2017中考数学圆的综合题试题(可编辑修改word版)

合集下载

2017中考数学圆综合题

2017中考数学圆综合题

2017年初三圆综合题1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.2如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.3. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。

(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.4.(已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于 ▲ 时,∠PAB =60°; 当PA 的长度等于 ▲ 时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A 即为原点O ),把△PAD 、△PAB 、△PBC 的面积分别记为S 1、S 2、S 3.坐标为(a ,b ),试求2 S 1 S 3-S 22的最大值,并求出此时a ,b 的值.6.(11金华)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .AB ⌒上一7.(芜湖市)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧点,过点M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,PA = 32 AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长.8.(黄冈市)(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB·AE , 求证:DE 是⊙O 的切线.是AE 的9.(义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M中点,OM 交AC 于点D ,60BOE ∠=°,1cos 2C =,BC =(1)求A ∠的度数;(2)求证:BC 是⊙O 的切线; (3)求MD 的长度.10. (兰州市2017)(本题满分10分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O的切线; (2)求证:BC=21AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN·MC 的值. 11.(本题满分14分)如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,. (1)猜想点2O 与1O 有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中的结论是否成立,若成立请给出证明.12.如图12,已知:边长为1的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点. (1)求弦DE 的长.(2)若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点的三角形相似.13..(本小题满分10分)如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB .15、 ⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 的长. 14(2017湖北襄樊24题)如图,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1tan 2CED ∠=,O 的半径为3,求OA 的长16、如图,直角坐标系中,已知两点O(0,0) A(2,0),点B 在第一象限且△OAB 为正三角形,△OAB 的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交X 轴于点D .(1)求B C ,两点的坐标;(2)求直线CD 的函数解析式; (3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?17、如图,在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.18、如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M ,且ME =,:2:5MD CO =. (1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.。

2017年中考数学试卷汇编——圆(带答案)

2017年中考数学试卷汇编——圆(带答案)

2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改)的全部内容。

圆的有关性质一、选择题1.(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD 分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.2.(2016·山东省德州市·3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?"( )A.3步B.5步C.6步D.8步【考点】三角形的内切圆与内心.【专题】圆的有关概念及性质.【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选C【点评】此题考查了三角形的内切圆与内心,Rt△ABC,三边长为a,b,c(斜边),其内切圆半径r=.(2016·山东省济宁市·3分)如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是( )3.A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中, =,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.4. (2016·云南省昆明市·4分)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O 于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是( )A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π【考点】弧长的计算;切线的性质.【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,∴AB⊥EF,又AB⊥CD,∴EF∥CD,A正确;∵AB⊥弦CD,∴=,∴∠COB=2∠A=60°,又OC=OD,∴△COB是等边三角形,B正确;∵AB⊥弦CD,∴CG=DG,C正确;的长为: =π,D错误,故选:D.5。

(完整word版)最新全国各地中考数学分类-圆综合题(解析版)

(完整word版)最新全国各地中考数学分类-圆综合题(解析版)

2017年圆中考分类(4)参考答案与试题解析一.解答题(共30小题)1.(2017•恩施州)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【考点】MC:切线的性质;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.菁优网版权所有【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP 得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴=,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴=,∴DE=BC,在Rt△DEF和Rt△BCP中,∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【点评】本题主要考查切线的性质、相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握平行线的性质、切线的性质、圆周角定理、相似三角形的判定与性质及全等三角形的判定与性质等知识点是解题的关键.2.(2017•常德)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.【考点】MC:切线的性质.菁优网版权所有【分析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得=,由此即可解决问题;【解答】(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=8,OC=0A=6,∴OD==10,∵OC∥BE,∴=,∴=,∴EC=4.8.【点评】本题考查切线的性质、平行线的性质、角平分线的定义、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.菁优网版权所有【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.【点评】本题考查了切线的性质,菱形的判定和性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.(2017•大连)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.菁优网版权所有【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AC=2x∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;【点评】本题考查圆的综合问题,涉及切线的性质,圆周角定理,勾股定理,解方程等知识,综合程度较高,属于中等题型.5.(2017•金华)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.【考点】MC:切线的性质.菁优网版权所有【分析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.【点评】本题主要考查圆的切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质,熟练掌握切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质是解题的关键.6.(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC 于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【考点】MC:切线的性质;KH:等腰三角形的性质;KQ:勾股定理;LD:矩形的判定与性质.菁优网版权所有【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.7.(2017•湖州)如图,O为Rt△ABC的直角边AC上一点,以 OC为半径的⊙O与斜边AB相切于点D,交OA 于点E.已知BC=,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.【考点】MC:切线的性质;MO:扇形面积的计算.菁优网版权所有【分析】(1)首先利用勾股定理求出AB的长,再证明BD=BC,进而由AD=AB﹣BD可求出;(2)利用特殊角的锐角三角函数可求出∠A的度数,则圆心角∠DOA的度数可求出,在直角三角形ODA中求出OD的长,最后利用扇形的面积公式即可求出阴影部分的面积.【解答】解:(1)在Rt△ABC中,∵BC=,AC=3.∴AB==2,∵BC⊥OC,∴BC是圆的切线,∵⊙O与斜边AB相切于点D,∴BD=BC,∴AD=AB﹣BD=2﹣=;(2)在Rt△ABC中,∵sinA===,∴∠A=30°,∵⊙O与斜边AB相切于点D,∴OD⊥AB,∴∠AOD=90°﹣∠A=60°,∵=tanA=tan30°,∴=,∴OD=1,∴S阴影==.【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,熟记和圆有关的各种性质定理是解题的关键.8.(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P.过点C作AE的垂线,交AE于点F,交圆O于点B.作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【考点】MC:切线的性质;L5:平行四边形的性质.菁优网版权所有【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.9.(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB 于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.菁优网版权所有【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.(2017•随州)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).【考点】MC:切线的性质;KF:角平分线的性质;KW:等腰直角三角形;MO:扇形面积的计算.菁优网版权所有【分析】(1)连接DE,OD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD,进而得出结论;(2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC相切⊙O于点D,得到∠ODB=90°,求得OD=BD,∠BOD=45°,设BD=x,则OD=OA=x,OB=x,根据勾股定理得到BD=OD=,于是得到结论.【解答】(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;(2)∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°,∵BC相切⊙O于点D,∴∠ODB=90°,∴OD=BD,∴∠BOD=45°,设BD=x,则OD=OA=x,OB=x,∴BC=AC=x+1,∵AC2+BC2=AB2,∴2(x+1)2=(x+x)2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S△BOD﹣S扇形DOE=﹣=1﹣.【点评】本题主要考查了切线的性质,角平分线的定义,扇形面积的计算和勾股定理.熟练掌握切线的性质是解题的关键.11.(2017•河北)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=4时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【考点】MC:切线的性质;MN:弧长的计算;R2:旋转的性质.菁优网版权所有【分析】(1)连接OQ.只要证明Rt△APO≌Rt△BQO即可解决问题;(2)求出优弧DQ的圆心角以及半径即可解决问题;(3)由△APO的外心是OA的中点,OA=8,推出△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8;【解答】(1)证明:连接OQ.∵AP、BQ是⊙O的切线,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ中,cosB===,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴优弧的长==π,(3)∵△APO的外心是OA的中点,OA=8,∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8.【点评】本题考查切线的性质、弧长公式、全等三角形的判定和性质、三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(2017•天津)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.【考点】MC:切线的性质.菁优网版权所有【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T 的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.【解答】解:(1)如图①,连接AC,∵AT是⊙O切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=50°,∴∠T=90°﹣∠ABT=40°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=40°,∴∠CDB=∠CAB=40°;(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°,∵OA=OD,∴∠ODA=∠OAD=65°,∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.【点评】本题考查了圆的切线、圆周角定理、等腰三角形的性质、三角形的内角和,熟练掌握切线的性质是关键,注意运用同弧所对的圆周角相等.13.(2017•山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.菁优网版权所有【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB==2,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.14.(2017•郴州)如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)【考点】MC:切线的性质;MO:扇形面积的计算.菁优网版权所有【分析】(1)连接OB,由切线的性质得出OB⊥BC,证出AD∥OB,由平行线的性质和等腰三角形的性质证出∠DAB=∠OAB,即可得出结论;(2)由圆周角定理得出∠AOB=120°,由扇形面积公式即可得出答案.【解答】(1)证明:连接OB,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)解:∵点E是优弧上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积==3π.【点评】本题考查了切线的性质、等腰三角形的性质、平行线的性质、圆周角定理、扇形面积公式等知识;熟练掌握切线的性质和圆周角定理是解决问题的关键.15.(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.菁优网版权所有【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.16.(2017•鄂州)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【考点】MC:切线的性质;AB:根与系数的关系;T7:解直角三角形.菁优网版权所有【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.【点评】本题考查切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.17.(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【考点】MC:切线的性质;M5:圆周角定理.菁优网版权所有【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.18.(2017•威海)已知:AB为⊙O的直径,AB=2,弦DE=1,直线AD与BE相交于点C,弦DE在⊙O上运动且保持长度不变,⊙O的切线DF交BC于点F.(1)如图1,若DE∥AB,求证:CF=EF;(2)如图2,当点E运动至与点B重合时,试判断CF与BF是否相等,并说明理由.【考点】MC:切线的性质;KM:等边三角形的判定与性质.菁优网版权所有【分析】(1)如图1,连接OD、OE,证得△OAD、△ODE、△OEB、△CDE是等边三角形,进一步证得DF⊥CE 即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图1,连接OD、OE,∵AB=2,∴OA=OD=OE=OB=1,∵DE=1,∴OD=OE=DE,∴△ODE是等边三角形,∴∠ODE=∠OED=60°,∵DE∥AB,∴∠AOD=∠ODE=60°,∠EOB=∠OED=60°,∴△AOD和△BOE是等边三角形,∴∠OAD=∠OBE=60°,∴∠CDE=∠OAD=60°,∠CED=∠OBE=60°,∴△CDE是等边三角形,∵DF是⊙O的切线,∴OD⊥DF,∴∠EDF=90°﹣60°=30°,∴∠DFE=90°,∴DF⊥CE,∴CF=EF;(2)相等;如图2,点E运动至与点B重合时,BC是⊙O的切线,∵⊙O的切线DF交BC于点F,∴BF=DF,∴∠BDF=∠DBF,∵AB是直径,∴∠ADB=∠BDC=90°,∴∠FDC=∠C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.19.(2017•南通)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.【考点】MC:切线的性质;KQ:勾股定理.菁优网版权所有【分析】连接OD,首先证明四边形OFCD是矩形,从而得到BF的长,然后利用垂径定理求得BE的长即可.【解答】解:连接OD,作OF⊥BE于点F.∴BF=BE,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=FC=2,BC=3,∴BF=BC﹣FC=BC﹣OD=3﹣2=1,∴BE=2BF=2.【点评】本题考查了切线的性质、勾股定理及垂径定理的知识,解题的关键是能够利用切线的性质构造矩形形,难度不大.20.(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【考点】MC:切线的性质;KH:等腰三角形的性质.菁优网版权所有【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.21.(2017•北京)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理.菁优网版权所有【分析】(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE==,由此求出AE即可解决问题.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.【点评】本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.22.(2017•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.【考点】MC:切线的性质.菁优网版权所有【分析】(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=x,OC=OB=x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:=,据此求出CB的值是多少,即可求出⊙O半径是多少.【解答】(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.【点评】此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.23.(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【考点】MD:切线的判定;D5:坐标与图形性质.菁优网版权所有【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(2017•天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.菁优网版权所有【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9。

2017中考数学真题汇编:圆(带答案)0001

2017中考数学真题汇编:圆(带答案)0001

2017年浙江中考真题分类汇编(数学):专题11圆、单选题1、(2017 •金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦A、10cmB、16cmC、24cmD、26cm2、(2017?宁波)如图,在Rt △KBC中,Z A = 90 ° BC = .以BC的中点O为圆心的圆分别与AC相切于D、E两点,则:三的长为()JTB、C、D、AB的AB、长为(3、(2017 •丽水如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()B、—C、D、324、(2017 •衢州)运用图形变化的方法研究下列问题:如图,AB是O O的直径,CD , EF是O O的弦, 且AB //CD //EF, AB=10 , CD=6 , EF=8。

则图中阴影部分的面积是()A、一B、C、-- + 4."D、、填空题(2017?杭州)如图,AT 切O O 于点A , AB 是O O 的直径.若/ ABT=40(2017?绍兴)如图,一块含45。

角的直角三角板,它的一个锐角顶点 A 在O O 上,边AB , AC 分别与O O 交于点D , E.则/DOE 的度数为9、 ( 2017 •嘉兴如图,小明自制一块乒乓球拍, 正面是半径为比謬的 .亏:一,弓形(阴影部分)粘贴胶皮,则胶皮面积为C10、 ( 2017?湖州)如图,已知 Z.4.L 一;「,在射线 上取点 ,以 为圆心的圆与相 ,则B=6、( 2017?湖州)如图,已知在 上]1中,一-上二_二「.以.p?为直径作半圆 , 交二'_1于点一.若 的度数是 度. 如图,扇形纸扇完全打开后,外侧两竹条 AB , AC 的夹角为120,AB 长为30cm ,则8、切;在射线 「1 I 上取点,以 为圆心, 为半径的圆与 相切;在射线f 八』上取点 , 以 为圆心, 为半径的圆与 相切; ;在射线 厂.门上取点,以匚11为圆心, 为半径的圆与 o 目相切•若®6的半径为1,则®Oi 0的半径长是 ________________________11、( 2017 •衢州)如图,在直角坐标系中,O A 的圆心A 的坐标为(-1 , 0),半径为1,点P 为直线 r= 一亍x+m 上的动点,过点 P 作O A 的切线,切点为 Q ,则切线长PQ 的最小值是 _________________ 『■、0 Xx三、解答题切于点,交于点•已知皆(1) 求厂丄的长;(2) 求图中阴影部分的面积.13、( 2017 •台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B, C重合),PE是△ABP 的外接圆O O的直径(1)求证:△ APE是等腰直角三角形;⑵若O O的直径为2,求「「丨「二的值14、( 2017 •衢州如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。

(完整版)2017中考数学圆的综合题试题

(完整版)2017中考数学圆的综合题试题

圆的综合题1. 如图,AB 是⊙O 的弦,AB =4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB =13,延长OE 到点F ,使EF =2OE .(1)求证:∠BOE =∠ACB ; (2)求⊙O 的半径;(3)求证:BF 是⊙O 的切线.2. 如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于点D 、点E ,且»»AD DE ,过点D 作DF ⊥BC 于点F ,连接BD 、DE 、AE . (1)求证:DF 是⊙O 的切线;(2)试判断△DEC 的形状,并说明理由;(3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值.3. (2016长沙9分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC 于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.6 (2017原创)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为»DC的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G .(1) 求证:AB =AG ;(2) (2)若DG =DE ,求证:GB 2=GC ·GA ;(3)在(2)的条件下,若tan D =34,EG =10,求⊙O 的半径.7.(2015达州)在△ABC 的外接圆⊙O 中,△ABC 的外角平分线CD 交⊙O 于点D ,F 为»AD 上一点,且»»AF BC ,连接DF ,并延长DF 交BA 的延长线于点E. (1)判断DB 与DA 的数量关系,并说明理由;(2)求证:△BCD ≌△AFD ;(3)若∠ACM =120°,⊙O 的半径为5,DC =6,求DE 的长.8. 如图,AB 为⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CG 是⊙O 的弦,CG ⊥AB ,垂足为点D .(1)求证:△ACD ∽△ABC ;(2)求证:∠PCA =∠ABC ;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CG 于点F ,连接BE ,若sin P =35,CF =5,求BE 的长.9、(2016大庆9分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交斜边AB于点M,若H是AC的中点,连接MH。

2017年江苏省13市中考数学真题汇编----圆综合题

2017年江苏省13市中考数学真题汇编----圆综合题
2017 年江苏省 13 市中考数学真题汇编-----圆综合题
备注:连云港未考,故只有 12 道题
24.(2017 南京) 如图, PA, PB 是⊙ O 的切线, A, B 为切点.连接 AO 并延长,交 PB 的 延长线于点 C ,连接 PO ,交⊙ O 于点 D . (1)求证: PO 平分 APC . (2)连结 DB ,若 C 30【分析】 (1)如图,作 EF⊥y 轴于 F,DC 的延长线交 EF 于 H.设 H(m,n) ,则 P(m, 0) ,PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出 EH=2m=6,再证明△DPB∽△DHE,推出 解决问题; = = = = ,可得 = = = ,推出 CH=2n, ,求出 m 即可
考点:圆、三角函数、相似三角形的综合运用. (2017 无锡)如图,以原点 O 为圆心,3 为半径的圆与 x 轴分别交于 A,B 两点(点 B 27. 在点 A 的右边) ,P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与⊙O 分别交于 C,D 两点 (点 C 在点 D 的上方) ,直线 AC,DB 交于点 E.若 AC:CE=1:2. (1)求点 P 的坐标; (2)求过点 A 和点 E,且顶点在直线 CD 上的抛物线的函数表达式.
∴CH=2n,EH=2m=6, ∵CD⊥AB, ∴PC=PD=n, ∵PB∥HE, ∴△DPB∽△DHE, ∴ ∴ = = = , = ,
∴m=1, ∴P(1,0) . (2)由(1)可知,PA=4,HE=8,EF=9, 连接 OP,在 Rt△OCP 中,PC= ∴CH=2PC=4 ∴E(9,6 ,PH=6 ) , , =2 ,
(3)连接 PB,若 E 为 PB 的中点,连接 OE,则 OE 的最大值=

2017年中考真题圆

2017年中考真题圆

2017年中考真题圆201711 圆年浙江中考真题分类汇编(数学):专题一、单选题12017·13cm8cmAB的长为金华)如图,在半径为的弓形铁片,则弓形弦、(的圆形铁片上切下一块高为)(10cm A、16cm B、24cm C、26cmD、ABOBCABCA90°BC 2017?2Rt、中,∠=的中点△,.以=、(为圆心的圆分别与宁波)如图,在E DAC)两点,则的长为(相切于、A、B、C、D、AC=22017·3OABC)、则图中阴影部分的面积是(,为直径的半圆点如图,(丽水)是以的三等分点,8/ 12017年中考真题圆A、B、C、D、OCDEF42017·ABO的弦,且,是⊙是⊙、(的直径,衢州)运用图形变化的方法研究下列问题:如图,ABCDEFAB=10CD=6EF=8)∥,∥。

则图中阴影部分的面积是(,,A、B、C、D、二、填空题ABAOABT=40°ATB=________O2017?5AT.是⊙的直径.若∠于点,,则∠、(杭州)如图,切⊙2017?6.若,交于点中,.以、(湖州)如图,已知在为直径作半圆________度.的度数是,则8/ 22017年中考真题圆72017·ABAC120°AB30cm ,则,长为的夹角为、(,台州)如图,扇形纸扇完全打开后,外侧两竹条BC________cm )弧(结果保留的长为ACOAB82017?45°A分别与⊙、(上,边绍兴)如图,一块含在⊙角的直角三角板,它的一个锐角顶点,________.DOEDOE.的度数为,则∠交于点92017·弓形,小明自制一块乒乓球拍,正面是半径为的、(,嘉兴)如图,________.(阴影部分)粘贴胶皮,则胶皮面积为2017?10 相切;为圆心的圆与已知,以,在射线上取点、(湖州)如图,相切;在射线为圆心,在射线为半径的圆与,以上取点,以上取点上取点为圆心,相切;为圆心,为半径的圆与,在射线;以________.为半径的圆与相切.若的半径为,则的半径长是8/ 32017年中考真题圆P-111102017·AA为直线,在直角坐标系中,⊙半径为的圆心,的坐标为(点、(),衢州)如图,________QPQPA的最小值是,则切线长上的动点,过点的切线,切点为作⊙三、解答题122017? 相切为半径的的直角边与斜边、(上一点,以湖州)如图,为.已知,交于点于点.,(1)的长;求(2) 求图中阴影部分的面积.ABP132017·CBCABCPBPE的、(台州)如图,已知等腰直角△,点是△是斜边上一点(不与,重合),O的直径外接圆⊙APE(1) 是等腰直角三角形;求证:△2O (2) 的值的直径为若⊙,求8/ 42017年中考真题圆142017·ABOCBACDODOD,作为半圆切半圆的直径,。

2017中考数学圆综合题(供参考)

2017中考数学圆综合题(供参考)

2017年初三圆综合题1.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;2,(2)假设点E是BC上一点,已知BE=6,tan∠ABC=35,求圆的直径.tan∠AEC=32如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD.(1)弦长AB等于▲ (结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为极点的三角形与以B、C、O为极点的三角形相似?请写出解答进程.3. 如图右,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。

(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.4.(已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于▲ 时,∠PAB=60°;当PA的长度等于▲ 时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,成立如下图的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积别离记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出现在a,b的值.6.(11金华)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,别离与∠EPF的两边相交于A、B和C、D,连结OA,现在有OA//PE.(1)求证:AP=AO;(2)假设tan∠OPB=12,求弦AB的长;(3)假设以图中已标明的点(即P、A、B、C、D、O)构造四边形,那么能组成菱形的四个点为,能组成等腰梯形的四个点为或或.7.(芜湖市)如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB⌒上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)假设BD=4,P A=32AO,过点B作BC∥MP交⊙O于C点,求BC的长.8.(黄冈市)(6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,知足AD2=AB·AE,求证:DE是⊙O的切线.是AE的9.(义乌市)如图,以线段AB为直径的⊙O交线段AC于点E,点M中点,OM交AC于点D,60BOE∠=°,1cos2C=,23BC=.(1)求A∠的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.10.(兰州市2017)(此题总分值10分)如图,已知AB是⊙O的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,假设AB=4,求MN·MC 的值.11.(此题总分值14分)如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,别离交1O 和2O 于A B ,两点,连结NA NB ,. (1)猜想点2O 与1O 有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),假设过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的双侧,那么(2)中的结论是不是成立,假设成立请给出证明.12.如图12,已知:边长为1的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点.(1)求弦DE的长.(2)假设Q是线段BC上一动点,当BQ长为何值时,三角形ADP与以Q C P,,为极点的三角形相似.13..(本小题总分值10分)如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F,(1)判定△DCE的形状;(2)设⊙O的半径为1,且OF=213-,求证△DCE≌△OCB.15、⊙O的半径OD通过弦AB(不是直径)的中点C,过AB的延长线上一点P作⊙O的切线PE,E为切点,PE∥OD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K.(1)求证:四边形OCPE是矩形;(2)求证:HK=HG;(3)假设EF=2,FO=1,求KE的长.14(2017湖北襄樊24题)如图,直线AB通过O上的点C,而且OA OB=,CA CB=,O交直线OB于E D,,连接EC CD,.(1)求证:直线AB是O的切线;(2)试猜想BC BD BE,,三者之间的等量关系,并加以证明;(3)假设1tan2CED∠=,O的半径为3,求OA的长16、如图,直角坐标系中,已知两点O(0,0) A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交X轴于点D.(1)求B C,两点的坐标;(2)求直线CD的函数解析式;(3)设E F,别离是线段AB AD,上的两个动点,且EF平分四边形ABCD的周长.试探讨:AEF△的最大面积?17、如图,在平面直角坐标系中,ABC △的边AB 在x 轴上,且(02),,OA OB >,以AB 为直径的圆过点C .假设点C 的坐标为5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)假设ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '别离交射线CA 、CB (点C 除外)于点M 、N .那么11CM CN+的是不是为定值?假设是,求出该定值;假设不是,请说明理由.18、如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点别离是G F E ,,点.GE CD ,的交点为M ,且46ME =,:2:5MD CO =.(1)求证:GEF A∠=∠.(2)求O的直径CD的长.。

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

FhseFhee2017中考数学全国试题汇编-■■■■■圆24 (2017.北京)如图,AB是LI O的一条弦,LI O的切线交CE的延长线于点D .(1)求证:DB 二DE ;(2)若AB =12, BD =5,求LI O 的半径.【解析】E是AB的中点,过点E作EC_OA于点C ,过点B作试题分析:(1)由切线性质及等量代换推出/ 4=7 5,再利用等角对等边可得出结论;(2)由已知条件得出sin7 DEF和sin7 AOE的值,禾用对应角的三角函数值相等推出结论.试题解析:(1)证明:T DC 丄OA, A / 1 + 7 3=90°, v BD 为切线,二OB 丄BD, /-Z 2+7 5=90°, v OA=OB, •••7 1=7 2,v/ 3=7 4,A/ 4=7 5,在厶DEB中, 7 4=7 5,A DE=DB.⑵作DF丄AB 于F,连接OE, ・,.EF^-EE=3/在RTADEF中,EA3, DE=BD=5J EQ3 , J.f~nj jQ-F* 4Y彗一3 =斗——=-3「.在irrAAOE 中rDE5TAEh,二曲二二■ ■考点:圆的性质,切线定理,三角形相似,三角函数27 (2017甘肃白银)•如图,AN是L M的直径,NB//X轴, ~A OAB交L M于点C .(1)若点A 0,6 , N 0,2厂ABN =30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是L M的切线.解:(1)v A 的坐标为(0, 6), N (0, 2)••• AN=4, .............................................................................................................. 1 分vZ ABN=30°, / ANB=90°,••• AB=2AN=8, ...................................................................................................... 2分•••由勾股定理可知:NB=4..3 ,••• B ( 4 3 , 2) ....................................................... 3 分(2)连接MC , NC ........................................................................................... 4 分v AN是O M的直径,•••Z ACN=90°°•••Z NCB=90° ° ................................................................................................... 5 分在Rt A NCB中,D为NB的中点,1•CD= = N B=ND ,2•Z CND=Z NCD, .............................. 6 分v MC=MN ,•Z MCN=Z MNC.vZ MNC+Z CND=90°°• Z MCN+Z NCD=90° ° ...................... 7 分即MC I CD.•直线CD是。

2017年中考真题圆综合大题(可编辑修改word版)

2017年中考真题圆综合大题(可编辑修改word版)

2017 年圆综合大题8.(2011 年苏州市•第26 题8 分)如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上的任意一点(不与点A、B 重合),连接CO 并延长CO 交于⊙O 于点D,连接AD.(1)弦长AB 等于▲(结果保留根号);(2)当∠D=20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A、C、D 为顶点的三角形与以B、C、O 为顶点的三角形相似?请写出解答过程.9.(2012 年苏州市第27 题满分8 分)如图,已知半径为2 的⊙O 与直线l 相切于点A,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C,PC 与⊙O 交于点D,连接PA、PB,设PC 的长为x(2<x<4).5(1)当x=2时,求弦PA、PB 的长度;(2)当x 为何值时PD·CD 的值最大?最大值是多少?10.(2013 年苏州第27 题8 分)如图,Rt△ABC 中,∠ACB=90°,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E,连接DE 并延长DE 交BC 的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB= ,求⊙O 的半径.11.(2014•苏州第27 题8 分)如图,已知⊙O 上依次有A、B、C、D 四个点,=,连接AB、AD、BD,弦AB 不经过圆心O,延长AB 到E,使BE=AB,连接EC,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G 是BD 的中点,探索:在⊙O 上是否存在点P(不同于点B),使得PG=PF?并说明PB 与AE 的位置关系.江南汇教育网12.(2015 年苏州第26 题满分10 分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A、B、D 三点,过点B 作BE∥AD,交⊙O 于点E,连接E D.(1)求证:ED∥AC;(2)若BD=2CD,设△EBD 的面积为S ,△ADC 的面积为S ,且S 2-16S + 4 = 0 ,1 2 1 2求△ABC 的面积.13.(2016 年苏州第26 题10 分)如图,AB 是⊙ O 的直径,D 、E 为⊙ O 上位于AB 异侧的两点,连接BD 并延长至点 C ,使得CD = BD ,连接AC 交⊙ O 于点 F ,连接AE 、DE 、DF .(1 )证明:∠ E =∠ C ;(2 )若∠ E = 55 °,求∠ BDF 的度数;(3 )设DE 交AB 于点G ,若DF =4,cos B= ,E 是的中点,求EG •E D 的值.14.(2017 年苏州市第27 题10 分)如图,已知△ABC 内接于⊙O,AB 是直径,点D 在⊙O 上,OD∥BC,过点D 作DE⊥AB,垂足为E,连接CD 交OE 边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE 的面积为S1,四边形BCOD的面积为S2,若= ,求sinA 的值.FADEG 模拟训练:1.(2017 年常熟市•本题满分 10 分)如图 1 , DE 是⊙ O 的直径,点 A 、C 是直径 DE 上方半圆上的两点,且 AO ⊥ CO .连接 AE , CD 相交于点 F .点 B 是直径 DE 下方半圆上的任意一点,连接 AB 交CD 于点G ,连接CB 交 AE 于点 H .(1) 求∠ABC 的度数;(2) 证明:∆CFH ∆CBG ;(3) 若弧 DB 为半圆的三分之一,把∠AOC 绕着点O 旋转,使点C 、O 、 B 在一直线上时,如图 2.①证明 FH : BG = 1: 2 ;②若⊙ O 的半径为 4,直接写出 FH 的长.2.(2018 年蔡老师预测•第 26 题 10 分)如图,在 Rt △ABC 中,∠A =90°,点 D 、E 分别在 AC 、BC 上,且 CD ·BC =AC ·CE ,以 E 为圆心,DE 长为半径作圆,⊙E 经过点 B , 与 AB 、BC 分别交于点 F 、G .(1)求证:AC 是⊙E 的切线;(2)若 AF =4,CG =5,①求⊙E 的半径;②若 Rt △ABC 的内切圆圆心为 I ,则 IE =.BC(第 26 题)3.( 2017 年张家港•26 题 10 分)如图,已知⊙ O 是V ABC 的外接圆, AD 是⊙ O 的直径, 且 BD = BC .延长 AD 到 E ,使得∠EBD = ∠CAB .(1) 如图 1,若 BD = 2,AC = 6 . 55 ①求证: BE 是⊙ O 的切线;②求 DE 的长;(2) 如图 2,连结CD ,交 AB 于点 F ,若 BD = 2,CF = 3 ,求⊙ O 的半径.4.(2017 年工业园区区•26 题 10 分) 如图,在△ABC 中,CD ⊥AB ,垂足为点 D .以 AB 为直径的半⊙O 分别与 AC 、CD 相交于点 E 、F ,连接 AF 、EF .(1) 求证:∠AFE=∠ACD ;(2) 若 CE=4,CB=4,tan ∠CAB= ,求 FD 的长.5.(2017 年吴江区••26 题 10 分) 如图,在∆ABC 中, ∠C = 90︒, D 、 F 是 AB 边上的两点,以 DF 为直径的⊙ O 与 BC 相交于点 E , 连接 EF , 过 F 作 FG ⊥ BC 于点 G , 其中∠OFE =1∠A .2(1)求证: BC 是⊙ O 的切线;(2) 若sin B = 3,⊙ O 的半径为 r ,求∆EHG 的面积5(用含 r 的代数式表示).EDCO6.(2017 年高新区•26 题10 分) 如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC:BC=1:2,点D 为»AB 的中点,BE⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(3)连接OE 交BC 于点F,若AB=A B,求OE 的长度.7.(2017 年吴中区•26 题10 分) 如图,AB 是⊙O 的直径,BC 是弦,过点O 作OE ⊥BC 于H 交⊙O 于E ,在OE 的延长线上取一点D ,使∠ODB =∠AEC ,AE 与BC 交于F 。

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆24(2017.北京)如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数27(2017甘肃白银).如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线. 解:(1)∵A 的坐标为(0,6),N (0,2)AB O E AB E EC OA ⊥C B O CE D DB DE =12,5AB BD ==O∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分 ∴由勾股定理可知:NB=∴B(2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,∴∠NCB =90°在Rt △NCB ∴CD =12NB =ND ,∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分25(2017广东广州).如图14,是的直径,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使所在的直线与所在的直线相交于点,连接.AB O ,2AC BC AB ==AC 045CAB ∠=l O C l D ,BD AB BD =AC E AD①试探究与之间的数量关系,并证明你的结论; ②是否为定值?若是,请求出这个定值;若不是,请说明理由.【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②(2)①如图所示,作 于F 由(1)可得, 为等腰直角三角形.是 的中点. 为等腰直角三角形. 又 是 的切线,四边形 为矩形②当 为钝角时,如图所示,同样,(3)当D 在C 左侧时,由(2)知,AE AD EBCDBF l ⊥ACB ∆O AB CO AO BO ∴==ACB ∴∆l O OC lBF l ∴⊥⊥∴OBEC 22AB BFBD BF ∴=∴=303075BDF DBA BDA BAD ∴∠=︒∴∠=︒∠=∠=︒,15901575CBE CEB DEA ∴∠=︒∠=︒-︒=︒=∠,,ADE AED AD AE ∴∠=∠∴=ABD ∠1,302BF BD BDC =∴∠=︒1801501509015152ABD AEB CBE ADB ︒-︒∴∠=︒∠=︒-∠=︒∠==︒,,AE AD ∴=CD AB ,30ACD BAE DAC EBA ∠=∠∠=∠=︒,在 中,当D 在C 右侧时,过E 作 于在 中, 考点:圆的相关知识的综合运用25(2017贵州六盘水).如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置 (2)(不写作法,但要保留作图痕迹). (2)求PA PB +的最小值. 【考点】圆,最短路线问题.【分析】(1)画出A 点关于MN 的称点A ',连接A 'B ,就可以得到P 点(2)利用30AMN =∠°得∠AON =∠ON A '=60°,又B 为弧AN 的中点,∴∠BON =30°,所以∠A 'ON =90°,再求最小值22. 【解答】解:,AC CD CAD BAE AB AE ∴∆∆∴==,,15AE BA BD BAD BDA ∴==∠=∠=︒30IBE ∴∠=︒Rt IBE∆222BE EI AE CD ====2BECD∴=EI AB ⊥I Rt IBE∆222BE EI AE CD ====2BECD∴=20(2017湖北黄冈).已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE ∥DM , ∵DM ⊥DE , ∴OE ⊥DE , ∵OE 过O , ∴DE 是⊙O 的切线; (2) 连接EN ,∵DM ⊥DE ,MN 为⊙O 的半径, ∴∠MDE=∠MEN=90°, ∵∠NME=∠DME , ∴△MDE ∽△MEN , ∴=,∴ME 2=MD •MN23. (2017湖北十堰)已知AB 为半⊙O 的直径,BC ⊥AB 于B ,且BC =AB ,D 为半⊙O 上的一点,连接BD 并延长交半⊙O 的切线AE 于E . (1) 如图1,若CD =CB ,求证:CD 是⊙O 的切线; (2) 如图2,若F 点在OB 上,且CD ⊥DF ,求AEAF的值.(1)证明:略;(此问简单) (2)连接AD . ∵DF ⊥DC ∴∠1+∠BDF =90° ∵AB 是⊙O 的直径CEC∵∠3+∠EAD =90°,∠E+∠EAD =90° ∴∠3=∠E又∵∠ADE=∠ADB=90° ∴△AD E ~△ABD∴AE ADAB BD =∴AE AF =∴∠2+∠BDF =90° ∴∠1=∠2又∵∠3+∠ABD =90°, ∠4+∠ABD =90° ∴∠3=∠4 ∴△ADF ~△BCDAF ADBC BD=21.(2017湖北武汉)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长【答案】(1)证明见解析;(2);.(2)过点C 作CE ⊥AB 于E∵sin ∠BAC =,设AC =5m ,则CE =3m ∴AE =4m ,BE =m在Rt ΔCBE 中,m 2+(3m )2=36 ∴m =, ∴AC =延长AO 交BC 于点H ,则AH ⊥BC ,且BH =CH =3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.21. (2017湖北咸宁)如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F . ⑴求证:DF 是⊙O 的切线;⑵若52cos ,4==A AE ,求DF 的长【考点】ME :切线的判定与性质;KH :等腰三角形的性质;T7:解直角三角形.【分析】(1)证明:如图,连接OD ,作OG ⊥AC 于点G ,推出∠ODB=∠C ;然后根据DF ⊥AC ,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF 是⊙O 的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD 为矩形,即可求出DF 的值是多少. 【解答】(1)证明:如图,连接OD ,作OG ⊥AC 于点G , ∵OB=OD ,∴∠ODB=∠B , 又∵AB=AC , ∴∠C=∠B , ∴∠ODB=∠C , ∵DF ⊥AC , ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∴DF 是⊙O 的切线.(2)解:AG=AE=2, ∵cosA=, ∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°, ∴四边形OGFD 为矩形, ∴DF=OG=.23(2017湖北孝感). 如图,O 的直径10,AB =弦6,AC ACB=∠的平分线交O于,D过点D作DE AB交CA延长线于点E,连接,.AD BD(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:DE是O的切线;(3)求线段DE的长.【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S△BOD可得答案;(2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证;(3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即=,求得EF的长即可得.【解答】解:(1)如图,连接OD,∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD平分∠ACB,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD +S△BOD=+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.25(2017湖北荆州).如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB是⊙O的切线;(2)分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM 是正方形.分别列出方程即可解决问题.(3)分两种情形讨论即可,一共有四个点满足条件.【解答】(1)证明:如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴==,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.(2)解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.易知PQ=DQ=3t,CQ=•3t=,∵OC+CQ+AQ=4,∴m+t+5t=4,∴m=4﹣t.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.(3)解:存在.理由如下:如图4中,当⊙Q 在y 则的右侧与y 轴相切时, 3t+5t=4,t=, 由(2)可知,m=﹣或.如图5中,当⊙Q 在y 则的左侧与y 轴相切时,5t ﹣3t=4,t=2,由(2)可知,m=﹣或.综上所述,满足条件的点C 的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).22.(2017湖北鄂州)如图,已知BF 是⊙O 的直径,A 为 ⊙O 上(异于B 、F )一点. ⊙O 的切线MA与FB 的延长线交于点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且PA =PD ,AD 的延长线交⊙O 于点E . (1)求证:BE = CE ;(2)若ED 、EA 的长是一元二次方程x 2-5x +5=0的两根,求BE 的长;(3)若MA ,1sin 3AMF ∠= , 求AB 的长.(1)∵PA =PD ∴∠PAD=∠PDA∴∠BAD+∠PAB=∠DBE+∠E ∵⊙O 的切线MA ∴∠PAB=∠DBE∴∠BAD=∠CBE ∴BE = CE(2)∵ED、EA的长是一元二次方程x2-5x+5=0的两根、∴ED·EA=5∵∠BAD=∠CBE,∠E=∠E∴△BDE∽△ABE∴BE2=ED·EA=5 ∴BE=521.(2017湖北黄石)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.【考点】MI:三角形的内切圆与内心;MD:切线的判定.【分析】(1)欲证明DB=DE,只要证明∠DBE=∠DEB;(2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可;【解答】(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC,∴=,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.23(2017湖北恩施).如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB 的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【考点】MC:切线的性质;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF ≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE ∥CD , ∴∠1=∠3, 又∵OB=OC , ∴∠2=∠3,∴∠1=∠2,即BC 平分∠ABP ; (2)如图,连接EC 、AC , ∵PC 是⊙O 的切线, ∴∠PCD=90°, 又∵BE ∥DC , ∴∠P=90°, ∴∠1+∠4=90°,[ ∵AB 为⊙O 直径, ∴∠A+∠2=90°, 又∠A=∠5, ∴∠5+∠2=90°, ∵∠1=∠2, ∴∠5=∠4, ∵∠P=∠P , ∴△PBC ∽△PCE , 即PC 2=PB •PE ; (3)∵BE ﹣BP=PC=4, ∴BE=4+BP ,∵PC 2=PB •PE=PB •(PB+BE ),∴42=PB •(PB+4+PB ),即PB 2+2PB ﹣8=0, 解得:PB=2, 则BE=4+PB=6, ∴PE=PB+BE=8, 作EF ⊥CD 于点F , ∵∠P=∠PCF=90°, ∴四边形PCFE 为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°, ∵BE ∥CD , ∴DE=BC ,在Rt △DEF 和Rt △BCP 中, ∴Rt △DEF ≌Rt △BCP (HL ), ∴DF=BP=2, 则CD=DF+CF=10, ∴⊙O 的半径为5.22(2017湖北随州).如图,在Rt △ABC 中,∠C=90°,AC=BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E . (1)求证:AD 平分∠BAC ;(2)若CD=1,求图中阴影部分的面积(结果保留π).【考点】MC :切线的性质;KF :角平分线的性质;KW :等腰直角三角形;MO :扇形面积的计算. 【分析】(1)连接DE ,OD .利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD ,进而得出结论;(2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC 相切⊙O 于点D ,得到∠ODB=90°,求得OD=BD ,∠BOD=45°,设BD=x ,则OD=OA=x ,OB=x ,根据勾股定理得到BD=OD=,于是得到结论.【解答】(1)证明:连接DE ,OD . ∵BC 相切⊙O 于点D , ∴∠CDA=∠AED , ∵AE 为直径, ∴∠ADE=90°, ∵AC ⊥BC , ∴∠ACD=90°, ∴∠DAO=∠CAD , ∴AD 平分∠BAC ;(2)∵在Rt △ABC 中,∠C=90°,AC=BC , ∴∠B=∠BAC=45°,∵BC 相切⊙O 于点D , ∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°, 设BD=x ,则OD=OA=x ,OB=x ,∴BC=AC=x+1, ∵AC 2+BC 2=AB 2, ∴2(x+1)2=(x+x )2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE=﹣=1﹣.22(2017湖北襄阳).如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠BAC=∠DAC ,过点C 做直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【考点】ME:切线的判定与性质;MN:弧长的计算.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.21(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD 即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.24(2017江苏南通).如图,Rt △ABC 中,∠C=90°,BC=3,点O 在AB 上,OB=2,以OB 为半径的⊙O 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.【考点】MC :切线的性质;KQ :勾股定理.【分析】连接OD ,首先证明四边形OECD 是矩形,从而得到BE 的长,然后利用垂径定理求得BF 的长即可.【解答】解:连接OD ,作OE ⊥BF 于点E . ∴BE=BF , ∵AC 是圆的切线, ∴OD ⊥AC ,∴∠ODC=∠C=∠OFC=90°, ∴四边形ODCF 是矩形, ∵OD=OB=EC=2,BC=3, ∴BE=BC ﹣EC=BC ﹣OD=3﹣2=1, ∴BF=2BE=2.26(2017江苏镇江).如图,ACB Rt ∆中,090=∠C ,点D 在AC 上,A CBD ∠=∠,过D A ,两点的圆的圆心O 在AB 上.(1)利用直尺和圆规在图1中画出⊙O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);(2)判断BD 所在直线与(1)中所作的⊙O 的位置关系,并证明你的结论;(3)设⊙O 交AB 于点E ,连接DE ,过点E 作BC EF ⊥,F 为垂足.若点D 是线段AC 的黄金分割点(即ACADAD DC =,)如图2,试说明四边形DEFC 是正方形.25(2017江苏扬州).如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF . (1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)①求证:CF=OC ;②若半圆O 的半径为12,求阴影部分的周长.【考点】MB :直线与圆的位置关系;L5:平行四边形的性质;MN :弧长的计算.【分析】(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)①只要证明△OCF 是等边三角形即可解决问题; ②求出EC 、EF 、弧长CF 即可解决问题. 【解答】解:(1)结论:DE 是⊙O 的切线. 理由:∵四边形OABC 是平行四边形, 又∵OA=OC ,∴四边形OABC 是菱形, ∴OA=OB=AB=OC=BC ,∴△ABO ,△BCO 都是等边三角形, ∴∠AOB=∠BOC=∠COF=60°, ∵OB=OF ,∴OG ⊥BF ,∵AF 是直径,CD ⊥AD ,∴∠ABF=∠DBG=∠D=∠BGC=90°, ∴四边形BDCG 是矩形, ∴∠OCD=90°, ∴DE 是⊙O 的切线.(2)①由(1)可知:∠COF=60°,OC=OF ,∴△OCF 是等边三角形, ∴CF=OC .②在Rt △OCE 中,∵OC=12,∠COE=60°,∠OCE=90°, ∴OE=2OC=24,EC=12,∵OF=12, ∴EF=12, ∴的长==4π,∴阴影部分的周长为4π+12+12.24(2017江苏盐城).如图,△ABC 是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1) 如图①,当圆形纸片与两直角边AC 、BC 都相切时, (2) 试用直尺与圆规作出射线CO ; (3) (不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周, 回到起点位置时停止,若BC=9,圆形纸片的半径为2, 求圆心O 运动的路径长.【考点】O4:轨迹;MC :切线的性质;N3:作图—复杂作图.【分析】(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 【解答】解:(1)如图①所示,射线OC 即为所求;(2)如图,圆心O 的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C△ABC=9+9+18=27+9,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.25(2017江苏盐城).如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【考点】MR:圆的综合题.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.27、(2017•苏州)如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.(1)求证:∽;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值.(1)证明:∵AB是圆O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD//BC,∴∠DOE=∠ABC,∴△DOE~△ABC,(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是弧BC所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE。

2017全国中考数学真题 与圆的有关计算(选择题+填空题+解答题)解析版

2017全国中考数学真题 与圆的有关计算(选择题+填空题+解答题)解析版
(cm2).
15. 7.(2017 湖北咸宁,7,3 分)如图,⊙O 的半径为 3,四边形 ABCD 内接于⊙O,连接 OB、OD,若∠ BOD=∠ BCD,
则 BD 的长为( )
A.
B. 3 2
C. 2
D. 3
答案:C
解析:∵∠ BAD= 1 ∠ BOD= 1 ∠ BCD,∠ BAD+∠ BCD=180°,
转动五次 A 的路线长是:错误!未找到引用源。,
以此类推,每四次循环,
5
2017 全国中考数学真题(精品文档)
故顶点 A 转动四次经过的路线长为: 2 5 3 6 , 22
∵2017÷4=504……1
∴这样连续旋转 2016 次后,顶点 A 在整个旋转过程中所经过的路程之和是:6π×504+2π=3026π.故选:D.
18. (2017 江苏宿迁,3 分)若将半径为 12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是
A.2cm
B.3cm
C.4cm
D.6cm
答案:D,解析:根据圆锥底面圆周长=扇形弧长,即 l=C 得 12π=2πr,所以 r=6.
19. (2017 甘肃天水.9.4 分)如图所示,AB 是圆 O 的直径,弦 CD⊥AB.垂足为 E,∠BCD=30°,CD=4 3 ,则
A.68πcm2
B.74πcm2
C.84πcm2
答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.
D.100πcm2
5. 2. (2017 重庆,9,4 分)如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,若点 E 是 AD 的中点,
以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是(

(完整版)2017年中考数学试题分类汇编圆及扇形

(完整版)2017年中考数学试题分类汇编圆及扇形

圆一、选择题1.(2017·江苏南京)过三点(2,2),(6,2),(4,5)的圆的圆心坐标为( )A .(4,)B .(4,3) C.(5,) D .(5,3) 【答案】A【解析】试题分析:根据题意,可知线段AB 的线段垂直平分线为x=4,然后由C 点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r ,则根据勾股定理可知,解得r=,因此圆心的纵坐标为,因此圆心的坐标为(4,). 故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理2. (2017·浙江金华)如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为( )A .B . C. D .【答案】C.【解析】试题分析:作OC ⊥AB 交点为D ,交圆于点C ,OB=13cm ,CD=8cm ,A B C 1761762222(52)r r =+--1361317566-=17613cm 8cmAB 10cm 16cm 24cm 26cmOD=5cm;在RT△BOD中,根据勾股定理可求得BD=12cm,再由垂径定理可得AB=2BD=24cm,故选C.3.(2017·山东青岛)如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°.故选:B考点:圆的性质与计算4.(2017·广西贵港)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【答案】D【解答】∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.【考点】圆周角定理;圆心角、弧、弦的关系.5.(2017·贵州黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C. D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE ,∠CEO=90°, ∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A .6.(2017·河南)如图,将半径为2,圆心角为的扇形绕点逆时针旋转,点,的对应点分别为,,连接,则图中阴影部分的面积是( )A .B . C. D . 【答案】C.【解析】连接O 、B ,根据旋转的性质及已知条件易证四边形AOB 为菱形,且∠OB=∠O B=60°,又因∠A =∠A B=120°,所以∠B =120°,因∠O B+∠B =120°+60°=180°,即可得O 、、三点共线,又因=B ,可得∠ B=∠ B ,再由∠O B=∠ B+∠ B =60°,可得∠ B=∠ B =30°,所以△OB 为Rt 三角形,由锐角三角函数即可求得B =,所以,故选C.120︒OAB A 60︒O B 'O 'B 'BB 23π3π23π23π'O 'O 'O 'O 'O 'O 'B 'O 'O 'B 'O 'O 'B 'O 'B 'O 'B 'O 'O 'B 'O 'B 'O 'O 'B 'O 'B 'O 'B 'O 'B 'B 'B 32''16022=S 2232323603OBB BOO S S ππ⨯-=⨯⨯=V 阴影扇形考点:扇形的面积计算.7.(2017·湖北黄冈)已知:如图,在中,,则∠的度数为()ADCA.30°B.35° C. 45°D.70°【考点】垂径定理;圆心角定理.【分析】根据垂径定理,可得弧BC=弧AC,再利用圆心角定理得答案.【解答】解:∵OA⊥BC∴弧BC=弧AC∵∠AOB=70°1∠AOB=35°∴∠ADC=2故选:B.8.(2017·湖南湘潭)如图,在半径为4的Oe中,CD是直径,AB是弦,且CD AB⊥,垂足为点E,90∠=°,则阴影部分的面积是()AOBA.44π-B.2π-4 C.π4 D.2π【答案】D【解析】试题分析:∵CD AB ⊥,∴︒=∠=∠45BOC AOC ,∴πππ236044536022====r n S S AOC 扇形阴,故选C 考点:垂径定理,扇形的面积9.(2017·山西)右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理10.(2017·江苏徐州)如图,点A ,B ,C 在⊙O 上,∠AOB=72°,则∠ACB 等于( )A.28°B.54°C.18°D.36°【考点】圆周角定理.【分析】根据圆周角定理:同弧所对的圆周角等于同弧所对圆心角的一半即可求解.【解答】解:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D.11.(2017·山东烟台)如图,▱ABCD中,∠B=70°,BC=6,以AD 为直径的⊙O交CD于点E,则的长为()A.πB.πC.πD.π【考点】MN:弧长的计算;L5:平行四边形的性质;M5:圆周角定理.【分析】连接OE,由平行四边形的性质得出∠D=∠B=70°,AD=BC=6,得出OA=OD=3,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【解答】解:连接OE,如图所示:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,AD=BC=6,∴OA=OD=3,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长==;故选:B.12.(2017·四川泸州)如图,AB是O⊥于点E,e的直径,弦CD AB若8,1==,则弦CD的长是()AB AEA B.C.6D.8【答案】B.【解析】二、填空题1.(2017·北京)如图,为的直径,为上的点,.若,则 .【答案】25°.考点:圆周角定理2.(2017·重庆A 卷)如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB=64°,则∠ACB= .AB O e C D 、O e AD CD =040CAB ∠=CAD ∠=【答案】32°.【解析】试题解析:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.考点:圆周角定理.3.(2017·重庆B卷)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC= 度.【答案】80.考点:圆周角定理.4.(2017·浙江金华)在一空旷场地上设计一落地为矩形的小屋,ABCD.拴住小狗的长的绳子一端固定在点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为.(1)如图,若,则 .(2)如图,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边的小屋,其它条件不变.则在的变化过程中,当取得最小值时,边长的长为 .【答案】.【解析】试题分析:(1)在B 点处是以点B 为圆心,10为半径的个圆;在A 处是以A 为圆心,4为半径的个圆;在C 处是以C 为圆心,6为半径的个圆;所以S= ;(2)设BC=x,则AB=10-x , =(-10x+250),当x=时,S 最小,即BC=.5.(2017·山东青岛)如图,直线AB 与CD 分别与⊙O 相切于B 、D 两点,且AB ⊥CD ,垂足为P ,连接BD.若BD =4,则阴影部分的面积为___________________。

2017中考真题圆经典.docx

2017中考真题圆经典.docx

2017年中考圆真题1. (2017四川泸州第6题)如图,AB是00的直径,弦CD丄AB于点E.若AB=8, AE=1,则弦CD的长是()初是OO的直径,且经过眩仞的中点〃,已知cosZm片彳,妙5,则防的长度为(7C. 1D.—6A. V15B. 2亦C. 2V15D. 84.(2017河池第8题)如图,O0的直径AB垂直于弦CD,ZCAB = 36°,则ZBCD的大小是()A. 18°B. 36°C. 54°D. 72°5.(2017黑龙江齐齐哈尔)如图,AC是OO的切线,切点为C, BC是O0的直径,4B交。

O于点D,连接OD,若乙4 =50。

,则ZCO D的度数为__________________ .6.(2017海南第12题)如图,点A、B、C在(DO上,AC〃OB, ZBAO二25° ,则ZB0C的度数为()A. 25°B. 50°C. 60°D. 80°7.如图,四边形ABCD为。

O的内接四边形.延长AB与DC相交于点G , AO丄CD,垂足为E,连接BD, ZGBC = 50°,则ZDBC的度数为().A.50°B.60°C.80°D.85°8. (2017江苏盐城第14题)如图,将O0沿弦AB折叠,点C在滋上,点D在劝上,若ZACB二70° ,则ZADB=;7题A. V7B. 2A/7C. 6D. 82.如图,3.如图, 是G)的直径,弦CD交AB于点P, APJBP*ZAPC =30°.则CD的长为9. (2017四川宜宾第17题)如图,等腰AABC内接于©0,已知AB二AC, ZABC=30° ,B BD是<30的直径,如果CD二釵3,则AD二310. (2017天津第21题)已知4B是OO的直径,是OO的切线,ZABT =50° ,BT交©O于点、C, E是AB±一点,延长CE交OO于点D.(1)如图①,求和ZCDB的大小;(2)如图②,当BE=BC吋,求ZCDO的大小.11. (2017年贵州省黔东南州第21题)如图,已知直线PT与00相切于点T,直线P0与00相交于A, B两点.(1)求证:PT2=PA*PB;(2)若PT=TB=V3,求图中阴影部分的而积.12.(2017四川省南充市)如图,在中,锯90° ,以为直径作00交月〃于点〃,F为〃C的屮点,连接励并延长交的延长线于点(1)求证:加是O0的切线;(2)若CP2, D&4,求00直径的长.13.(2017浙江省丽水市)如图,在Rt/\ABC中,Z^RtZ,以力为直径的交個于点〃,切线加交化于点圧(1)求证:ZA二ZADE;(2)若血F6, 妙10,求比的长.14.(2017四川省广安市)如图,己知/〃是O0的直径,弦d与直径相交于点、F.点尸在<30外,做直线且AEAOZD.(1)求证:直线昇尸是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的综合题
1.如图,AB 是⊙O 的弦,AB=4,过圆心O 的直线垂直AB 于点D,交⊙O 于点C 和
1
点E,连接A C、B C、O B,c o s∠A C B=,延长O E到点F,使E F=2O E.
3
(1)求证:∠B O E=∠A C B;
(2)求⊙O 的半径;
(3)求证:BF 是⊙O 的切线.
2.如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC、BC,分别与⊙O 相交于点D、点E,且 AD D E ,过点D作D F⊥B C于点F,连接B D、D E、A E.
(1)求证:DF 是⊙O 的切线;
(2)试判断△D E C的形状,并说明理由;
(3)若⊙O的半径为5,A C=12,求 s i n∠E A B的值.
3.(2016 长沙 9 分)如图,四边形ABCD 内接于⊙O,对角线AC 为⊙O 的直径,过点C作A C的垂线交A D的延长线于点E,点F为C E的中点,连接D B,D C,D F.
(1)求∠C D E的度数;
(2)求证:DF 是⊙O 的切线;
(3)若A C=25D E,求t a n∠A B D的值.
4.(2016德州10分)如图,⊙O是△A B C的外接圆,A E平分∠B A C交⊙O于点E,交B C 于点D,过点E作直线l∥B C.
(1)判断直线l 与⊙O 的位置关系,并说明理由;
(2)若∠A B C的平分线B F交A D于点F,求证:B E=E F;
(3)在(2)的条件下,若DE=4,DF=3,求AF 的长.
5.(2015永州)如图,已知△A B C内接于⊙O,且A B=A C,直径A D交B C于
点E,F是O E上的一点,使C F∥B D.
(1)求证:BE=CE;
(2)试判断四边形BFCD 的形状,并说明理由;
(3)若BC=8,AD=10,求CD 的长.
6(2017原创)如图,A B切⊙O于点B,A D交⊙O于点C和点D,点E为D C 的中点,连接O E交C D于点F,连接B E交C D于点G.
(1)求证:AB=AG;
(2)(2)若D G=D E,求证:G B2=G C·G A;
3
(3)在(2)的条件下,若t a n D=,E G=
,求⊙O 的半径.
410
7.(2015达州)在△A B C的外接圆⊙O中,△A B C的外角平分线C D交⊙O于点D,F为 A D 上一点,且 AF B C ,连接D F,并延长D F交B A的延长线于点E
. (1)判断DB 与DA 的数量关系,并说明理由;
(2)求证:△B C D≌△A F D;
(3)若∠A C M=120°,⊙O的半径为5,D C=6,求D E的长.
8.如图,A B为⊙O的直径,P是B A延长线上一点,P C切⊙O于点C,C G是⊙O的弦,C G⊥A B,垂足为点D.
(1)求证:△A C D∽△A B C;(2)求证:∠P C A=∠A B C;
3
(3)过点A作A E∥P C交⊙O于点E,交C G于点F,连接B E,若 s i n P=,C F=5,
5
求BE 的长.
9、(2016大庆9分)如图,在R t△A B C中,∠C=90°,以B C为直径的⊙O交斜边A B 于点M,若H 是AC 的中点,连接MH。

(1)求证:MH 为⊙O的切线;
3 3
(2)(2)若M H=,t a n∠A B C=,求⊙O的半径;
2 4
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,A D与⊙O相切于N点,过N 点作NQ⊥BC,垂足为E,且交⊙O 于Q 点,求线段NQ 的长度.
10.如图,△A B C为⊙O的内接三角形,P为B C延长线上一点,∠P A C=∠B,A D为⊙O 的直径,过C作C G⊥A D交A D于E,交A B于F,交⊙O于G.
(1)判断直线PA 与⊙O 的位置关系,并说明理由;
(2)求证:A G2=A F·A B;
(3)若⊙O 的直径为 10,AC=25,AB=45,求△A F G的面积.
11.(2016鄂州10分)如图,在R t△A B C中,∠A C B=90°,A O是△A B C的角平分线,以O为圆心,O C为半径作⊙O.
(1)求证:AB 是⊙O 的切线;
1 AE
(2)已知AO 交⊙O 于点E,延长AO 交⊙O 于点D,tan D=,求的值;
2 AC
(3)在(2)的条件下,设⊙O 的半径为 3,求AB 的长.。

相关文档
最新文档