中考数学总复习资料大全(精华版)
中考数学总复习资料大全
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
初三中考数学总复习资料(备考大全)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
中考数学知识点复习 总复习资料大全(精华版)-精编
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数实数负数整数分数无理数有理数正数整数分数 无理数有理数│a │ 2aa (a ≥0)(a 为一切实数)偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、 应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
初三中考数学总复习资料备考大全
初三中考数学总复习资料备考大全本文将为你提供一份初三中考数学总复习资料备考大全。
以下内容将根据数学知识点分成小节,让你更好地复习和备考。
一、整数与有理数
整数的概念、性质及运算法则;
有理数的概念、性质及运算法则;
整式的概念、性质及运算法则。
二、分数与比例
分数的概念、性质及运算法则;
比例与等比例的概念、性质及运算法则;
百分数与比例的概念及运算。
三、代数式与方程式
代数式的概念、性质及运算法则;
一元一次方程及其应用;
一元一次方程组的概念及其解法;
两数之和与差的运算、积的定义。
四、平面图形
平面图形的基本概念与性质;
相似图形的概念及性质;
直角三角形及其三角函数;平行四边形及其性质;
梯形、菱形和矩形的性质。
五、空间与立体图形
空间中点、线、面的概念;直线与平行线的判定;
平行线之间的距离及其应用;多面体的概念及性质;
柱体和锥体的概念及性质。
六、数据与统计
统计调查的方法;
统计图的绘制及分析。
七、函数与图像
函数的概念、性质及表示法;函数的增减性与最值;
一次函数与一次函数方程。
八、数与式
数列的概念、性质及表示法;
等差数列的通项和求和公式。
九、概率与统计
概率的概念、性质及基本应用;
统计与概率的综合应用。
以上所列出的知识点是初三中考数学复习备考的重点内容。
希望你能认真学习每一个知识点,并通过大量的练习来加深理解。
祝你取得优异的成绩!。
初三数学知识点复习资料(精选3篇)
初三数学知识点复习资料〔精选3篇〕篇1:初三数学知识点分类复习资料代数局部:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数) 几何局部:线段、角相交线、平行线三角形、四边形、相似形、圆。
1、实数的分类有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。
如:-3,,0.231,0.737373...无理数:无限不环循小数叫做无理数如:π,-,0.0010001...(两个1之间依次多1个0)。
实数:有理数和无理数统称为实数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定构造的数,如0.0010001...等;(4)某些三角函数,如sin60o等。
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:“神似”或“形似”都不能作为判断的标准.3、非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:假设干个非负数的和为0,那么每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵敏运用。
①画一条程度直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)。
②任何一个有理数都可以用数轴上的一个点来表示。
③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
中考数学总复习资料大全(精华版)
1.样本平均数:
⑴ ;
⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);
⑶加权平均数: ;
⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:
⑴ ;
⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
则 ;
⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、应用举例(略)
第四章直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
㈣注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。㈤注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆内容提要☆
1.定义:a>b、a<b、a≥b、a≤b、a≠b。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学总复习资料代数部分第⼀章:实数基础知识点:⼀、实数的分类:1、有理数:任何⼀个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、⽆理数:初中遇到的⽆理数有三种:开不尽的⽅根,如、;特定结构的不限环⽆限⼩数,如1.101001000100001……;特定意义的数,如π、°等。
3、判断⼀个实数的数性不能仅凭表⾯上的感觉,往往要经过整理化简后才下结论。
⼆、实数中的⼏个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是;(2)a和b 互为倒数;(3)注意0没有倒数3、绝对值:(1)⼀个数a 的绝对值有以下三种情况:(2)实数的绝对值是⼀个⾮负数,从数轴上看,⼀个实数的绝对值,就是数轴上表⽰这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号⾥⾯的实数进⾏数性(正、负)确认,再去掉绝对值符号。
4、n次⽅根(1)平⽅根,算术平⽅根:设a≥0,称叫a的平⽅根,叫a的算术平⽅根。
(2)正数的平⽅根有两个,它们互为相反数;0的平⽅根是0;负数没有平⽅根。
(3)⽴⽅根:叫实数a的⽴⽅根。
(4)⼀个正数有⼀个正的⽴⽅根;0的⽴⽅根是0;⼀个负数有⼀个负的⽴⽅根。
三、实数与数轴1、数轴:规定了原点、正⽅向、单位长度的直线称为数轴。
原点、正⽅向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每⼀个点都表⽰⼀个实数,⽽每⼀个实数都可以⽤数轴上的唯⼀的点来表⽰。
实数和数轴上的点是⼀⼀对应的关系。
四、实数⼤⼩的⽐较1、在数轴上表⽰两个数,右边的数总⽐左边的数⼤。
2、正数⼤于0;负数⼩于0;正数⼤于⼀切负数;两个负数绝对值⼤的反⽽⼩。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。
初中中考数学总总结复习学习资料大全精华版本
中考数学总复习资料大全实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆重要概念1.数的分类及概念数系表:正整数整数0有理数(有限或无限循环性数 )负整数分数正分数实数负分数正无理数无理数 (无限不循环小数)负无理数说明:“分类〞的原那么:1〕相称〔不重、不漏〕2〕有标准整数有理数分数正数无理数实数0整数有理数分数负数无理数2.非负数:正实数与零的统称。
〔表为:x≥ 0〕常见的非负数有:a 2(a 为一切实数)│ a│a(a≥ 0)性质:假设干个非负数的和为0,那么每个非负担数均为0。
3.倒数:①定义及表示法②性质:≠ 1/a 〔 a≠± 1〕 ;a 中, a≠ 0;< a< 1 时 1/a > 1;a > 1 时, 1/a < 1;D.积为 1。
4.相反数:①定义及表示法②性质:≠ 0 时, a≠ -a;与 -a 在数轴上的位置;C.和为 0,商为 -1 。
5.数轴:①定义〔“三要素〞〕②作用: A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数〔正整数—自然数〕定义及表示:奇数: 2n-1偶数: 2n 〔 n 为自然数〕7.绝对值:①定义〔两种〕:代数定义:a(a ≥ 0)│a│ =-a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│ a│≥ 0,符号“││〞是“非负数〞的标志;③数 a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。
实数的运算运算法那么〔加、减、乘、除、乘方、开方〕运算定律〔五个—加法[乘法 ]交换律、结合律;[乘法对加法的] 分配律〕运算顺序: A.高级运算到低级运算;B.〔同级运算〕从“左〞到“右〞〔如5÷1× 5〕 ;C.(有括号时 )由“小〞到5“中〞到“大〞。
应用举例〔略〕附:典型例题: a、b、 x 在数轴上的位置如下列图,求证:│x-a│ +│ x-b │ =b-a.2.: a-b=-2 且 ab<0,〔 a≠ 0, b≠ 0〕,判断第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆重要概念分类:有理式整式代数式分式无理式样1.代数式与有理式a xb a、 b 的符号。
最新中考数学总复习资料大全(精华版)
中考数学总复习资料大全实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同4. 级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
应用举例(略)附:典型例题已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
(完整版)中考数学总复习资料
- 1 - 中考总复习1 有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a 和-a 互为相反数。
0的相反数是0。
a =-a 所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。
a =|a |所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
5、倒数定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如:43421Λan na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。
中考数学总复习资料大全(精华版) 通用版中考绝密复习资料
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
中考数学总复习资料大全(精华版) 01
第一章
★重点★ 实数的有关概念及性质,实数的运算
☆内容提要☆
一、
重要概念
1.数的分类及概念
数系表:
实数
有理数 实数
整数 (有限或无限循环性数)
分数
正整数 0 负整数 正分数
负分数
正无理数 无理数(无限不循环小数) 负无理数
说明:“分类”的原则:1)相称(不重、不漏) 2)有标准
偶数:2n(n 为自然数)
7.绝对值:①定义(两种):
代数定义:
a(a≥0) │a│= -a(a<0)
第 1 页 共 12 页
1
有理数
实数
正数
无理数 0有理数来自负数 无理数整数 分数
整数 分数
2.非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有:
a2
(a 为一切实数) │a│
a (a≥0
) 性质:若干个非负数的和为 0,则每个非负担数均为 0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a 中,a≠0;C.0<a<1 时 1/a>1;a>1 时,1/a<1;D.积为 1。
4.相反数: ①定义及表示法
②性质:A.a≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C.和为 0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
中考数学知识点复习 总复习资料大全(精华版)-精选
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种):实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数 有理数正数整数分数 无理数有理数│a │ 2aa (a ≥0)(a 为一切实数) a(a≥0)-a(a<0)│a │=代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
中考数学知识点总结(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况: ⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学总复习资料大全(精华版)重要概念及性质,代数式的运算法则和定律。
数的分类及概念包括正整数、整数、有理数、实数等。
其中有理数又可分为正分数、分数、负分数。
非负数指正实数和零的统称,常见的非负数有a²、|a|、a(a≥0)。
倒数的性质有A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1.相反数的性质有A.a≠时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.数轴的作用有A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
奇数、偶数、质数、合数的定义及表示为正整数—自然数。
绝对值的定义有代数定义和几何定义,其性质为│a│≥0,符号“││”是“非负数”的标志,数a的绝对值只有一个。
处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
实数的运算包括加、减、乘、除、乘方、开方等,其运算定律有五个:加法[乘法]交换律、结合律;[乘法对加法的]分配律。
运算顺序有高级运算到低级运算,同级运算从“左”到“右”,有括号时由“小”到“中”到“大”。
代数式的分类包括单项式、整式、多项式、有理式、分式、代数式、无理式等。
其中,多项式是由单项式相加(减)而成,有理式是多项式除以另一个多项式,分式是有理式的一种特殊形式。
代数式的运算法则包括加减同类项、乘法公式、因式分解等,其运算定律有加法[乘法]交换律、结合律,乘法对加法的分配律。
代数式是由数或表示数的字母用运算符号连结而成的式子。
如果一个代数式只包含一个数或一个字母,那么它也是一个代数式。
有理式是包含加、减、乘、除、乘方运算的代数式。
如果一个有理式中没有除法运算,或者虽有除法运算但除式中不含有字母,那么它就是一个整式。
如果一个有理式中含有除法运算,并且除式中含有字母,那么它就是一个分式。
单项式是指没有加减运算的整式,它可以是一个数字或一个字母,也可以是它们的积。
多项式是几个单项式的和。
在对代数式进行分类时,需要根据代数式的外形来进行判断。
例如,x2=x和x2=│x│属于同一类别。
系数是指代数式中字母前面的数字,指数是指字母上面的小数字。
系数和指数的区别在于位置和表示的意义。
同类项是指字母相同且相同字母的指数相同的单项式。
同类项可以通过乘法分配律进行合并。
根式是表示方根的代数式,无理式是含有关于字母开方运算的代数式。
需要注意的是,3和7是根式,但不是无理式,它们是无理数。
算术平方根是指一个正数的正的平方根。
它与绝对值的区别在于,绝对值中的a可以是任何实数,而算术平方根中的a 必须是非负数。
同类二次根式是指被开方数相同的二次根式,最简二次根式是指被开方数的因数是整数,因式是整式,且被开方数中不含有开得尽方的因数或因式的二次根式。
分母有理化是指将分母中的根号划去。
指数是表示幂的运算符号,a的n次幂表示将a连乘n次。
零指数是指a的0次幂等于1,负整指数是指a的负p次幂等于1除以a的p次幂。
分式具有加、减、乘、除、乘方、开方等运算法则。
分式的基本性质包括约分、通分和分子分母互换。
分式也遵循符号法则和繁分式的化简方法。
整式的运算法则包括去括号和添括号法则。
幂具有运算性质,例如a的m次幂乘以a的n次幂等于a的m+n次幂。
5.乘法法则:有三种情况,分别是单个数乘单个数、单个数乘多个数、多个数乘多个数。
6.乘法公式:正逆两种情况,分别为(a±b)²=a²±2ab+b²和(a+b)(a-b)=a²-b²,以及33(a±b)(a ab+b)=a²±b²。
7.除法法则:有两种情况,分别是单个数除以单个数和多个数除以单个数。
8.因式分解:有五种方法,分别是定义、提公因式法、公式法、十字相乘法、分组分解法和求根公式法。
9.算术根的性质:包括a²=a、√a×√b=√ab(其中a≥0,b≥0)和√(a/b)=√a/√b(其中a≥0,b>0)。
10.根式运算法则:包括加法法则(合并同类二次根式)、乘除法法则和分母有理化的三种方法。
11.科学记数法:形式为a×10^n(其中1≤a<10,n是整数)。
第三章统计初步重要概念:1.总体:指考察对象的全体。
2.个体:总体中的每个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数量。
5.众数:一组数据中出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,位于最中间位置的一个数或最中间位置的两个数据的平均数。
计算方法:1.样本平均数:⑴ x=(x1+x2+。
+xn)/n⑵若x1=x1-a,x2=x2-a。
xn=xn-a,则x=x+a(其中a为常数,x1,x2.xn接近较整的常数a)。
⑶加权平均数:x=(x1f1+x2f2+。
+xkf k)/(f1+f2+。
+fk=n)⑷平均数刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ s²=[(x1-x)²+(x2-x)²+。
+(xn-x)²]/n⑵若x1=x1-a,x2=x2-a。
xn=xn-a,则s²=[(x1+a)²+。
+(xn+a)²]/n(其中a为接近x1、x2.xn平均数的整数);若x1、x2.xn较小较整,则s²=1/2[(x1+x2+。
+xn)²/n-(x1²+x2²+。
+xn²)/n²]。
1.样本方差是用来描述数据波动大小的特征数,当样本容量较大时,样本方差可以用来估计总体方差。
2.样本标准差可以通过样本方差求得。
3.本章重点介绍了直线形的相关概念、判定和性质,包括直线、相交线、平行线、线段、射线、角等。
4.在直线形中,我们介绍了线段的中点及其表示,直线和线段的基本性质,以及两点间的距离和角的相关概念和表示方法。
5.我们还研究了垂线及其基本性质,对顶角及其性质,平行线的判定和性质,以及命题、公理、定理和逆命题的概念。
6.在三角形中,我们介绍了三角形的定义,以及角和边的关系,包括内角和、外角和、内角和的推论、外角和、n边形内角和、n边形外角和、两边之和大于第三边、两边之差小于第三边等。
7.我们还研究了三角形的主要线段,包括高线、中线、角平分线、中垂线和中位线,以及一般三角形和特殊三角形的判定和性质。
8.在全等三角形中,我们介绍了SAS、ASA、AAS、SSS 等判定方法,以及等腰三角形、等边三角形、直角三角形、等腰直角三角形的特殊性质。
9.最后,我们研究了四边形的分类表和相关概念。
1.一般性质(角)⑴内角和为360度。
⑵顺次连接各边中点可得到平行四边形。
推论1:顺次连接对角线相等的四边形各边中点可得到菱形。
推论2:顺次连接对角线互相垂直的四边形各边中点可得到矩形。
⑶外角和为360度。
2.特殊四边形定义→ 性质→ 判定⑴研究它们的一般方法:对面边角对称积角性质线轴中心对称⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定。
⑶判定步骤:四边形→ 平行四边形→ 矩形→ 正方形→ 菱形。
⑷对角线的纽带作用:相等且互相平分:矩形垂直相等互相平分:平行四边形、正方形相等且互相垂直互相平分:菱形相等垂直:菱形互相垂直平分:矩形互相垂直平分且相等:正方形3.对称图形⑴轴对称(定义及性质)。
⑵中心对称(定义及性质)。
4.有关定理:①平行线等分线段定理及其推论1、2.②三角形、梯形的中位线定理。
③平行线间的距离处处相等(如,找下图中面积相等的三角形)。
5.重要辅助线:①常连接四边形的对角线。
②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
四、应用举例(略)第五章方程(组)重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)内容提要☆一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)。
2.分类:一次方程二次方程高次方程有理方程分式方程无理方程二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c≠0)三、解法1.一元一次方程的解法:去分母→ 去括号→ 移项→ 合并同类项→ 系数化成1 → 解。
2.二元一次方程组的解法:⑴基本思想:“消元”。
⑵方法:①代入法②加减法。
四、一元二次方程1.定义及一般形式:ax²+bx+c=0 (a≠0)。
2.解法:⑴直接开平方法(注意特征)。
⑵配方法(注意步骤—推倒求根公式)。
⑶公式法:x1,2 = (-b±√(b²-4ac))/2a。
⑷因式分解法(特征:左边=0)。
3.根的判别式:Δ=b²-4ac。
4.根与系数顶的关系:x1+x2=-b/ax1x2=c/a2逆定理:若x1+x2=m,x1x2=n,则以x1,x2为根的一元二次方程为:x²-mx+n=0.一元二次方程可写为:$x^2-mx+n=0$。
常用等式有:$x_1+x_2=(x_1+x_2)-2x_1x_2$,$(x_1-x_2)=(x_1+x_2)-4x_1x_2$。
可化为一元二次方程的方程包括分式方程,其定义为去分母。
基本解法有去分母法和换元法,例如:$ \frac{3x-6}{2x+2}+\frac{2}{x-2}=7$,可以通过换元法化为一元二次方程。
在列方程(组)解应用题中,首先要审题理解题意,确定已知量和未知量,以及相关的相等关系。
然后设元,用含未知数的代数式表示相关的量,寻找相等关系并列方程,最后解方程并检验,得出答案。
列方程是解应用题的关键。
常用的相等关系包括行程问题(匀速运动)、配料问题、增长率问题、工程问题、几何问题等。
例如,在行程问题中,相遇问题的相遇处满足$s_{甲}+s_{乙}=s_{AB}$,而追及问题中,追上甲的位置满足$s_{甲}=s_{AC}+s_{乙}$。
需要注意的是,语言表述和解析式之间的转化是解题的关键之一。
1.函数的定义、自变量、因变量、函数值、定义域、值域以及函数图象的概念。
2.正比例函数y=kx(k>0)、反比例函数y=k/x(k>0)的图象、性质及应用。
3.一次函数y=kx+b(k≠0)的图象、性质及应用。
4.二次函数y=ax²+bx+c(a≠0)的图象、性质及应用。
三、函数的运算1.函数的四则运算及其性质。
2.函数复合及其性质。
四、函数的应用1.函数在实际问题中的应用。
2.函数图象的应用。