七年级上册数学第一章知识点总结
七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米那么表示下降8米。
2.正数:大于0的数。
3.负数:在正数的前面加上“-”。
4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比方0元;③0表示某种量的基准,比方0℃表示温度的基准5.有理数的分类分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001...“非”的概念非负数:正数和0 非正分数:负分数非正数:负数和0 非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。
通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成程度的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。
3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应 (2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。
0的相反数是0。
②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的间隔相等。
四、绝对值1.几何意义:从数轴上表示a的点到原点的间隔即为|a|2. ①一个正数的绝对值等于它本身; 当a是正数时,|a|=a;②一个负数的绝对值等于它的相反数; 当a是负数时,|a|=-a;③0的绝对值等于0。
当a=0时,|a|=0。
3.互为相反数的两个数的绝对值相等。
五、有理数的大小比拟1.正数>0>负数;2.两个负数比拟①右边的点表示的数比左边的点表示的数大。
初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
人教版七年级数学上册 第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
人教版七年级上册数学第一单元知识点总结(一)

人教版七年级上册数学第一单元知识点总结(一)人教版七年级上册数学第一单元知识点总结(一)第一单元:有理数一、自然数和整数1. 自然数:从1开始的正整数,用N表示。
2. 整数:包括自然数和负整数,用Z表示。
3.正整数:大于0的整数。
4. 负整数:小于0的整数。
5. 零:表示为0。
二、有理数的代数运算1. 加法和减法:有理数的加法和减法运算遵循交换律和结合律。
2. 乘法和除法:有理数的乘法和除法运算遵循交换律和结合律,并且零除以任何非零数等于0。
3. 加减混合运算:先进行加法运算再进行减法运算。
三、有理数的大小比较1. 相反数:两个有理数互为相反数当且仅当它们的绝对值相等,符号相反。
2. 绝对值:一个有理数的绝对值等于这个有理数的绝对值。
3. 有理数的大小比较:两个有理数的大小比较要先比较它们的绝对值的大小,再根据符号确定大小关系。
四、有理数的分数表示1. 分数:一个有理数可以表示为两个整数的比值,其中分子为整数,分母为正整数。
2. 真分数:分子小于分母的分数。
3. 假分数:分子大于或等于分母的分数。
4. 整数:分母为1的分数。
五、有理数的约分与化简1. 约分:将分子和分母的公因数约去。
2. 化简:经过约分后,如果分子和分母的最大公因数为1,则分数为最简形式。
六、有理数的小数表示1. 有限小数:小数点后有有限位数的小数。
2. 循环小数:小数点后有无限循环的小数。
3. 无理数:不能表示为有限小数或循环小数的数。
七、有理数的加法与减法1. 同号数相加或相减:保留相同的符号,将绝对值相加或相减。
2. 异号数相加或相减:取绝对值较大的数的符号,将绝对值较大的数的绝对值与绝对值较小的数的绝对值相减。
八、有理数的乘法与除法1. 同号数相乘或相除:结果为正数。
2. 异号数相乘或相除:结果为负数。
3. 一个数除以非零数,等于这个数乘以这个非零数的倒数。
九、应用题综合运用有理数的加、减、乘、除等运算方法解决实际问题。
七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数,例如1,0, - 5等;分数包括有限小数和无限循环小数,如0.5=(1)/(2),0.3̇=(1)/(3)等。
2. 有理数的分类。
- 按定义分类:有理数可分为整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 按性质符号分类:有理数可分为正有理数(正整数和正分数)、0、负有理数(负整数和负分数)。
3. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可能表示无理数)。
- 利用数轴可以比较有理数的大小,数轴上右边的数总比左边的数大。
4. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
- 若a与b互为相反数,则a + b=0;反之,若a + b = 0,则a与b互为相反数。
- 在数轴上,表示互为相反数的两个点位于原点两侧,且到原点的距离相等。
5. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a > 0) 0(a = 0) - a(a < 0)- 两个负数比较大小,绝对值大的反而小。
二、有理数的运算。
1. 有理数的加法。
- 法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如3+5 = 8,(-3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
如5+(-3)=+(5 - 3)=2,3+(-5)=-(5 - 3)=-2。
- 一个数同0相加,仍得这个数。
- 运算律:- 加法交换律:a + b=b + a。
初中七年级数学上册知识点复习总结(精华版)

精华提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量)若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数,1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成)0p q ,p (pq为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数&②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数;a ≤ 0 a 是负数或0 a 是非正数.—三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级数学上册知识点

七年级数学上册知识点第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值就是它本身,负数的绝对值就是它的相反数;0的绝对值就是0,两个负数比较大小,绝对值小的反而大。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.乘法交换律:a+b= b+ a 两个数相乘,互换加数的边线,和维持不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)乘以一个数,等同于提这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相加。
任何数同0相加,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将乘法化为乘法,然后的定符号,最后谋结果。
七年级上册数学知识点梳理总结

七年级上册数学知识点梳理总结第一章:整数整数是由正整数、负整数和0组成的数集。
本章主要涉及整数的加减乘除、整数的比较大小和绝对值等基本概念及运算法则。
1.1 整数的基本概念正整数、负整数和0都属于整数,用符号 Z 表示。
正整数可以用自然语言表示出来,负整数则是用负号(-)和正整数表示出来,例如 -3 表示负三。
1.2 整数的加减乘除整数的加减乘除是基本运算,其中加法和乘法都满足交换律和结合律。
但是减法和除法不满足这两个定律。
整数加减运算的规则:同号相加取其绝对值相加再加上同号,异号相减是两数绝对值的和再加上它们的符号。
整数乘除运算的规则:正正得正,负负得正,正负得负,负正得负。
除法时,被除数可以为负数,但除数不能为0。
1.3 整数的比较大小在比较大小时,要考虑整数的符号和绝对值。
同号比大小,比绝对值;异号比大小,比符号。
1.4 整数的绝对值整数的绝对值是该数与0的距离,即一个整数的绝对值与这个整数的符号无关。
第二章:分数分数是指一个整数(分子)除以另一个非零整数(分母)所得的数值。
本章主要涉及分数的加减乘除、分数的比较大小、约分和通分等基本概念及运算法则。
2.1 分数的基本概念分数的分母和分子都是整数,分母不能为0。
分数可以表示为带分数和假分数两种形式。
分数是有理数的一种。
2.2 分数的加减乘除分数的加减乘除需要将分数化为通分或转化为小数进行计算,其中加法和乘法都满足交换律和结合律。
但是减法和除法不满足这两个定律。
在除法运算中,要注意分母不能为0。
2.3 分数的比较大小在比较大小时,可以先通分再比较大小。
同样分母的分数,分子越大,数值越大。
2.4 分数的约分与通分约分是将分子和分母的公因数约掉,使得分数的值不变;通分是使几个分母不同的分数具有相同的分母。
第三章:代数式与方程式代数式是由数字、字母和各种数学符号组成的表达式,其中字母表示数,称为变量。
方程式是用算式表示的等式,方程左右两边分别为代数式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元有理数及其运算
复习目标:
1.能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小;能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。
2、学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。
基础知识:
1. 大于0的数叫做_______,在正数的前面加上一个_____号就变成负数(负数小于0),0 既不是_____,也不是_____。
正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针…
2. 整数和分数统称为_____。
整数又分为_____,0,_____;分数分为_____和_____。
3.规定了原点、正方向、单位长度的直线叫做_____。
任何一个有理数都能在数轴上找到唯一的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)
4.数轴上两个点表示的数,___边的数的总比___边的数大;正数都_____0,负数都_____0,正数总是_____负数。
5.只有符号不同的两个数互为_____。
一般地,a和-a是一对互为相反数;特殊地,0的相反数是_____。
互为_______的两个数绝对值相等(绝对值为a的数有两个:a和-a)。
6.在数轴上表示一个数的点与原点之间的距离叫做这个数的______;正数的绝对值是它_____;负数的绝对值是它的______,0的绝对值是_____;(绝对值是一个非负数)。
两个负数比较大小,绝对值大的反而_____。
7.有理数加法法则:(1)同号两数相加,取加数的符号,并把绝对值_____;(2)异号两数相加:绝对值相等时和为_____ ;绝对值
不等时,取绝对值较大的加数的符号,并用大绝对值减去小绝对值;(3)任何一个数同0相加仍得这个数。
8. 有理数的减法法则:减去一个数,等于加上这个数的______;(减法其实就是加法。
)
9.加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。
通常:(1)互为相反数相结合(2)符号相同相结合(3)分母相同的相结合(4)几个数相加得整数的相结合。
10.有理数乘法法则:两数相乘,同号得_____,异号得_____,并把绝对值_____;任何数与0相乘积为_____。
多个数相乘看负因数的个数,偶数个则积为_____,奇数个则积为_____;并把所有因数的绝对值相乘。
11.两数相除,同号得_____,异号得_____,并把绝对值_____;0除以任何不为0的数,都得_____。
12.乘积为1的两个数互为______,除以一个不为0的数等于乘以这个数的倒数;(除法其实就是乘法。
)乘除混合运算统一化除为乘,再根据乘法法则进行运算。
13.求几个相同因数的积的运算叫做_______(特殊的乘法运算),乘方的结果叫做_____。
a n中,a叫做_____ ,n叫做_____。
正数的任何次幂都是正数;0的任何次幂都是0;负数的偶数次幂是_____,奇数次幂是_____。
14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号(先算小括号,再中括号,最后大括号)。
15.科学记数法:把大于10的数表示成__________的形式。
(其中a是整数位只有一位的数,n是正整数;n=原数的整数位数-1)。
16.取近似数:精确到哪一位就看后一位,四舍五入。
有效数字:从一个数的第一个非零数字起,到末位数字为止,所有的数字都是这个数的有效数字。
(例如:1.804有四个有效数字1、8、0、4。
0.0668只有三个有效数字:6、6、8。
)。