七年级数学上册知识点

合集下载

七年级数学上册各章知识点总结

七年级数学上册各章知识点总结

[二]有理数减法法则: 减去一个数,等于 加上这个数的相反数 ,用字母表示为a-
b= a=+[-b] .
一.四有理数的乘除法
[一]有理数乘法法则:
一、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相

.
二、几个不是0的数相乘,积的符号由负因数的个数决定,当负因
数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
图1
从正面看
从左面看
从上面看
图2
三、立体图形的展开图有些立体图形是有一些平面图形围 成的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图. [一]圆柱和圆锥的侧面展开图 [二]棱柱和棱锥的展开图 [三]根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有二个三角形三个长方形-----三棱柱; 若展开图中全是三角形[四个]-----[三]棱锥. C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
[四]、绝对值:数轴上表示数a的点与原点的距离叫做数a 的绝对4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
.
注意:一|a|≥0即对任意有理数a,它的绝对值是非负数 二绝对值最小数为0
当a<0时,无解.
五:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
六:关于移项:⑴移项实质是等式的基本性质一的 运用. ⑵移项时,一定记住要改变所移项的符号.

七年级上册数学所有知识点

七年级上册数学所有知识点

七年级上册数学所有知识点七年级上册数学知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 有理数- 有理数的定义- 有理数的分类(正有理数、负有理数、零)- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小3. 代数表达式- 代数表达式的构成- 单项式与多项式的定义- 同类项与合并同类项- 代数式简化4. 一元一次方程- 方程与方程解的概念- 一元一次方程的标准形式- 解一元一次方程的方法(移项、合并同类项、系数化为1)5. 线性不等式- 不等式的基本性质- 线性不等式的解集表示- 不等式的解法(加减法、乘除法)二、几何1. 点、线、面- 点的位置关系- 直线、射线、线段的定义与性质- 平面的基本性质2. 角- 角的定义与度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较与运算3. 三角形- 三角形的定义与分类- 三角形的性质(边长关系、内角和定理)- 等腰三角形与等边三角形的性质4. 四边形- 四边形的定义与分类- 矩形、正方形、平行四边形的性质- 四边形的内角和定理5. 圆- 圆的定义与性质- 圆的半径、直径、弦、弧、切线的概念- 圆周角与圆心角的关系三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、综合应用1. 数学问题解决策略- 问题的理解与分析- 数学建模与解决步骤- 结果的检验与评价2. 数学在生活中的应用- 数学与日常生活的联系- 数学在其他学科中的应用请注意,以上内容仅为七年级上册数学知识点的概述,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。

教师和学生应参考具体的教材和课程标准来安排教学和学习计划。

七年级上册数学知识点总结

七年级上册数学知识点总结
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
(4)自然数0和正整数; a>0a是正数; a<0a是负数;
a≥0a是正数或0a是非负数; a≤0a是负数或0a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-(a-b+c)= -a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章基本平面图形
1、线段、射线、直线
名称
图形
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
2、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

七年级数学上册重点知识点

七年级数学上册重点知识点

七年级数学上册重点知识点:一、有理数与计算1.1 有理数的概念和分类1.有理数的概念:包括正整数、负整数、零和分数(包括正分数和负分数)四种数。

2.有理数的分类:整数:正整数、负整数和零。

分数:正分数、负分数。

小数:有限小数和无限循环小数。

1.2 四则运算1.加法:两数相加,和的符号与被加数相同。

2.减法:相当于加上减数的相反数。

3.乘法:两数相乘,积的符号为正,当两数符号不同时,积的符号为负。

4.除法:两数相除,商的符号为正。

二、整式与分式2.1 整式的概念和运算法则1.整式的概念:只包含有理数和未知数(或字母)的有限个项及其系数,并且在整个整式中,未知数的次数全是非负整数的多项式。

2.同类项的加法:将同类项的系数相加合并成一个同类项。

3.整式的乘法:将每一个乘数中的每一项分别与其他乘数中的每一项相乘,然后将所有积相加。

2.2 分式的概念和运算法则1.分式的概念:分子、分母都是整式并且分母不为零的代数式成为分式。

2.分式的加减运算:化成分母相同的分式,然后将分子相加或相减,分母不变。

3.分式的乘法:分子分母分别相乘。

4.分式的除法:用被除数乘以除数的倒数。

三、方程与方程组3.1 等式1.等式的概念:两个代数式之间用等号连接起来,成为等式。

2.方程:有未知数的等式称为方程。

3.2 一元一次方程1.一元一次方程:只含有未知数的一次项和常数项的一元一次方程称为一元一次方程,其一般形式为ax+b=0。

2.解一元一次方程:运用等式性质将方程化为x=...的形式。

3.3 一元一次方程组1.一元一次方程组:由若干个一元一次方程组成的方程组。

2.高斯消元法:根据方程的性质解方程组。

四、几何初步4.1 点与线1.点:没有长、宽、厚度的代表位置的图形。

2.线:长度无限延伸的东西,由无数个点构成。

4.2 角1.角的概念:角是由两条射线共同起点所形成的图形。

2.角的单位:角平分了单位圆周时,所对的弧称为一弧度(1 rad)。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。

希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。

加油!。

初一数学上册必考知识点

初一数学上册必考知识点

初一数学必考的 21 个知识点,掌握好,轻松 110+!最重要的是还有答题技巧哦,一定要认真看!1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0 外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如 a 的相反数是﹣a,m+n 的相反数是﹣(m+n),这时 m+n 是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于 0 的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母 a 表示有理数,则数 a 绝对值要由字母 a 本身的取值来确定:①当 a 是正有理数时,a 的绝对值是它本身 a;②当 a 是负有理数时,a 的绝对值是它的相反数﹣a;③当 a 是零时,a 的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及 0 的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于 0;②负数都小于 0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

七年级上册数学知识点提纲

七年级上册数学知识点提纲

七年级上册数学知识点提纲
一、数的概念
1.自然数、整数、有理数、无理数、实数的概念及各自的性质
2.数的分类与比较
3.数轴的概念
二、整数的运算
1.带符号的整数加减法和乘法
2.整数的混合运算
3.解一元一次方程
三、平面图形
1.二维坐标系的概念
2.平面图形的分类及性质
3.平面图形的计算:周长、面积、体积
四、相似与全等
1.相似的概念及判定
2.相似三角形的性质
3.全等三角形的定义和判定
五、比例与比例关系
1.比例的定义及性质
2.比例的化简与扩大
3.比例关系的应用
六、数据的统计
1.统计量的概念
2.频数表、频率表和频率分布直方图的制作
3.平均数、中位数和众数的计算
七、解析几何初步
1.坐标系的建立及其基本性质
2.直线的解析式
3.平面图形的解析式
总之,七年级上册数学包含了数的概念、整数的运算、平面图形、相似与全等、比例与比例关系、数据的统计以及解析几何初步等知识点。

只要掌握了这些基本的知识,就可以为后面的数学学习打下牢固的基础。

七年级数学上册:全册各章知识点总结

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

最全面七年级数学上册知识点总结(精华版)

最全面七年级数学上册知识点总结(精华版)

提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。

所以省略“ +”的正数的符号是正号。

2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3 .0表示的意义⑴0表示“没有。

如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①H是无限不循环小数,不能写成分数形式,不是有理数。

②有小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。

2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学知识点总结

七年级上册数学知识点总结

七年级上册数学知识点总结
第一章
丰富的图形世界
1、认识直棱柱、斜棱柱,以及多面体横截面的识别
2、正方体、长方体、三棱柱等立体图形侧面展开图的认识
3、正视图、左视图、俯视图三视图的认识
第二章
1、有理数分类
2、数轴:注意原点、正方向,学会画数轴
3、绝对值、相反数的定义,注意0这个特殊存在
4、有理数加、减法:交换律和结合律
5、有理数乘、除法:交换律、结合律和分配率
6、有理数乘方
7、有理数混合运算
8、科学计数法以及计算器的功能和使用
第三章
1、代数的认识
2、整式:单项式和多项式
3、整式的加减:合并同类项,化简
4、**课外拓展:探索规律
第四章基本平面图形
1、认识线段、射线、直线,并学会画,注意作图步骤
2、角的认识:锐角、直角、平角、周角。

(度、分、秒的换算)
3、角平分线的认识,角的大小比较
4、多边形:正多边形,圆:圆心角、圆弧、扇形的认识
第五章一元一次方程。

七年级上册数学所有知识点

七年级上册数学所有知识点

一、算数与式子。

1.加减乘除,理解计算机的运算原则;
2.练习应用常用算法;
3.掌握正确的表达和计算顺序,如先乘除后加减;
4.掌握顺序计算、列式、竖式等求解方法;
5.加减乘除的正负数运算;
6.四则运算中借位、退位的处理;
7.分数的定义、分式的化简;
8.常用方程的解法。

二、几何。

1.理解几何图形的基本概念,如:点、线、面等;
2.理解直角三角形、等腰三角形等,掌握其各自的属性,及相应的计算公式;
3.理解等比例,掌握等比比例的计算过程;
4.理解四边形、正多边形的属性及其计算;
5.了解立体几何的概念,理解立体图形的各类属性;
6.掌握正方体、长方体、球体、圆柱体的表面积与体积公式;
7.理解图形之间的关系及相应的构图与结论判断;
8.了解用直线线段、圆弧、圆锥、圆柱棱等来构成几何图形;
9.了解坐标系及其特性,掌握直线方程和圆的方程;
三、概率。

1.理解概率的概念;
2.熟悉面积比相关的概率计算;
3.掌握抛硬币试验、抛骰子试验等实际概率事件的计算;
4.理解机械计算概率的方式;。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。

- 整数具有加法、减法、乘法和除法等基本运算性质。

1.1.2 整数的分类- 自然数:正整数和0。

- 整数:包括自然数、负整数和0。

1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。

- 分数具有加法、减法、乘法和除法等基本运算性质。

1.2.2 分数的分类- 正分数:分子大于分母的分数。

- 负分数:分子小于分母的分数。

- 零分数:分子等于分母的分数。

1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。

- 小数具有加法、减法、乘法和除法等基本运算性质。

1.3.2 小数的分类- 有限小数:小数部分有限的小数。

- 无限小数:小数部分无限的小数。

第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。

2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。

2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。

- 变量可以取不同的数值。

2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。

- 代数式的加减法:同类项之间进行加减运算。

2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。

第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。

3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。

3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。

七年级上册数学知识点大全(最新最全)

七年级上册数学知识点大全(最新最全)

7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(b). 10 有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每
个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5. 整式
单项式 多项式
.
6.同类项:
所含字母相同,并且相同字母的指数也相同的单项式是同
数个负数为正。 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除 数,即a 无意义 .
0
13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;
类项.
7.合并同类项法则: 系数相加,字母与字母的指数不变.
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号

七年级上册数学知识点汇总

七年级上册数学知识点汇总

七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

七年级数学(上)知识点总结

七年级数学(上)知识点总结

七年级数学(上)知识点总结有理数、整式的加减、一元一次方程、图形的认识七年级数学(上)知识点总结七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;1;若ab=1⇔a、b互为倒数;若ab=-1⇔若 a≠0,那么a的倒数是aa、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结

七年级上册第一章 丰富的图形世界1. (3页)认识图形:圆柱、圆锥、正方体、长方体、棱柱、球。

2. (8页)点动成线,线动成面,面动成体。

3. (11页)棱柱的相关定义:在棱柱中,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。

棱柱的上、下底面的形状相同,侧面的形状都是长方形。

4. (17页)各种几何体的截面5. (22页)三视图:主视图(从正面看),左视图(从左面看),俯视图(从上面看)。

6. (30页)圆上A 、B 两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章 有理数及其运算1、 (39、40页)有理数的相关概念: 正数:像15,1.2,2,…这样的数叫做正数,它们都比0大。

负数:在正数前面加上“-”号的数叫做负数,如10,3--,…0既不是正数,也不是负数。

数的分类:⎧⎪⎨⎪⎩正整数:如1,2,3整数零:0负整数:如-1,-2,-3 11,5.223253.556⎧⎪⎪⎨⎪--⎪⎩正分数:如,分数负分数:如-,, 整数与分数统称为有理数。

2、 (43页)数轴:画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就是数轴。

如右图:3、 (43页)任何一个有理数都可以用数轴上的一个点来表示。

4、 (44页)如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

特别的,0的相反数是0。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

5、 (45页)数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

6、 (48页)在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

例如,2+的绝对值等于2,记做2=2+;3-的绝对值等于3,记做3=3-。

7、 (49页)正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

七年级上册数学知识点梳理

七年级上册数学知识点梳理

七年级上册数学知识点梳理七年级数学知识点概率一、事件:1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。

也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。

也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;3、不可能事件发生的概率为0,记作P(不可能事件)=0;4、不确定事件发生的概率在0—1之间,记作0三、几何概率1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:(1)首先分析事件所占的面积与总面积的关系;(2)然后计算出各部分的面积;(3)最后代入公式求出几何概率。

七年级数学复习资料相似变换※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;平移变换(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

七年级上册数学书知识点

七年级上册数学书知识点

七年级上册数学书知识点七年级上册数学书知识点1一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。

2.正数:大于0的数。

3.负数:在正数的前面加上“-”。

4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...“非”的概念非负数:正数和0非正分数:负分数非正数:负数和0非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3各点。

3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

四、绝对值1.几何意义:从数轴上表示a的点到原点的距离即为|a|2. ①一个正数的绝对值等于它本身;当a是正数时,|a|=a;②一个负数的绝对值等于它的相反数;当a是负数时,|a|=-a;③0的绝对值等于0。

当a=0时,|a|=0。

3.互为相反数的两个数的绝对值相等。

五、有理数的大小比较1.正数>0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.角:①具有公共端点的两条不重合的射线组成的图形叫做角。 这个公共端点叫做角的顶点,这两条射线叫做角的两条边。(角的静态定义 ) ②一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。 所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置 的射线叫做角的终边。(角的动态定义 )
5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解, 求方程解的过程叫解方程. 6:关于移项:⑴移项实质是等式的基本性质1的运用. ⑵移项时,一定记住要改变所移项的符号. 7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、 将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤 可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点 灵活运用. 说明:去分母时,易漏乘方程左、右两边代数式中的某些项. 8:方程的检验 检验某数是否为原方程的解,应将该数分别代入原方程左边和右边, 看两边的值是否相等. 注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边 和右边.
4.整式的加减就是合并同类项的过程。 5.整式去括号变化规律: (1).如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; (2).如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
9.角的种类: 锐角:大于0°,小于90°的角叫做锐角。 直角:等于90°的角叫做直角。 钝角:大于90°而小于180°的角叫做钝角。 平角:等于180°的角叫做平角。
10.对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边 互为反向延长线,这样的两个角叫做互为对顶角。 两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
( 2) 1、正数的任何非0次幂都是 正数 ; 2、负数的奇次幂是 负数 ,负数的偶次幂是 正数 。 (3)、有理数混合运算顺序: 1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3 、如有括号,先算括号,从小到大。 (4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是整数数位只有 一位的数,n是比原整数数位小1的正整数),如236000000=2.36×108; -2450000=-2.45×106 2、将用科学计数法表示的数还原, 如:1.52×104=15200
2. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和, 且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。 ②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂) 或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或写5+5x-4x2。
4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果 仍是等式.即若a=b,则a±m=b±m. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.
此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.
说明:①等式两边不可能同时除以为零的数或式, 这一点务必要引起同学们的高度重视. ②等式的性质是解方程的重要依据.
再定绝对值 (1)有理数加法 法则1.同号两数相加,取 相同的符号 ,并把它们的绝对值相加 。 法则2.绝对值不等的异号两数相加,取 绝对值较大的加数的符号 符号, 并用 较大的绝对值减去较小的绝对值 。 3互为相反数的两数相加得零。 4一个数与零相加,仍得这个数。 加法运算律: 1交换律:a+b = b+a ;2结合律:(a+b)+c= a+(b+c ) 。
第三章
一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式. 2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数, 而且必须是等式,二者缺一不可.
说明:代数式不含等号,方程是用等号把代数式连接而成的式子, 且其中一定要含有未知数.
3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程 叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b (a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意 意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.
3分配律a(b+c)=
ቤተ መጻሕፍቲ ባይዱ
ab+ac

(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的 倒数 . 2、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 乘 。
0除以任何一个不等于0的数都得 0 。
1.5有理数的乘方 (1)乘方的幂意义: a 即34 =3×3×3×3
n
表示n个a相乘,如34表示4个3相乘,
-a -5 -4 -3 -2 -1 0 1 2 3 a 4
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值, 符号表示为( )
A -5 -4 -3 -2 -1 0 1 2 3 B 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 , 0的绝对值是 。 (5)、数的比较:①在数轴上表示的两个数右边的总比左边的大。 ② 两个负数绝对值大的反而小。 1.3有理数的加减法 加法计算步骤:先定 符号 0
第四章 图形认识初步
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界, 它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些 几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部 分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同 的几何图形,但它们是互相联系的 2.几何图形的分类:几何图形一般分为立体图形和平面图形
七年级数学
(上册)
各章知识点
第一章 有理数 1.1正数和负数 (1)、正数:大于零的数叫做正数。如:1,0.25,,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 (2)、用正负数表示两个意义相反的量。
1.2有理数 (1)有理数的分类 (2)、数轴:数轴的三要素 原点 、 正方向 、单位长度 。 (3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
3.直线:是点在空间内沿相同或相反方向运动的轨迹。
4.射线:直线上的一点和它一旁的部分所组成的图形称为射线。
5.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段有如下性质:两点之间线段最短。 6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。 7. 直线、射线、线段区别:直线没有距离。射线也没有距离。 因为直线没有端点,射线只有一个端点,可以无限延长。
(5)、有效数字、近似数 1、一个数字从左边第一个非0的数字起到末位止,叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。 几个非负数之和为0,则这几个非负数都为0
第二章 整式的加减 1.整式的概念: (1)单项式①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和 ※注意①圆周率π是常数; ②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。如23a6的次数为6 (2)多项式:一个多项式含有几项,就叫几项式。多项式里,最高次项的次数,就是这个 多项式的次数 ※注意:①多项式的次数不是所有项的次数之和,而是这个多项式里的单项式的最高 次数; ②多项式的每一项都包括它前面的符号; (3)多项式排列: ①把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个 字母的降幂排列. ②把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个 字母的升幂排列. (4)单项式与多项式统称整式。(分母含有字母的代数式不是整式)
(2)有理数减法法则:
减去一个数,等于 加上这个数的相反数 1.4有理数的乘除法 (1)有理数乘法法则: 1、两数相乘,同号 得正 ,异号 得负 ,并把 并把它们的绝对值相乘 。 2、几个不是0的数相乘,积的符号由负因数的个数决定,当负因数有奇数 个时,积为 负 ,当负因数有偶数个时,积为 正 ; 3、几个数相乘,只要有一个因数为0,积就为0。 乘法运算律: 1交换律:ab = ba ; 2结合律:(ab)c= a(b c ) ; ,用字母表示为a-b= a=+(-b) 。
相关文档
最新文档