数字信号处理习题及答案
数字信号处理习题及答案1
数字信号处理习题及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n)D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理习题与答案
==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理习题集大题及答案
1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。
(3)试求8点圆周卷积。
解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。
解0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 214][]0[190===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(910)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππy(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。
数字信号处理教程课后习题及答案
6.试判断:
是否是线性系统?并判断(2),(3)是否是移不变系统?
分析:利用定义来证明线性:满足可加性和比例性, T [a1 x1 (n ) + a 2 x2 (n )] = a1T [ x1 (n )] + a2T [ x2 (n )] 移不变性:输入与输出的移位应相同 T[x(n-m)]=y(n-m)。
,
(2)x(n) = R3(n)
,
(3)x(n) = δ (n − 2) ,
(4)x(n) = 2n u(−n − 1) ,
h(n) = R5(n) h(n) = R4 (n) h(n) = 0.5n R3(n) h(n) = 0.5n u(n)
分析:
①如果是因果序列 y (n ) 可表示成 y (n ) ={ y (0) , y(1) , y(2) ……},例如小题(2)为
y1 (1) = ay1 (0) + x1 (1) = 0 y1 (2) = ay1 (1) + x1 (2) = 0
┇
8
y1(n) = ay1(n − 1) + x1(n) = 0 ∴ y1 (n) = 0 , n ≥ 0 ii) 向 n < 0 处递推,将原方程加以变换
y1(n + 1) = ay1(n) + x1(n + 1)
结果 y (n ) 中变量是 n ,
∞
∞
∑ ∑ y (n ) =
x ( m )h (n − m ) =
h(m)x(n − m) ;
m = −∞
m = −∞
②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,
数字信号处理考试试题及答案
数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x(n)的长度为N,h(n )的长度为M ,则其卷积和的长度L 为 N+M—1。
4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率-离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样.6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n )一定绝对可和。
7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。
8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高.10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。
11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器.12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。
14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法.15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
二、选择题(20分,每空2分)1。
数字信号处理课后习题答案(全)1-7章
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
(2) y(n)=x(n)+x(nN+1)k 0
(3) y(n)= x(k)
(4) y(n)=x(n-nn0)n0
(5) y(n)=ex(n)
k nn0
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
数字信号处理习题集大题与答案
1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。
(3)试求8点圆周卷积。
解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。
解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。
数字信号处理试题及答案
数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。
要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。
以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。
2. 解释频率抽样定理(Nyquist定理)。
3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。
请解释它们的区别,并举例说明各自应用的情况。
2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。
它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。
DSP可以实现信号的滤波、变换、编码、解码、增强等功能。
2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。
数字信号处理习题集附答案
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?2.答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
(b )采用同样的方法求得kHz 201=,整个系统的截止频率为 二、离散时间信号与系统频域分析 计算题:1.设序列)(n x 的傅氏变换为)(ωj e X ,试求下列序列的傅里叶变换。
数字信号处理习题及答案
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理练习及答案
数字信号处理练习及答案数字信号处理练习题⼀、填空题1、⼀个线性时不变因果系统的系统函数为()11111-----=az z a z H ,若系统稳定则a 的取值范围为。
2、输⼊()()n n x 0cos ω=中仅包含频率为0ω的信号,输出()()n x n y 2=中包含的频率为。
3、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的,⽽周期序列可以看成有限长序列的。
4、对长度为N 的序列()n x 圆周移位m 位得到的序列⽤()n x m 表⽰,其数学表达式为()n x m = ,它是序列。
5、对按时间抽取的基2—FFT 流图进⾏转置,即便得到按频率抽取的基2—FFT 流图。
6、FIR 数字滤波器满⾜线性相位条件()()0,≠-=βτωβωθ时,()n h 满⾜关系式。
7、序列傅⽴叶变换与其Z 变换的关系为。
8、已知()113--=z z z X ,顺序列()n x = 。
9、()()1-z H z H 的零、极点分布关于单位圆。
10、序列()n R 4的Z 变换为,其收敛域为;已知左边序列()n x 的Z 变换是()()()2110--=z z z z X ,那么其收敛域为。
11、使⽤DFT 分析模拟信号的频谱时,可能出现的问题有、栅栏效应和。
12、⽆限长单位冲激响应滤波器的基本结构有直接型,和三种。
13、如果通⽤计算机的速度为平均每次复数乘需要s µ5,每次复数加需要s µ1,则在此计算机上计算210点的基2FFT 需要级蝶形运算,总的运算时间是s µ。
14、线性系统实际上包含了和两个性质。
15、求z 反变换通常有围线积分法、和等⽅法。
16、有限长序列()()()()()342312-+-+-+=n n n n n x δδδδ,则圆周移位()()()n R n x N N 2+= 。
17、直接计算LN 2=(L 为整数)点DFT 与相应的基-2 FFT 算法所需要的复数乘法次数分别为和。
(完整word版)数字信号处理试卷及答案(word文档良心出品)
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理习题及解答..
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 3 解答 X(z)有两个极点: z1=0.5, z2=2, 因为收敛域总是以极点为 界, 因此收敛域有三种情况: |z|<0.5,0.5<|z|<2, 2<|z|。 三种收敛域对应三种不同的原序列。 (1)收敛域|z|<0.5:
j
1 1 1 ae j FT[ xo (n)] j Im[ X (e ] j Im[ ] j Im[ ] 1 ae j 1 ae j 1 ae j a sin 1 a 2 2a cos
j
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 已知长度为N=10的两个有限长序列:
(2) x2 (n)
1 1 δ(n 1) δ(n) δ(n 1) 2 2
数字信号处理习题及解答
第三章 信号的傅里叶变换 2 解答
(1)
X 1 (e
j
)
n
δ(n 3) e jn e j3
(2)
X 2 (e j )
n
x2 (n)e jn
1 0 ≤ n ≤ 4 x1 (n) 0 5≤ n≤ 9
1 x 2 ( n) 1
0≤ n ≤ 4 5≤ n ≤ 9
做图表示x1(n)、 x2(n)和y(n)=x1(n) * x2(n), 循环卷积区间长度L=10。
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 解答 x1(n)、 x2(n)和y(n)=x1(n) * x2(n)分 别如题3解图(a)、 (b)、 (c) 所示。
数字信号处理大题(含答案)
四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。
解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。
对应三种不同的原序列。
-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。
解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。
数字信号处理习题及答案
数字信号处理习题及答案3 .已知,通过直接计算卷积和的办法,试确定单位抽样响应为的线性移不变系统的阶跃响应。
9.列出下图系统的差分⽅程,并按初始条件求输⼊为时的输出序列,并画图表⽰。
解:系统的等效信号流图为:解:根据奈奎斯特定理可知:6. 有⼀信号,它与另两个信号和的关系是:其中,已知,解:根据题⽬所给条件可得:⽽所以8. 若是因果稳定序列,求证:证明:∴9.求的傅⾥叶变换。
解:根据傅⾥叶变换的概念可得:13. 研究⼀个输⼊为和输出为的时域线性离散移不变系统,已知它满⾜并已知系统是稳定的。
试求其单位抽样响应。
解:对给定的差分⽅程两边作Z变换,得:,为了使它是稳定的,收敛区域必须包括即可求得16. 下图是⼀个因果稳定系统的结构,试列出系统差分⽅程,求系统函数。
当时,求系统单位冲激响应, 画出系统零极点图和频率响应曲线。
由⽅框图可看出:差分⽅程应该是⼀阶的则有因为此系统是⼀个因果稳定系统; 所以其收敛17.设是⼀离散时间信号,其z 变换为,对下列信号利⽤求它们的z变换:(a) ,这⾥△记作⼀次差分算⼦,定义为:(b) {(c)解:(a)(b) ,1.序列x(n)是周期为6的周期性序列,试求其傅⽴叶级数的系数。
∑∑=-===56265)(~)(~)(X~:nnkjnknexWnxkπ解kj k j k j kj kj e e e e e 56 2462362262621068101214πππππ-----+++++=计算求得:。
339)5(~; 33)4(~ ; 0)3(~; 33)2(~;339)1(~;60)0(~j X j X X j X j X X +=-==+=-==。
并作图表⽰试求设)(~),(~)(~ .))(()(~),()(.264k X n x k X n x n x n R n x ==∑∑=-===56265)(~)(~)(~:n nkj nkn e n x W n x k X π解k j k j kj e e e πππ---+++=3231。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理课后习题答案 全全全
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
解:首先写出输入信号的取样值(a) 该系统叫做恒等系统。
5. ①设某系统用差分方程y (n )=ay (n -1)+x (n )描述,输入x (n )=δ(n )。
若初始条件y(-1)=0,求输出序列y (n )。
得x(n)1)ax(n 0及差分方程y(n)1)解:由初始条件y(+-==-)()()(,时)2()1()2(,时2)1()0()1(时11)0()1()0(,时02n u a n y a n y n n a δay y n a δay ,y n δay y n n n ====+===+===+-==若初始条件改为y(-1)=1,求y(n))()1()(方程,1)1(初始条件n x n ax n y y +-==-)()1()()1()(,时)1()2()1()2(,时2)1()1()0()1(,时11)0()1()0(,时02n u a a n y a a n y n n a a δay y n a a δay y n a δay y n n n +=+==+=+==+=+==+=+-==②设差分方程如下,求输出序列y(n)。
0n 0,y(n)δ(n),x(n) , x(n)1)ay(n y(n)>==+-=))()(()1(解:1n δn y a n y -=--,)())1()1(()2(,时1))0()0(()1(,时00))1()1(()0(,时121111<-=-=---=--=-=-=-==-==-----n a n y a δy a y n a δy a y n δy a y n n③设LTI 系统由下面差分方程描述:1)x(n 21x(n)1)y(n 21y(n)-++-=。
设系统是因果的, 利用递推法求系统的单位脉冲响应。
解: 令x (n )=δ(n ), 则1)δ(n 21δ(n)1)h(n 21h(n)-++-=n=0时,11)δ(21δ(0)1)h(21h(0)=-++-=n=1时,12121δ(0)21δ(1)h(0)21h(1)=+=++=n=2时,21h(1)21h(2)==n=3时,221h(2)21h(3)⎪⎪⎭⎫⎝⎛== 所以,δ(n)1)u(n 21h(n)1n +-⎪⎪⎭⎫⎝⎛=-6.离散时间系统。
请用基本组件,以框图的形式表示该系统。
解:7.① ①判断下列系统是线性还是非线性系统。
解:(a )系统为线性系统。
(b )系统为线性系统。
(c )系统是非线性的。
(d )系统没有通过线性性检验。
•系统没有通过线性性检验的原因并不是因为系统是非线性的(实际上,系统的输入输出表达式是线性的),而是因为有个常数B。
因此,输出不仅取决于输入还取决于常数B。
所以,当时B≠0,系统不是松驰的,如果B=0,则系统是松驰的,也满足线性检验。
(e)系统是非线性的。
②证明是线性系统。
证:②证明y(n)=nx(n)系统是移变系统。
证:③①判断下述系统是因果的还是非因果的。
②下列哪一个单位抽样响应所表示的系统不是因果系统?( D )A. δ(n)B. h(n)=u(n)C. h(n)=u(n)-u(n-1)D. h(n)=u(n)-u(n+1)④⑤以下序列是LTI 系统的单位序列响应h(n),判断系统的因果性和稳定性。
1)n u(0.34)(2)(1)δ(n n --+答案 (1)非因果、稳定 (2)非因果、不稳定。
⑥判断题: 一个系统是因果系统的充要条件是,单位序列响应h(n)是因果序列。
(错) 8.① 考虑下面特殊的有限时宽序列。
把序列分解成冲激序列加权和的形式。
解:②将序列x(n)用一组幅度加权和延迟的冲激序列的和来表示 。
∑-=-=-+-+-+++-=31k k)x(k)δ(n 3)x(3)δ(n 2)x(2)δ(n 1)x(1)δ(n x(0)δ(n)1)1)δ(n x(x(n)③若⎩⎨⎧≤≤=其他402)(n n x n 用单位序列及其移位加权和表示 x(n)= )4(16)3(8)2(4)1(2)(-+-+-+-+n n n n n δδδδδ。
9. ① 一个LTI 系统的单位冲激响应和输入信号分别为 求系统对输入的响应。
②一个松弛线性时不变系统。
求系统对于x(n)的响应y(n)。
解:用式中的卷积公式来求解③一个线性时不变系统的冲激响应为。
请确定该系统的单位阶跃响应。
解:④设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下几种情况,分别求输出y(n)。
(1)h(n)=R4(n) , x(n)=R5(n)(2)h(n)=2R4(n) , x(n)=δ(n)-δ(n-2)解:(1){1,2,3,4,4,3,2,1}(2){2,2,0,0,-2,-2}⑤设系统的单位脉冲响应h(n)=u(n),,求对于任意输入序列x(n)的输出y(n),并检验系统的因果性和稳定性10.①考虑一个LTI,该系统的冲激响应为,确定a的取值范围,使得系统稳定。
解:首先,系统是因果的因此,系统稳定的条件是|a|<1。
否则,系统是不稳定。
实际上,h(n)必须随n 趋于无穷呈指数衰减到0,系统才是稳定的。
②考虑冲激响应为的线性时不变系统,若该系统稳定,则a和b的取值范围为多少?解:显然系统是非因果的,所以,系统稳定的条件是 |a|<1 且 |b|>1 。
11. 将图示周期矩形脉冲信号展成指数形式傅立叶级数解:直接代入公式有12. 数字信号是指___时间幅度都离散的 _______的信号。
判断:数字信号处理的主要对象是数字信号,且是采用数值运算的方法达到处理目的的。
( 对 ) 判断:单位阶跃序列与矩形序列的关系是u(n)N)u(n (n)R N --=。
( 错 )判断:因果系统一定是稳定系统。
( 错 )判断:如果系统对输入信号的运算关系在整个运算过程中不随时间变化,则这种系统称为时不变系统。
(对) 判断:所谓稳定系统是指有界输入、有界输出的系统。
( 对 )判断:差分方程本身能确定该系统的因果和稳定性。
(错。
差分方程本身不能确定该系统的因果和稳定性,还需要用初始条件进行限制。
)判断:若连续信号属带限信号,最高截止频率为Ωc ,如果采样角频率Ωs<2Ωc ,那么让采样信号通过一个增益为T 、 截止频率为Ωs/2的理想低通滤波器,可以唯一地恢复出原连续信号。
( 错 。
角频率Ωs ≥2Ωc ) 设系统的单位抽样响应为h(n),则系统因果的充要条件为( 当n<0时,h(n)=0 )=======================第二章 z 变换与DTFT =======================1. ①设x (n )=R N (n ),求x (n )的傅里叶变换。
)2/sin()2/sin(e )e e (e )e e (e e 1e 1e e )()e (解:2/)1(j 2/j 2/j 2/j 2/j 2/j 2/j j j 1j j j ωωωωωωωωωωωωωωN n R X N N N N N nN nnnN --------∞-∞=-=--=--=--===∑∑ 当N =4时,其幅度与相位随频率ω的变化曲线如图所示:②序列2)δ(n x(n)-=的傅里叶变换为 ω2j e -。
③设系统的单位脉冲响应h (n )=a n u (n ), 0<a <1, 输入序列为x (n )=δ(n )+2δ(n -2)。
完成下面各题: (1) 求出系统输出序列y (n ); (2) 分别求出x (n )、 h (n )和y (n )的傅里叶变换。
2)u(n 2a u(n)a 2)]δ(n [δ(n)u(n)a x(n)h(n)解:(1)y(n)2n n n -+=-+*=*=-(2)j2ωn jωnjω2e 12)]e2δ(n [δ(n))X(e -∞-∞=-+=-+=∑jωn jωn n n jωnn jωae11e a u(n)ea )H(e -∞=-∞-∞=--===∑∑ jωj2ωjωjωjωae12e 1)X(e )H(e )Y(e ---+=⋅= ④n))的傅里叶反变换x(。
求X(e π|ω|ω0,ω|ω|1,)1、已知X(e jw 00jω⎩⎨⎧≤<<=πnn sinωdωe 2π1解:x(n)0ωωjωn 00==⎰-2.sin(πk/8)sin(πk/2)e )e (ee)e(e e e1e 1(n)ex (k)X 解:k 83πj k 8πj k 8πj k 8πj k 2πj k 2πj k 2πj k 4πj jkπ7n kn82πj ~~-------=-=--=--==∑ 3. ①②4. ①x (n )=u (n ), 求其Z 变换。