式摆放,其中点B,F在直线MN上,BC是∠ABM的平分线,则∠MBC的度数为______.17. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.18. 如图7,射线OA的方向是________,射线OB的方向是_________,射线OC的方向是________.图7三、解答题(共46分)19. (6分)将图8所示的几何体与它的名称用线连接起来.图820. (8分)计算:已知∠A=8.6°,∠B=5°24′.(1)∠A与∠B的和等于多少分?(2)∠A 与∠B 的差等于多少度?21.(8分)图9是由7个小正方体组成的一个几何体,画出分别从正面、左面、上面看该几何体得到的平面图行.图922. (8分)如图10,已知D 是AB 的中点, E 是BC 的中点,BE=51AC=2 cm , 求线段DE 的长.图1023. (8分)如图11,AB 和CD 都是直线,已知∠AOE=90°,∠3=∠FOD ,∠1=27°20′,求∠2,∠3 的度数.图1124. (8分)如图12,在正方体ABCD-A 1B 1C 1D 1中.(1)分别写出以点B 为端点的线段;DA CB E(2)一只蚂蚁要从A点沿表面爬行到顶点B1,怎样爬行路线最短?为什么?(3)若由点A沿表面爬行到点C1呢?图12附加题(共20分)24. (10分)如图13,已知O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;图1326. (10分)(1)探索知识:在图14-①中,有3条射线,共有3个角;在图18-②中有_____条射线,共有_____个角;在图14-③中有_____条射线,共有_____个角;(2)猜想验证:仿照图14的画法,若图中有6条射线,则共有______个角;(3)归纳总结:仿照图14的画法,若图中有n(n≥2)条射线,则共有______个角.①②③图14参考答案一、1.C 2.A 3.D 4.C 5.B 6.D 7.A 8.D 9.B 10.D 二、11.球 圆 12.6 13.∠α与∠γ 14.16.30° 17. 5或11 18. 北偏东15° 北偏西40°南偏东45° 三、19. 如图1所示.图120.解:(1)∠A+∠B=8.6°+5°24′=516′+324′=840′.(2)∠A+∠B=8.6°-5°24′=8.6°-5.4°=3.2°.21.解:如图2所示.从正面看 从左面看 从上面看图222. 解:因为BE=51AC=2 cm ,所以AC=10 cm.又E 是BC 的中点,所以BC=2BE=4 cm.所以AB=AC-BC=10-4=6(cm ).因为D 是AB 的中点,所以DB=21AB=3 cm.所以DE=DB+BE=3+2=5(cm ).23.解:因为∠AOE=90°, 所以∠2=90°-∠1=90°-27°20′=62°40′.又∠AOD=180°-∠1=152°40′,∠3=∠FOD ,所以∠3=12∠AOD=76°20′.24. 解:(1)BA ,BC ,BB 1;(2)连接AB 1,沿AB 1路线爬行最短,因为两点之间,线段最短;(3)将正方体部分展开,连接AC 1,沿AC 1路线爬行最短.25. 解:(1)图中有9个小于平角的角.(2)因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD =AOC ∠21=25°.所以∠BOD=180°-25°=155°.(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE = ∠COE ,即OE 平分∠BOE .26. 解:(1)4 6 5 10(2)15(3)2)1(-n n。

2020年华东师大新版七年级(上)《第4章+图形的初步认识》新题套卷(3)【附答案】

2020年华东师大新版七年级(上)《第4章+图形的初步认识》新题套卷(3)【附答案】

2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图为一个长方体,则该几何体主视图的面积为cm2.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是平方厘米.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是cm.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB =.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是.20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是个.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.29.请你在右边的方格中画出如左图所示几何体的三视图:30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)参考答案与试题解析一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8:25时,时针与分针的夹角可以看成时针转过8时0.5°×25=12.5°,分针在数字5上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:25时分针与时针的夹角3×30°+12.5°=102.5°.故选:B.3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变【解答】根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和底面半径为边长的长方形的面积,所以表面积变大了.故选:B.4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识.故选:A.5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【解答】解:如图,由题意,∠BAC=30°+90°+20°=140°,故选:D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.【解答】解:物体的主视图画法正确的是:.故选:C.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条【解答】解:由图可得,线段有:线段AB、线段AC、线段AD、线段BC、线段BD、线段CD,共6条.故选:D.8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球【解答】解:将长方形纸板绕它的一条边旋转,可得下面的几何体,故选:A.9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B符合题意;故选:B.10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为4.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.故x+y+z=4.故答案为:4.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于2或6.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故答案为2或6.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【解答】解:用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短,故答案为:两点之间线段最短.14.如图为一个长方体,则该几何体主视图的面积为20cm2.【解答】解:该几何体的主视图是一个长为5cm,宽为4cm的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是12.56平方厘米.【解答】解:∵正方形的边长是4厘米,∴剪出的最大的圆直径为4厘米,半径=2厘米,所以,圆的面积=πr2=3.14×22=12.56(平方厘米).故答案为:12.56.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是32cm.【解答】解:由题意得:这个直四棱柱的所有棱长之和是:4×2+4×2+4×4=8+8+16=32(cm),故答案为:32.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是190.【解答】解:∵在已知角内画射线,画1条射线,图中共有3个角,3=;画2条射线,图中共有6个角,6=;画3条射线,图中共有10个角,10=;…,∴画n条射线,图中共有个角,∴画18条射线所得的角的个数是=190,故答案为:190.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=72°.【解答】解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.故答案为:72°.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是1和7.【解答】解:由正方体展开图的特征得出,折叠成正方体后,点11所在的正方形分别和点7、点1所在的两个正方形相交,故点1与点7、点1重合.故答案为1和7;20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是4个.【解答】解:在俯视图上标出该位置摆放的小立方体的个数,如图所示:因此,组成这个几何体的小正方体的个数是4个.故答案为:4.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').【解答】解:(1)原式=36×(﹣)+(﹣8)÷4﹣(﹣1)=27﹣30﹣2+1=﹣4;(2)原式=179°60′﹣56°87'=179°60′﹣57°27'=122°33′.22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有9个小正方体.【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.【解答】解:∵MN=MB+BC+CN,∵MN=3cm,BC=1.5cm,∴MB+CN=3﹣1.5=1.5cm,∴AD=AB+BC+CD=2(MB+CN)+BC=2×1.5+1.5=4.5cm.答:AD的长为4.5cm.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.【解答】解:根据分析,可得.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.【解答】解:(1)由AB=10,M是AB的中点,所以AM=5,又AC=4,所以CM=AM﹣AC=5﹣4=1(cm).所以线段CM的长为1cm;(2)因为N是AC的中点,所以NC=2,所以MN=NC+CM,2+1=3(cm),所以线段MN的长为3cm.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.【解答】解:(1)设∠AOE的度数为x,由题意知∠A′OE=x,∠EOB=75°﹣x,∵OB平分∠A′OE,∴2∠EOB=∠A′OE,∴2(75°﹣x)=x,解得x=50,答:∠AOE的度数为50;(2)①如图2,当射线OB在∠A′OE内部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠EOB=∠A′OE,∴(90°﹣y)+75°﹣y=y,解得y=;②如图3,当射线OB在∠A′OE外部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOE+∠A′OE+∠A′OB=75°,∴y+y+(90°﹣y)=75°,解得y=30,答:∠AOE的度数为或30;(3)如图4,当∠A′OB=120°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=120°﹣75°=45°,又∵∠AOE=∠A′OE,∴∠AOE=22.5°,∴∠BOE=75°+22.5°=97.5°;如图5,当∠A′OB=120°,由图可得∠A′OA=360°﹣120°﹣75°=165°,又∵∠A′OE=∠AOE,∴∠AOE=82.5°,∴∠BOE=75°+82.5°=157.5°;当射线OE在CD下面时,如图6、7,∠BOE=22.5°或82.5°,综上,∠BOE的度数为157.5°或97.5°或22.5°或82.5°.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.【解答】解:物体的主视图、左视图、俯视图.如图所示:29.请你在右边的方格中画出如左图所示几何体的三视图:【解答】解:如图30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.【解答】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。

数学七年级上册《几何图形初步》单元综合测试题(附答案)

数学七年级上册《几何图形初步》单元综合测试题(附答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,把正确选项的代号填在题后的括号内).1.下列说法中错误的有( )(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个B.2个C.3个D.4个2.下列图中角的表示方法正确的个数有( )A.1个B.2个C.3个D.4个3.下面左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图是( )A. B. C. D.(第3题)4.经过同一平面内任意三点中的两点共可以画出( )A.一条直线B.两条直线C.一条或三条直线D.三条直线5.若∠A=20 o 18′, ∠B=20 o 15′30〞, ∠C=20.25 o,则 ( )A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C >∠BD.∠C >∠A >∠B6.如左图所示的正方体沿某些棱展开后,能得到的图形是( )(第6题)7.如图下列说法错误的是( )A.OA方向是北偏东40°B.OB方向是北偏西15 °C.OC方向是南偏西30°D.OD方向是东南方向.(第7题)8.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )二、填空题(本大题共7小题,每小题3分,共21分)9.要在墙上钉一根木条,至少要用两颗钉子,这是因为: .10.如图所示,小于平角的角有个.11.一个角余角是23°13′6″,则这个角的度数是 .12.如图将一副直角三角板叠在一起,使直角顶点重合于点O, 则∠AOB+∠DOC=°.13.在时刻8:30,时钟上的时针和分针的夹角是.14.如果某时刻灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的方向.15.天天宾馆在重新装修后,准备在大厅的主楼道上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼道宽2米,其侧面如图所示.问购买这种地毯至少需要 元.三、(本大题共3小题,第16题6分,第17,18题各5分,共16分)16.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图:(1)画直线AB ;(2)作射线BC ;(3) 连接AD ,作线段AD 的反向延长线AE ;(4) 在平面内找一点F ,使点F 到A 、B 、C 、D 四点距离和最短. 17.如图,已知线段a 、b ,画一条线段,使它等于2a -b .(保留作图痕迹,不写画法).18.计算:50°24′×3+98°12′25″÷5四、(本大题共2小题,每小题7分,共14分)19.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长.20.一个角的余角比它的补角的31还少20°,求这个角.五、(本大题共3小题,第21,22小题各8分,第23小题9分,共25分)21.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面 与右面标注的式子相等.⑴ 求x 的值.⑵ 求正方体的上面和底面的数字和.22.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA 度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.36m(第10题) (第12题) (第15题)(第21题)(2)若OE平分∠BOC,OF、OG三等分∠COD,求∠EOG.(第22题)23.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.⑴求线段MN的长;⑵若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由.-=cm,M、N分别为AC、BC的中点,你能猜想MN ⑶若C在线段AB的延长线上,且满足AC CB b的长度吗?请画出图形,写出你的结论,并说明理由.⑷你能用一句简洁的话,描述你发现的结论吗?参考答案一、选择题:1.C2.B3.D4.C5.A6.B7.A8.C二、填空题:9.两点确定一条直线; 10.9 ; 11. 66°46′54″; 12.180; 13.75;14. 南偏西40 ; 15.540.三、16.略. 17.略. 18.170°50′29″四、19.解:(1)当D 在AC 上时,BD =7cm ;(2)当D 在CB 上时,BD =3cm.20.解:设这个角为x °,则可得:1(90)(180)203x x -=--,解得:x =75. 答:略.五、21.解:(1)32x x =-,解得:1x =.(2)1+3=4.22.解:(1)∠BOC =72°;(2)∠EOG =108°.23.解:(1) MN =7;(2)MN =12a ,11()22MN AC CB a =+=; (3)MN =12b ,11()22MN AC CB b =-=;画图略. (4)C 在线段AB 上,12MN AB =; C 在线段AB 延长(反向延长)线上,12MN AC BC =-.。

2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷(解析版)

2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷(解析版)

2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.242.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm4.下面图形中,平面图形是()A.B.C.D.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是cm.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是.13.一个五棱柱的面数为个,棱数为条,顶点数为个.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是.16.如图所示,是一个立体图形的展开图,这立体图形是.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm2.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷参考答案与试题解析一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.2.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.【分析】根据面动成体的原理即可解.【解答】解:圆台是梯形绕直角腰旋转而成.故选:A.【点评】考查了点、线、面、体,解决本题的关键是掌握各种面动成体的特征.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm【分析】根据立方根的定义和长方体的体积公式解答.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.【点评】本题考查了立方根的定义和长方体的体积公式,解题的关键掌握立方根的定义.4.下面图形中,平面图形是()A.B.C.D.【分析】根据平面图形和立体图形是区别即可解答.【解答】解:选项A是圆锥,选项B是圆柱,选项C是四棱柱,选项D是三角形,三角形是平面图形.故选:D.【点评】本题考查了平面图形和立体图形的认识,掌握定义是解题的关键.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【分析】根据四棱柱的展开图解答.【解答】解:由图可知,这个几何体是四棱柱.故选:D.【点评】本题考查了展开图折叠成几何体,熟记四棱柱的展开图的形状是解题的关键.6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、是“田”字格,故不能折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个面,所以也不能折叠成一个正方体;D、可以折叠成一个正方体.故选:D.【点评】本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中有“我”字的一面相对面上的字是国.故选:A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是4cm.【分析】先根据这个棱柱有8个面,求出这个棱柱是6棱柱,有6条侧棱,再根据所有侧棱的和为24cm,即可得出答案.【解答】解:∵这个棱柱有八个面,∴这个棱柱是6棱柱,有6条侧棱,∵所有侧棱的和为24cm,∴每条侧棱长为24÷6=4(cm);故答案为:4【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱.【分析】根据面动成体可得长方形ABCD绕CD边旋转可得答案.【解答】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故答案为:圆柱.【点评】此题主要考查了点线面体,是基础题,熟悉常见几何体的形成是解题的关键.13.一个五棱柱的面数为7个,棱数为15条,顶点数为10个.【分析】根据五棱柱的形状可得答案.【解答】解:一个五棱柱的面数为7个,棱数为15条,顶点数为10个.故答案为:7,15,10.【点评】此题主要考查了认识立体图形,关键是掌握五棱柱的形状.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为40.【分析】根据正方体的棱有12条,设其中一个正方体的棱长为x,则另一个为4﹣x,根据正方体的表面积公式列方程解答即可.【解答】解:设其中一个正方体的棱长为x,则另一个为4﹣x,根据题意得,6x2+6(4﹣x)2=72,解得,,故这两个正方体的棱长分别为2+,2﹣,体积之和为:=(2++2﹣)[﹣(2+)(2﹣)+]=40.故答案为:40【点评】此题考查正方体的表面积公式的灵活应用,根据正方体一个面的面积求出正方体的棱长是解决此类问题的关键.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是3:4.【分析】根据圆的周长公式C=πd或C=2πr,圆的周长和半径(直径)成正比例,已知两个圆的周长之比是3:4,两个圆的直径的比也是3:4;由此解答.【解答】解:∵甲乙两圆的周长之比是3:4,∴甲乙两圆的直径之比是3:4.故答案为:3:4.【点评】考查了认识平面图形,此题主要根据圆的周长计算方法进行判断,两个圆的周长之比等于两个圆的半径(直径)的比.16.如图所示,是一个立体图形的展开图,这立体图形是圆锥.【分析】根据圆锥表面展开图的特点解题.【解答】解:如图所示,是一个立体图形的展开图,这个立体图形是圆锥.故答案为:圆锥.【点评】本题考查圆锥表面展开图,记住圆锥的表面展开图的特征是解题的关键.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是100cm2.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?【分析】(1)根据圆锥的体积公式解答即可;(2)根据圆柱的侧面积公式即可求出r,再根据圆的面积公式解答即可;(3)求出一个圆柱形的粮仓的体积,然后用麦的体积去除以一个圆柱形的粮仓的体积即可解答.【解答】解(1)(米),V=≈24×3.14=75.36(立方米),麦这堆小麦的体积是75.36立方米;(2),(米),(平方米),所以该粮仓的底面积是4π平方米;(3)(立方米),,所以至少需要6个这样的粮仓.【点评】本题主要考查了圆柱和圆锥的体积公式、圆柱的侧面积公式,熟练掌握公式是解答本题的关键.20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.【点评】本题考查圆柱体的体积的求法,注意分情况讨论.21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.【分析】简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.依此即可求解.【解答】解:∵10+15﹣24=1,不符合欧拉公式V+F﹣E=2,∴不能组成一个有24条棱,10个面,15个顶点的多面体.【点评】考查了欧拉公式,公式描述了简单多面体顶点数、面数、棱数特有的规律.解题的关键是熟练掌握欧拉公式.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?【分析】(1)分别数出各层正方体的个数,再相加即可求解;(2)每个方向上均有6个等面积的小正方形,求出1个正方形面积,再乘36即可求解.【解答】解:(1)第一层1个,第一层3个,第一层6个,1+3+6=10(个).答:由10个正方体构成;(2)每个正方形面积为a2,左面:6小正方形,前面:6小正方形,右面:6小正方形,后面:6小正方形,上面:6小正方形,下面:6小正方形.物体的表面积为:6×6a2=36a2(平方单位).答:如图形所示物体的表面积是36a2平方单位.【点评】本题考查了立体图形的有关知识,关键是要注意立体图形的各个面,及每个面的正方形的个数.23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有∠COE、∠AOC.【分析】(1)按要求作图;(2)根据∠AOB=60°,分别计算各角的度数,可作解答.【解答】解:(1)如图所示:(2)∵OC⊥BD,∴∠BOC=∠COD=90°,∵∠AOB=60°,∴∠AOC=30°,∠AOD=120°,∵OE平分∠AOD,∴∠AOE=∠DOE=60°,∴与∠EOD互余的角有:∠COE、∠AOC.故答案为:∠COE、∠AOC.【点评】本题考查了角平分线的定义、余角以及角的计算,还考查了基本作图﹣角平分线、过直线上一点作已知直线的垂线;注意基本作图时要认真、准确.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.【分析】(1)利用尺规作∠C的平分线即可解决问题;(2)结论:FH=HC.只要证明∠HCF=∠HFC即可;(3)只要证明△EAD∽△HCD,可得∠ADE=∠CDH,推出∠EDH=∠ADC=90°即可;【解答】解:(1)如图所示:(2)结论:FH=HC.理由:∵FH∥BC,∴∠HFC=∠FCB,∵∠FCB=∠FCH,∴∠FCH=∠HFC,∴FH=HC.(3)∵AD是Rt△ABC斜边BC上的高,∴∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵∠AEF=∠B+∠ECB,∠AFE=∠CAD+∠ACF,∠ACF=∠ECB,∴∠AEF=∠AFE,∴AE=AF,∵FH∥CD,∴=,∵AF=AE,CH=FH,∴=,∴=,∵∠BAD=∠DCH,∴△EAD∽△HCD,∴∠ADE=∠CDH,∴∠EDH=∠ADC=90°,∴ED⊥DH.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,本题综合性比较强,属于中考常考题型.。

人教版七年级上册图形认识初步单元试题含答案解析

人教版七年级上册图形认识初步单元试题含答案解析

《图形认识初步》一、选择题(每小题3分,共30分)1.下列空间图形中是圆柱的为()2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()A.①②③④ B.①③②④ C.②④①③ D.④③①②3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美 B.丽 C.云 D.南BAC D第2题图A. B. C. D.BAC图2A B C D图 3第5题图7.如图所示的立体图形从上面看到的图形是()8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( )A.∠1B.∠2C.(∠1-∠2)D.(∠1+∠2)二、填空题(每小题2分,共20分)1.长方体由个面,条棱,个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.(2012•山东菏泽中考)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.4.(1)度分秒。

(2)= 度。

5.如图甲,用一块边长为10 cm的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.2121212148.32///0422372第7题图第5题图8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有个.三、解答题 1.计算:(1)22°18′×5;(2)90°-57°23′27″.2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β的值3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

2020年浙教版七年级数学上册 图形的初步知识 单元检测卷二(含答案)

2020年浙教版七年级数学上册 图形的初步知识 单元检测卷二(含答案)

2020年浙教版七年级数学上册 图形的初步知识 单元检测卷二一、选择题(每小题3分,共30分)1.已知线段则线段的长度是( )A.5B.1C.5或1D.以上都不对2. 如右图,从A 地到B 地最短的路线是( ) A.A -C -G -E -B B.A -C -E -B C.A -D -G -E -BD.A -F -E -B3.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于或等于150°的不同角度的角共有( )种. A.8B.9C.10D.114. (2015·浙江金华中考)已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165°5.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( )A.甲B.乙C.丙D.丁6.下列语句:①一条直线有且只有一条垂线; ②不相等的两个角一定不是对顶角; ③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等; ⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角. 其中错误的有( ) A.2个 B.3个C.4个D.5个7.如右图,AC ⊥BC ,AD ⊥CD ,AB =a ,CD=b ,则AC 的取值范围是( ) A.大于bB.小于aC.大于b 且小于aD.无法确定8.如右图,B 是线段AD 的中点,C 是线段BD 上一点,则下列结论中错误的是( )A.BC =AB -CDB.BC =21AD -CDC.BC =21(AD+CD )D.BC =AC -BD9.如右图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD 是同一条射线;③AB+BD>AD ;④三条直线两两相交时,一定有三个交点.A.1B.2C.3D.410.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( ) A.∠1=∠3B.∠1=180°-∠3C.∠1=90°+∠3D.以上都不对二、填空题(每小题3分,共24分)11.已知线段AB=10 cm ,BC=5 cm ,A 、B 、C 三点在同一条直线上,则AC=_ _. 12.已知线段AB=1 996 cm ,P 、Q 是线段AB 上的两个点, 线段AQ=1 200 cm ,线段BP=1 050 cm ,则线段PQ=___________. 13.如右图,OM 平分∠AOB ,ON 平分∠COD.若∠MON=50°, ∠BOC=10°,则∠AOD= __________.14.如下图,线段AB=BC=CD=DE=1 cm ,那么图中所有线段的 长度之和等于________cm.A B C D15.一条直线上立有距离相等的10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5 s,则当他走到第10杆时所用时间是_________.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=___________.17. 直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点,经过2次这样的操作后,直线上共有________个点.(用含n的代数式表示)18. 如右图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,若∠AOC=28°,则∠COD=_________,∠BOE=__________.三、解答题(共46分)19.(5分)已知一个角的补角比这个角的4倍大15,求这个角的余角.20.(8分)如右图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为点H;(3)线段PH的长度是点P到直线________的距离,线段_________的长度是点C到直线OB的距离,PC、PH、OC这三条线段的大小关系是__________(用“<”连接).21.(6分)已知线段,试探讨下列问题:(1)是否存在一点,使它到两点的距离之和等于?(2)是否存在一点,使它到两点的距离之和等于?若存在,它的位置唯一吗?(3)当点到两点的距离之和等于时,点一定在直线外吗?举例说明.22.(6分)如下图,在直线上任取1个点,2个点,3个点,4个点,(1)填写下表:(2)在直线上取n个点,可以得到几条线段,几条射线?23.(7分)如右图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数. 点的个数所得线段的条数所得射线的条数123424.(7分)如右上图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD.(1)如果∠AOD=40°,①那么根据,可得∠BOC=度.②∠POF的度数是度.(2)右上图中除直角外,还有相等的角吗?请写出三对:①;②;③ .25.(7分)已知:如右图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?第6章 图形的初步知识检测题参考答案一、选择题1.D 解析:如图,线段但线段的长度既不是1也不是5,故选D.2. D 解析:因为两点之间线段最短,所以从A 地到B 地,最短路线是A -F -E -B ,故选D .3.C 解析:若画75°的角,先在纸上画出30°的角,再画出45°的角叠加即可;同理可画出30°、45°、60°、90°、15°、105°、120°、135°、150°的角(因为45°-30°=15°、45°+30°=75°、90°+45°=135°、90°+60°=150°、60°+60°=120°、60°+45°=105°),故选C . 4. C 解析:∵ ∠α=35°,∴ ∠α的补角的度数为180°35°=145°,故选C. 5.B 解析:∵ 大于90°小于180°的角叫做钝角, ∴ 90°<α<180°,90°<β<180°, ∴ 30°<61(α+β)<60°, ∴ 满足题意的角只有48°,故选B .6.C 解析:①一条直线有无数条垂线,故①错误; ②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误; ⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确. 所以错误的有4个,故选C .7.C 解析:因为AC ⊥BC ,所以点A 到直线BC 的距离是线段AC 的长,从而AB>AC ,即a>AC.同理,AC>CD ,即AC>b ,所以AC 的取值范围是大于b 且小于a ,故选C. 8.C 解析:∵ B 是线段AD 的中点,∴ AB=BD=21AD. A.BC=BD -CD=AB -CD ,故本选项正确; B.BC=BD -CD=21AD -CD ,故本选项正确; D.BC=AC -AB=AC -BD ,故本选项正确.只有C 选项是错误的. 9.C 解析:①直线BA 和直线AB 是同一条直线,正确;②射线AC 和射线AD 是同一条射线,是以A 为端点,同一方向的射线,正确;BAC③由“两点之间线段最短”知,AB+BD>AD,故此说法正确;④三条直线两两相交时,一定有三个交点,错误,也可能只有一个交点.所以正确的结论共有3个,故选C.10.C 解析:∵∠1+∠2=180°,∴∠1=180°-∠2.又∵∠2+∠3=90°,∴∠3=90°-∠2.∴∠1-∠3=90°,即∠1=90°+∠3,故选C.二、填空题11.5 cm或15 cm 解析:本题有两种情形:(1)当点C在线段AB上时,如下图,有AC=AB-BC,又∵ AB=10 cm,BC=5 cm,∴ AC=10-5=5(cm);(2)当点C在线段AB的延长线上时,如下图,有AC=AB+BC,又∵ AB=10 cm,BC=5 cm,∴ AC=10+5=15(cm).故线段AC=5 cm或15 cm.12. 254 cm 解析:如图,由题意得:AQ+BP=AB+PQ=1 200+1 050=2 250(cm),∴ PQ=2 250-1 996=254(cm).13. 90°解析:∵ OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠CON=∠DON.∵∠MON=50°,∠BOC=10°,∴∠MON-∠BOC =40°,即∠BOM+∠CON=40°.∴∠AOD=∠MON+∠AOM+∠DON=∠MON+∠BOM+∠CON=50°+40°=90°.14.20 解析:因为长为1 cm的线段共4条,长为2 cm的线段共3条,长为3 cm的线段共2条,长为4 cm 的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm).15.11.7 s 解析:从第1根标杆到第6根标杆有5个间隔,因而每个间隔行进6.5÷5=1.3(s).而从第1根标杆到第10根标杆共有9个间隔,所以行进9个间隔共用1.3×9=11.7(s ).16.4 解析:∵ 平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴ a+b=4. 17. 9n ﹣8 解析:第一次操作,共有n+(n ﹣1)×2=(3n ﹣2)个点, 第二次操作,共有(3n ﹣2)+(3n ﹣2﹣1)×2=(9n ﹣8)个点, 故答案为:9n ﹣8.18.152° 62° 解析:∵ ∠AOC+∠COD=180°,∠AOC=28°,∴ ∠COD=152°. ∵ OC 是∠AOB 的平分线,∠AOC=28°, ∴ ∠AOB=2∠AOC=2×28°=56°,∴ ∠BOD=180°-∠AOB=180°-56°=124°. ∵ OE 是∠BOD 的平分线,∴ ∠BOE=21∠BOD=21×124°=62°. 三、解答题19.解:设这个角为°,则这个角的补角为(180-)°.依题意得:,解得33,∴ .答:这个角的余角是57°. 20.解:(1)(2)如下图所示;(3)OA PC PH <PC <OC21. 解:(1)不存在.因为两点之间,线段最短.因此.(2)存在.不唯一,线段上任意一点都符合要求. (3)不一定,也可在直线上,如下图,线段.22.解:(1)表格如下:(2)可以得到2)1( n n 条线段,2n 条射线. 23.解:∵ ∠FOC=90°,∠1=40°,AB 为直线, ∴ ∠3+∠FOC+∠1=180°, ∴ ∠3=180°-90°-40°=50°.∵ ∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°. ∵ OE 平分∠AOD , ∴ ∠2=21∠AOD=65°. 24.解:(1)①对顶角相等 40②70 解析:因为OP 是∠BOC 的平分线, 所以∠COP =21∠BOC =20°. 因为∠DOF+∠BOF+∠COP+∠BOP =180°,∠DOF =90°,∠COP =20°, 所以∠BOF+∠BOP =180°-90°-20°=70°, 故∠POF =∠BOF+∠BOP =70°.(2)∠AOD =∠BOC ;∠COP =∠BOP ;∠EOC =∠BOF. 25.解:(1)∵ ∠AOB 是直角,∠AOC=40°,点的个数 所得线段的条数所得射线的条数1 02 2 1 43 3 64 68C AB∴ ∠AOB+∠AOC=90°+40°=130°.∵ OM 是∠BOC 的平分线,ON 是∠AOC 的平分线, ∴ ∠MOC=21∠BOC=65°,∠NOC=21∠AOC=20°. ∴ ∠MON=∠MOC -∠NOC=65°-20°=45°.(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵ ∠MON=∠MOC -∠NOC=21∠BOC -21∠AOC=21(∠BOC -∠AOC )=21∠AOB , 又∵∠AOB =90°,∴ ∠MON=21∠AOB=45°.。

2020年华师大版七年级数学上册 图形的初步认识 单元测试卷一(含答案)

2020年华师大版七年级数学上册 图形的初步认识 单元测试卷一(含答案)

2020年华师大版七年级数学上册图形的初步认识单元测试卷一一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用分别表示正多面体的面数、棱数、顶点数,则有,现有一个正多面体共有12条棱,6个顶点,则它的面数等于()A.6B.8C.12D.203.如果与是邻补角,且,那么的余角是()A. B. C. D.不能确定4.下列四个立体图形中,主视图为圆的是()A.B.C.D.5.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是()A.文B.明C.城D.市6.如图,已知直线相交于点,平分,,则的大小为()A. B. C. D.7.圆柱的侧面展开图可能是()8.下列平面图形不能够围成正方体的是()9.过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条10.在直线上顺次取三点,使得,,如果是线段的中点,那么线段的长度是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线相交于点,平分,若则____.12.直线上的点有____个,射线上的点有____个,线段上的点有____个.13.两条直线相交有____个交点,三条直线相交最多有____个交点,最少有____个交点.14.如图,平分平分若则 __.15.如图给出的分别有射线、直线、线段,其中能相交的图形有个.DA BCba①②③④A BDDCB第15题图A B DC16.下列表面展开图的立体图形的名称分别是:______、______、______、______.17.如图,是线段上两点,若,,且是的中点,则_____.18.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为______.三、解答题(共46分)19.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面在长方体的底部,那么哪一个面会在上面?(2)如果面在前面,面在左面,那么哪一个面会在上面?(字母朝外)第17题图A BD C第19题图21.(6分)如图,线段,线段,分别是线段的中点,求线段的长.22.(6分)如图,直线相交于点,平分,求∠2和∠3的度数.23.(7分)已知:如图,是直角,,是的平分线,是的平分线.(1)求的大小.(2)当锐角的大小发生改变时,的大小是否发生改变?为什么?第21题图A EBC F D24.(7分)如图,已知点是线段的中点,点是线段的中点,点是线段的中点.(1)若线段,求线段的长.(2)若线段,求线段的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数()面数()棱数()四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数()、面数()、棱数()之间存在的关系式是______;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为个,八边形的个数为个,求的值.参考答案1.C 解析:根据生活常识可知乒乓球是球体.故选C.2.B 解析:因为正多面体共有12条棱,6个顶点,所以,所以.故选B.3.C 解析:与是邻补角,所以.所以的余角是,故选C.4.B 解析:A.主视图是正方形,故此选项错误;B.主视图是圆,故此选项正确;C.主视图是三角形,故此选项错误;D.主视图是长方形,故此选项错误.5.B 解析:结合展开图可知,与“创”相对的字是“明”.故选B.6.D 解析:因为平分所以所以故选D.7.B 解析:圆柱的侧面展开图是长方形,故选B.8.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.9.C 解析:当三点共线时,可以作1条直线;当三点不共线时,可以作3条直线.10.D 解析:因为是在直线上顺次取三点,所以.因为是线段的中点,所以所以. 故选D.11.解析:因为,所以.因为平分,所以.12.无数无数无数解析:直线、射线、线段都是由无数个点组成的.13.1 3 1解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.14. 90°解析:因为平分,平分,所以因为所以即.所以.15.2 解析:①③能相交,②④不能相交.16.圆柱圆锥四棱锥三棱柱17.解析:因为点是线段的中点,所以.因为,,所以,所以.18.4 解析:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,还可能两行都是两层.所以图中的小正方体最少块,最多块.19.解:答案不唯一,如图.第19题答图20.解:(1)因为面“”与面“”相对,所以面在长方体的底部时,面在上面.(2)由图可知,如果面在前面,面在左面,那么“”面在下面.由图可知,面“”与面“”相对,所以面会在上面.21.解:因为线段,线段,所以所以又因为分别是线段的中点,所以所以所以答:线段的长为.22.解:因为为直线,所以所以因为与互补,所以因为平分,所以23.解:(1)因为是直角,,所以因为是的平分线,是的平分线,所以所以(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.因为又,所以24.解:(1)因为点是线段的中点,点是线段的中点,所以,,所以.(2)因为点是线段的中点,所以.因为点是线段的中点,点是线段的中点,所以,所以.25.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:.多面体顶点数()面数()棱数()四面体 4 4 6长方体8 6 12正八面体 6 8 12正十二面体20 12 30(2)由题意得:,解得.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有棱,那么,解得,所以.。

第3章 图形的初步认识 单元测试(含解析)数学华师大版(2024)七年级上册

第3章 图形的初步认识  单元测试(含解析)数学华师大版(2024)七年级上册

数学华师大版(2024)七年级上册第3章图形的初步认识单元测试一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列现象中,属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.灯光下演员的影子D.中午小明跑步的影子2.对于如图所示的几何体,说法正确的是()A.几何体是三棱锥B.几何体有6条侧棱C.几何体的侧面是三角形D.几何体的底面是三角形3.如图是某几何体的三视图,则该几何体是()A. B. C. D.4.下列几何体中,从左面看到的图形是三角形的几何体共有()A.1B.2C.3D.45.如图,学校C 在蕾蕾家B 南偏东55︒的方向上,点A 表示超市所在的位置,90ABC ∠=︒,则超市A 在蕾蕾家B 的()A.北偏西25︒的方向上B.南偏西25︒的方向上C.北偏西35︒的方向上D.南偏西35︒的方向上6.如图,16cm AB =,10cm AD BC ==,则CD 等于()A.4cmB.6cmC.8cmD.10cm 7.下列平面图形中,经过折叠不能围成正方体的是()A. B. C. D.8.如图,点O 在直线AB 上,90COB EOD ∠=∠=°,那么下列说法错误的是()A.1∠与2∠相等B.AOE ∠与2∠互余C.AOD ∠与1∠互补D.AOE ∠与COD ∠互余9.已知线段12cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是()A.4cmB.6cmC.4cm 或8cmD.6cm 或8cm10.如图,射线OC 平分AOB ∠,射线OD 平分BOC ∠,则下列等式中成立的有()①COD AOD BOC ∠=∠-∠;②COD AOD BOD ∠=∠-∠;③22COD AOD AOB ∠=∠-∠;④13COD AOB ∠=∠.A.①②B.①③C.②③D.②④二、填空题(每小题4分,共20分)11.在下列生活、生产现象中:可以用基本事实“两点确定一条直线”来解释的是________(填序号).①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.12.如图,已知点O 在直线AB 上,16515∠=︒',27830∠=︒',则12∠+∠=_________,3∠=_________.13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.14.如图,已知线段16cm AB =,点M 在AB 上:1:3AM BM =,P ,Q 分别为AM 、AB 的中点,则PQ 的长为____________.15.如图,126AOB ∠=︒,射线OC 在AOB ∠外,且2BOC AOC ∠=∠,若OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠=_________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某几何体的三视图如图所示.(1)该几何体的名称是_______;(2)根据图中的数据,求该几何体的侧面积.(结果保留π)17.(8分)如图,是一个长方体纸盒的平面展开图,已知纸盒中相对的两个面上的数互为相反数.(1)分别写出a 、b 的值;(2)先化简,再求值:()22242325a b a b ab a b ab ⎡⎤---+⎣⎦18.(10分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为______;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.19.(10分)如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分AOC ∠和BOC ∠.(1)求DOE ∠的度数;(2)①图中BOE ∠的补角是______;②直接写出图中与COE ∠互余的角______.20.(12分)如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若9cm AC =,6cm CB =,求线段MN 的长.(2)若C 为线段AB 上任一点,满足cm AC CB a +=,其他条件不变,你能猜想出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,点M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.21.(12分)已知:AOB ∠,过点O 引两条射线OC ,OM ,且OM 平分AOC ∠.(1)如图,若120AOB ∠=︒,30BOC ∠=︒,且点C 在AOB ∠的内部.①请补全图形;②求出MOB ∠的度数;以下是求MOB ∠的度数的解题过程,请你补充完整.AOC AOB BOC ∠=∠-∠ ,120AOB ∠=︒,30BOC ∠=︒,答案以及解析1.答案:C解析:A.白天旗杆的影子为平行投影,所以A选项不合题意;B.阳光下广告牌的影子为平行投影,所以B选项不合题意;C.灯光下演员的影子为中心投影,所以C选项符合题意;D.中午小明跑步的影子为平行投影,所以D选项不合题意.故选:C.2.答案:D解析: 该几何体是三棱柱,∴底面是三角形,侧面是四边形,有3条侧棱,∴D说法正确,A、B、C说法错误,故选:D.3.答案:A解析: 该几何体的主视图与左视图都是矩形,俯视图是一个圆,∴该几何体是圆柱,故选:A.4.答案:B解析:第一个几何体从左面看到的图形是圆形;第二个几何体从左面看到的图形是三角形;第三个几何体从左面看到的图形是长方形;第四个几何体从左面看到的图形是正方形;第五个几何体从左面看到的图形是三角形;∴从左面看到的图形是三角形的几何体共有2个,故选:B.5.答案:D解析:如图所示:由题意可得:255∠=︒,90ABC ∠=︒,∴1905535∠=︒-︒=︒,∴超市A 在蕾蕾家B 的的南偏西35︒的方向上.故选:D.6.答案:A解析:因为16cm AB =,10cm AD BC ==,所以1010164(cm)CD AD BC AB =+-=+-=.7.答案:C解析:由展开图可知:A 、B 、D 能围成正方体,故不符合题意;C 、围成几何体时,有两个面重合,不能围成正方体,故符合题意:故选:C.8.答案:D解析:∵90COB EOD ∠=∠=︒,∴1290COD COD ∠+∠=∠+∠=︒,∴12∠=∠,故A 选项正确;∵190AOE ∠+∠=︒,∴290AOE ∠+∠=︒,即AOE ∠与2∠互余,故B 选项正确;∵2180AOD ∠+∠=︒,12∠=∠,∴1180AOD ∠+∠=︒,即AOD ∠与1∠互补,故C 选项正确;无法判断AOE ∠与COD ∠是否互余,例如当1230∠=∠=︒时,60COD AOE ∠∠==︒,120AOE COD ∠+∠=︒,不互余,故D 选项错误;故选:D.9.答案:C解析:当点C 在线段AB 上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,624cm MN BM BN ∴=-=-=,当点C 在线段AB 的延长线上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,628cm MN BM BN ∴=+=+=,综上所述,线段MN 的长度是4cm 或8cm ,故选C.10.答案:B解析:OC 平分AOB ∠,OD 平分BOC ∠,AOC BOC ∴∠=∠,COD BOD∠=∠COD AOD AOC ∠=∠-∠ ,AOC BOC∠=∠COD AOD BOC∴∠=∠-∠故①正确;BOD BOC∠≠∠ COD AOD BOD∴∠≠∠-∠故②错误;AOD AOC COD∠=∠+∠ ()222AOD AOC COD AOB COD∴∠=∠+∠=∠+∠222AOD AOB AOB COD AOB COD∴∠-∠=∠+∠-∠=∠22COD AOD AOB∴∠=∠-∠故③正确;12COD BOC ∠=∠ ,12BOC AOB ∠=∠111224COD AOB AOB ∴∠=⨯∠=∠故④错误;故选:B.11.答案:①④/④①解析:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故答案为:①④.12.答案:14345︒';3615︒'解析:因为16515∠=︒',27830∠=︒',所以126515783014345'''∠+=+=︒∠︒︒,所以3180(12)180143453615︒''∠=︒-∠+∠=︒-=︒.13.答案:左视图解析:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图14.答案:6cm解析:根据已知条件得到4cm AM =.12cm BM =,根据线段中点的定义得到2cm 12AP AM ==,8cm 12AQ AB ==,从而得到答案.解析:∵16cm AB =,:1:3AM BM =,∴4cm AM =.12cm BM =,∵P ,Q 分别为AM ,AB 的中点,∴2cm 12AP AM ==,8cm 12AQ AB ==,∴6cm PQ AQ AP =-=;故答案为:6cm .15.答案:117︒解析:因为360AOB BOC AOC ∠+∠+∠=︒,所以360BOC AOC AOB ∠+∠=︒-∠.因为OM 平分BOC ∠,ON 平分AOC ∠,所以12MOC BOC ∠=∠,12CON AOC ∠=∠,所以1122MON MOC CON BOC AOC ∠=∠+∠=∠+∠()111()360180222BOC AOC AOB AOB =∠+∠=︒-∠=︒-∠11801261172=︒-⨯︒=︒,故答案为117︒.16.答案:(1)圆锥(2)()2dm 解析:(1)由三视图可知,原几何体为圆锥.故答案为:圆锥.(2)根据图中数据知,圆锥的底面半径为4,高为6,∴=,∴圆锥的侧面积为()218πdm 2⨯⨯⨯=.17.答案:(1)3a =-,5b =(2)2a b ab -+,60-解析:(1)由长方体展开图的特点可知3a =-,()55b =--=;(2)()22242325a b a b ab a b ab ⎡⎤---+⎣⎦()22242635a b a b ab a b ab =--++()2245a b a b ab =--2245a b a b ab=-+2a b ab=-+当3a =-,5b =时,原式()()23535451560=--⨯+-⨯=--=-.18.答案:(1)28(2)见解析(3)2解析:(1)()()42624211⨯+⨯+⨯⨯⨯()81281=++⨯281=⨯28=所以该几何体的表面积(含下底面)为28,(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体19.答案:(1)90DOE ∠=︒(2)COD ∠和AOD∠解析:(1) 点A ,O ,B 在同一条直线上,180AOC BOC ∴∠+∠=︒,射线OD 和射线OE 分别平分AOC ∠和BOC ∠,12COD AOC ∴∠=∠,12COE BOC ∠=∠,()11190222COD COE AOC BOC AOC BOC ∴∠+∠=∠+∠=∠+∠=︒,90DOE ∴∠=︒;(2)①图中BOE ∠的补角是AOE ∠;②直接写出图中与COE ∠互余的角COD ∠和AOD ∠,故答案为:COD ∠和AOD ∠.20.答案:(1)7.5cm(2)1cm 2a ,理由见解析(3)能,1cm 2MN b =,理由见解析解析:(1)因为9cm AC =,点M 是AC 的中点,所以1 4.5cm 2CM AC ==.因为6cm BC =,点N 是BC 的中点,所以13cm 2CN BC ==,所以7.5cm MN CM CN =+=,所以线段MN 的长度为7.5cm .(2)1cm 2MN a =.理由:因为C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,所以11()cm 22MN MC CN AC BC a =+=+=.(3)能.当点C 在线段AB 的延长线上时,如图,1cm 2MN b =.理由:因为点M 是AC 的中点,所以12CM AC =.因为点N 是BC 的中点,所以12CN BC =,所以11()cm 22MN CM CN AC BC b =-=-=.②AOC AOB BOC ∠=∠-∠ ,90AOC ∴∠=︒.AOC BOC AOB ∴∠=∠+∠12AOM AOC ∴∠=∠=AOC BOC AOB ∴∠=∠-∠1β。

2020学年浙教版七年级上册数学第六章图形初步认识单元测试卷(含答案)

2020学年浙教版七年级上册数学第六章图形初步认识单元测试卷(含答案)

2020学年浙教版七上数学第六章单元测试卷(含答案)一、单选题1.下列列举的物体中,与乒乓球的形状类似的是()A.铅笔B.西瓜C.音箱D.茶杯2.关于直线,下列说法正确的是()A.可以量长度B.有两个端点C.可以用两个小写字母来表示D.没有端点3.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为()A.3︰4B.2︰3C.3︰5D.1︰24.如果∠ 1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠ 3B.∠1=180°-∠ 3C.∠1=90°+∠ 3D.以上都不对5.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等6.一天,妈妈问儿子今天打球时间有多长.儿子淘气地说:“我打球时钟表的时针转动了60°.”那么,据此你判断儿子打球所用的时间应是()A.30分钟B.60分钟C.90分钟D.120分钟7.若∠a=79°25′,则∠a的补角是()A.100°35′B.11°35′C.100°75′D.101°458.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.399.两个角的和与这两个角的差互补,则这两个角().A.一个是锐角,一个是钝角;B.都是钝角;C.都是直角;D.必有一个是直角10.如图,C、D是线段AB上两点,M、N分别是线段AD、BC的中点,下列结论:①若AD=BM,则AB=3BD;②若AC=BD,则AM=BN;③AC-BD=2(MC-DN);④2MN=AB-CD.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二、填空题11.钟表的时间为2时整,时针与分针所夹的角是________ 度.12.15°=________ 平角;周角=________ °。

人教版七年级数学上册第四章图形认识初步单元测试题

人教版七年级数学上册第四章图形认识初步单元测试题

第四单元 《图形认识初步》 单元测试班级 姓名 号数一、填空题 (每题3分,共30分)1、 三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、 42.79= 度 分 秒;4、 如果∠α=29°35′,那么∠α的余角的度数为 ;5、 如图2,从家A 上学时要走近路到学校B ,最近的路线为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;C BADE F(1)(2)(3)图2图3图5图47.如图4,把书的一角斜折过去,使点A落在E点处,BC为折痕,BD是∠EBM的平分线,则∠CBD=8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为;10.经过平面内四点中的任意两点画直线,总共可以画条直线;二选择题(每题3分,共24分)7、角三角形绕它的直一周得到的几何体是12、如果与互补,与互余,则与的关系是()A.=B.C.D.以上都不对13、对于直线,线段,射线,在下列各图中能相交的是()14、下面图形经折叠后可以围成一个棱柱的有()A. 1个B. 2个C. 3个D. 4个AB;③AM=BM;④AM+BM=AB。

上面四个式子中,正15、已知M是线段AB的中点,那么,①AB=2AM;②BM=12确的有()A.1个 B.2个 C.3个 D.4个16、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图,AB、CD交于点O,∠AOE=90°,若∠AOC:∠COE=5:4,则∠AOD等于()A.120° B.130° C.140° D.150°18、图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保留作图痕迹)ab20、按照要求,在图中画出表示下列方向的射线:(1)南偏东300 (2)北偏西600 (3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形认识初步》
一、选择题(每小题3分,共30分)
1.下列空间图形中是圆柱的为()
2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()
A.①②③④ B.①③②④ C.②④①③ D.④③①②
3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()
4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()
5.如图所示,从A地到达B地,最短的路线是()
A.A→C→E→B
B.A→F→E→B
C.A→D→E→B
D.A→C→G→E→B
6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方
体中与“建”字所在的面相对的面上标的字是()
A.美 B.丽 C.云 D.南
7.如图所示的立体图形从上面看到的图形是()
B
A
C D
第2题图
A. B. C. D.
B
A
C
图2
A B C D
图3
第5题图
8.如果∠1与∠2互为补角,且∠1∠2,
那么∠
2的余角是( )
A.∠1
B.∠
2 C.(∠1-∠2) D.(∠1+∠2)
二、填空题(每小题2分,共20分)
1.长方体由 个面, 条棱, 个顶点.
2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.
3.(2012•山东菏泽中考)已知线段AB =8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC =_______cm .
4.(1) 度 分 秒。

(2)= 度。

5.如图甲,用一块边长为10 cm 的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .
6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.
7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.
8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表21212121 048.32///0422372第5题图
面都涂上颜色(底面不涂色),则第n个几何体中只有两个面
...涂色的小立方体共有个.
三、解答题
1.计算:
(1)22°18′×5;(2)90°-57°23′27″.
2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β的值
3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.
4.⑴已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度。

⑵根据⑴的计算过程与结果,设AC+BC=,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律.
⑶若把⑴中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由。

5.(6分)如图所示,线段AD=6 cm,线段AC=BD=4 cm ,E、F分别是线段AB、CD的中点,求线段EF的长.
6.(2012•浙江宁波中考)用同样大小的黑色棋子按如图所示的规律摆放:
3
1
10
a
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2 013颗黑色棋子?请说明理由.
参考答案
一、选择题
1.A 2.A 3.D 4.A 5.D 6.C 7.C 8.A
二、填空题
1. 6,12,8 2.四棱锥,圆柱,三楞柱 3.4 4.,
5.38° 6.35° 7.5 8.8n -4
三、解答题
1.(1)111°30′;(2)32°36′33″.
2. 45°.
3. 这个角为40度。

(提示:设这个角为,则它的余角为,补角为,根据题意,得,解得)
4.⑴8.(提示:因为点M 、N 分别是AC 、BC 的中点,所以,,)
⑵.若点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,则;⑶若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论不成立.因为射线CA 、
CB \\\0482*******.720x 0)90(x -0
)180(x -)90(310)180(x x -=+-40=x 12MC AC =12CN BC =MN MC CN =+538=+=12MN a =12
MN AB =
没有中点.
5.(1)图中有9个小于平角的角;
(2)155°(提示:因为OD 平分∠AOC,∠AOC =50°,所以∠AOD ==25°,所以∠BOD=180°-25°=155°)
(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE =∠COE,即OE 平分∠BOE.
6.(1)略,(2)55,
n (n+1),(n 为正整数). AOC 212
1。

相关文档
最新文档