数字信号处理习题集附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数字信号处理概述

简答题:

1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?

答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:

2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。

第二章离散时间信号与系统分析基础

一、连续时间信号取样与取样定理

计算题:

1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ω

πωj e H rad 时,在数 — 模变换中

所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为

因此 Hz T

f c c 625161

2==Ω=

π 由于最后一级的低通滤波器的截止频率为T

π,因此对T

8π没有影响,

故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

(b )采用同样的方法求得kHz 201=,整个系统的截止频率为 二、离散时间信号与系统频域分析 计算题:

1.设序列)(n x 的傅氏变换为

)(ωj e X ,试求下列序列的傅里叶变换。 (1))2(n x (2))(*n x (共轭) 解:(1))2(n x 由序列傅氏变换公式 DTFT ∑∞

-∞

=-=

=n n

j j e

n x e X n x ωω)(()]([)

可以得到

DTFT 2

)()2()]2([n j n n jn e

n x e

n x n x '

-∞

-∞

='-∑∑'=

=

ωω

为偶数

(2))(*n x (共轭) 解:DTFT )(**])([)(*)(*ωωω

j n n jn jn e X e n x e

n x n x -∞

-∞

=∞

-∞

=-===

2.计算下列各信号的傅里叶变换。

(a )][2n u n

- (b )]

2[)41

(+n u n

(c )]24[n -δ (d )n

n )

21(

解:(a )∑∑-∞

=--∞

-∞

==

-=

2

][2)(n n j n

n

j n n

e e

n u X ωωω

(b )∑∑∞

-=--∞

-∞==+=2

)41(]2[41)(n n j n n j n n e e n u X ωωω)( (c )ωωωδω2]24[][)(j n n

j n

j n e e

n e

n x X -∞

-∞

=--∞

-∞==-=

=

∑∑

(d )]12

1112111[21)(ˆ--+-==--∞

-∞=∑ω

ωωωj j n j n n e e e X

)( 利用频率微分特性,可得

3.序列)(n x 的傅里叶变换为)(jw e X ,求下列各序列的傅里叶变换。 (1))(*

n x - (2))](Re[n x (3) )(n nx

解: (1))(*])([)(*)

(*

jw n n jw n jwn

e X e

n x e

n x =-=

-∑∑∞

-∞

=--∞

-∞=-

(2)∑∑∞

-∞=-*-*∞

-∞=-+=+=

n jw jw jwn

n jwn

e X e X e n x n x e

n x )]()([21)]()([2

1)](Re[ (3)dw e dX j e n x dw d j dw e n dx j e

n nx jw n jwn

n jwn n jwn

)()()(1)(==-=∑∑∑∞-∞=-∞

-∞

=-∞

-∞

=-

4.序列)(n x 的傅里叶变换为)(jw

e X ,求下列各序列的傅里叶变换。 (1))(n x * (2))](Im[n x j (3) )(2

n x

解:(1))(])([])([)()())((jw n n w j n n w j n jwn

e X e n x e

n x e

n x -**∞

-∞

=--∞

-∞

=*

---∞

-∞

=-*

===

∑∑∑

(2) (3)

5.令)(n x 和)(jw e X 表示一个序列及其傅立叶变换,利用

)(jw e X 表示下面各序列的傅立叶变换。

(1))2()(n x n g = (2)()⎩

⎧=为奇数为偶数

n n n x n g 02)(

解:(1)∑∑∑∞

-∞

=-∞

-∞

=-∞

-∞

=-=

=

=

为偶数

k k w k j n jnw

n jnw

jw

e

k x e

n x e

n g e G 2

)()2()()(

(2))()()2()()(222w j r w

jr r rw

j n jnw

jw

e X e

r x e

r g e

n g e G ==

=

=

∑∑∑∞

-∞

=-∞

-∞

=-∞

-∞

=-

6.设序列)(n x 傅立叶变换为

)(jw

e X ,求下列序列的傅立叶变换。 (1))(0n n x - 0n 为任意实整数 (2)()⎩

⎨⎧=为奇数为偶数n n n x n g 02)(

(3))2(n x

解:(1)0

)(jwn jw e e X -⋅

(2) )2(n x n 为偶数 0 n 为奇数 (3))()2(2

jw e

X n x ↔

7.计算下列各信号的傅立叶变换。

相关文档
最新文档