乘法分配律的应用(通用7篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法分配律的应用(通用7篇)
乘法分配律的应用篇1
教学目的:
1.引导学生能运用乘法分配律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:
一、复习准备
出示:
1.口算:
73+27 138×100
100-64 64×1
8×9×125
(4+40)×25
2.在□里填上适当的数。

302=300+□
(300+2)×43=300×□+2×□
=+□
(+3)×14=□+□×□
二、新授
我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102×( )
学生任意填上一个两位数。

老师迅速说出它的得数,而不用笔算。

出示:
计算102×43
小组讨论完成。

学生可能出现:
(1)(100+2)×43
(2)102×(40+3)
在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。

小练:
(1)在□里填上适当的数。

3001×84=□×84+□×84
92×203=92×(200+□)
=92×200+92×□
(2)计算102×24
出示:9×37+9×63
学生在练习本上独立完成。

(1)9×37+9×63
=333+567
=900
(2)9×37+9×63
=9×(37+63)
=9×100
=900
找出不同的方法,进行板演。

引导学生对比两种方法,重点理解、说明第二种方法。

小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。

在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。

另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。

小练:(80+8)×25
32×(200+3)
35×37+65×37
38×29+38
讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?
订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

三、巩固练习
1. 师生对出题。

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。

2.根据乘法分配律把相等的算式用“=”连接起来。

23×12+23×88
(35+45)×12
(11×25)×4
25×(4+40)
讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?
3.p38/5
四、小结
谈收获。

五、作业:p38/6—8
板书设计:
乘法分配律的应用
计算102×439×37+9×639×37+9×6338×29+38 102×43 =333+567 =9×(37+63)=38×(29+1) =(100+2)×43 =900 =9×100=38×40
=100×43+2×43 =900 =1520
=4300+86
=4386
乘法分配律的应用篇2
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
继续加深对乘法分配律的理解,能比较熟练地应用运算定律进行简算是教学的重点;学生对乘法分配律与乘法结合律的应用容易混淆,特别是反向应用乘法分配律是学习的难点.
教学过程设计
(一)复习准备
1.口算:
73+27 138×100 8×9×125
100-64 64×1 (4+40)×25
2.在□里填上适当的数.
302=300+□ 2003=2000+□
(300+2)×43 (2000+3)×14
=300×□+2×□ =2000×□+□×□
订正时说明根据什么填数.
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
同学们踊跃举手,如填上48,老师会迅速得出4896,填上72,得出7344……
老师就是根据乘法分配律进行简算的.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
板书:102×43
=(100+2)×43
=100×43+2×43
=4300+86
=4386
反馈:
(1)在括号里填上适当的数.
3001×84=( )×84+( )×84
92×203=92×(200+□)=92×200+92×□
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
9×37+9×63
=9×(37+63)
=9×100
=900
师生共同总结:
①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
反馈:计算下面各题.
①(80+8)×25 ②32×(200+3) ③35×37+65×37
订正时说明是怎样应用运算定律简算的.
④38×29+38
讨论:这个题符合乘法分配律的结构形式吗?从乘法的意义上考虑,你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?
小结我们在运用定律进行简算时,一定要认真审题,观察式子的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算.
(三)巩固反馈
1.师生对出题.
我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式.但这两个算式合起来要能应用乘法运算定律简算.
生:出72×46.
师:加上28×46.
板书:72×46+28×46
生计算:=(72+28)×46
=100×46
=4600
生:我出49×180.
师:加上49×20.
板书:49×180+49×20
生计算:=49×(180+20)
=49×200
=9800
生:我出63×49.
师:加上37×51.
板书:63×49+37×51
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
共同修改成:63×49+37×49或63×49+63×51.
2.根据乘法分配律把相等的式子用“=”连接起来.
23×12+23×88 23×(12+88)
(35+45)×12 35×45+45×12
(11×25)×4 11×4+25×4
25×(4+40) 25×4+25×40
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
课堂说明
前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.
新课分为两部分.
第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.
第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.
本节课的练习分两个层次.
一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.
第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.
板书设计
302=300+□
(300+2)×43=300×□+2×□
(2000+3)×14=2000×□+□×□
(80+8)×25
35×37+65×37
32×(200+3)
=38×(29+1)
=38×30
=1140
例6
(1)102×43
=(100+2)×43
=100×43+2×43
=4300+86
=4386
(2)9×37+9×63
=9×(37+63)
=9×100
=900
23×12+23×88= 23×(12+88)
12
(35+45)×12 35× +45×12
+
(11 25)×4 11×4+25×4
25×(4+40)= 25×4+25×40
特点
1.× +×
2.两个乘法里有一个相同的因数,把相同因数提到括号外面.
3.两个不同的因数,一般是能凑成整十、整百、整千的两个加数. 乘法分配律的应用篇3
教学内容:
乘法分配律的应用
教学目的:
1.引导学生能运用乘法分配律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:
一、复习准备
出示:
1.口算:
73+27 138×100
100-64 64×1
8×9×125
(4+40)×25
2.在□里填上适当的数。

302=300+□
(300+2)×43=300×□+2×□
=+□
(+3)×14=□+□×□
二、新授
我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102×()
学生任意填上一个两位数。

老师迅速说出它的得数,而不用笔算。

出示:
计算102×43
小组讨论完成。

学生可能出现:
(1)(100+2)×43
(2)102×(40+3)
在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。

小练:
(1)在□里填上适当的数。

3001×84=□×84+□×84
92×203=92×(200+□)
=92×200+92×□
(2)计算102×24
出示:9×37+9×63
学生在练习本上独立完成。

(1)9×37+9×63
=333+567
=900
(2)9×37+9×63
=9×(37+63)
=9×100
=900
找出不同的方法,进行板演。

引导学生对比两种方法,重点理解、说明第二种方法。

小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。

在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。

另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。

小练:(80+8)×25
32×(200+3)
35×37+65×37
38×29+38
讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?
订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

三、巩固练习
1. 师生对出题。

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。

2.根据乘法分配律把相等的算式用“=”连接起来。

23×12+23×88
(35+45)×12
(11×25)×4
25×(4+40)
讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?
3.p38/5
四、小结
谈收获。

五、作业:p38/6—8
课后小结:
第八课时:教学内容:
乘法运算定律的复习
教学目的:
1.引导学生能运用乘法运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:
一、知识点的复习
回忆《乘法的运算定律》这一小节的学习内容。

教师引导回忆,并相应板书。

二、联系实际复习
1.学生汇报课前收集的有关乘法的运算定律的相应知识。

2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。

教师把符合要求的题目贴上黑板。

学生根据前面的知识点的复习,进行题目的独立解答。

要求:选择自己喜欢的方法解答。

教师巡视,加以必要的指导。

有必要的题目可以让学生练习画线段图。

小组内交流。

全班汇报。

三、小结
学生谈收获
课后小结:
乘法分配律的应用篇4
教学内容:教科书第69页例6,练习十四的第3—10题。

教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

教具准备:将复习中的题目写在小黑板上。

教学过程:
一、复习。

教师出示式题:
1.(35+65)×37
2.35×37+65×37
3.85×(174+26)
4.85×174+85×26
5.(80+8)×25
6.80×25+8×25
7.32×(200+3) 8.32×300+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。

下面大家一起来计算。

第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。

大家抓紧时间做,比一比看哪几个组的同学算得快。

“哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。

而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、
7题,第2、4组做第6、8题。

“这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。

从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课
1.教学例6。

(1)教师出示例题,计算9×37+9×63。

教师:这道题是要计算两个乘积的和。

“仔细看一看这道题里的两个乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?”(先把37和63加起来,是100,再同9相乘,得900。

) “这是应用了什么运算定律?”
教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。

再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:102×43。

教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。

)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一
想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。

教师肯定学生的回答后,板书:102×43
=(100+2)×43
=100×43+2×43
=4386
上面计算中的第二步根据是什么?”(乘法分配律。

)
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;
三、课堂练习
做练习十四的题目。

1.第3题,让学生口算。

2.第4题,先让学生自己计算。

核对时让学生回答一“如果按运算顺序计算,应该先算什么?”“怎样计算简便?根据是什么?”
3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

4.第9题和第lo题。

先让学生独立做,核对时要让学生说出每个算式的意义。

5.提前做完的学生做第19*题。

乘法分配律的应用篇5
课题五:乘法分配律的应用
教学内容:教科书第64页例7,练习十四的第3一10题。

教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

教学难点:应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。

教学过程:
一、复习
教师出示试题:
1.(35+65)×37
2.35×37+65×37
3.85×(174+26)
4.85×174+85×26
5.(80+8)×25
6.80×25+8×25
7. 32×(200+3)8.32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。

下面大家一起来计算。

第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。

大家抓紧时间做,比一比看哪几个组的同学算得快。

“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。

而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。

从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课
1.教学例7
(1)教师出示例题:计算9×37+9×63。

教师:这道题是要计算两上乘积的和。

“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。


“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?
“(先把37和63加起来,是100,再同9相乘,得900。

)“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。

再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。


教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。

现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。

教师肯定学生的回答后。

板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律)。

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

三、课堂练习
做练习十四的题目。

1. 第3题,
2. 让学生口算。

当计算101×57和45×102时,
3. 提问:“你是怎样做的?得多少?”
2、第4题,5. 先让学生自己计算。

核对时让学生回答。

“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。

学生回答后教师把“38×?”中的“?”改为“1”。

“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

3、第7题,7. 先让学生独立做,8. 然后集体核对,9. 核对的要让学生说一说是怎样做的。

当核对“26×3”时,10. 学生说出计算方法后,11. 再让学生说一说计算过程。

学生发言后,12. 教师说明:26乘以3可以写作(20+6)×3,13. 根据乘法分配律等于20乘以3的积再加6乘以3的积,14. 这实际上是应用了乘法分配律。

这就是说,15. 我们过去学过的乘法口算有些应用了乘法分配律。

这道题中的第7小题应用乘法结合律比较简便,16. 第
4、6、8、9题应用乘法分配律比较简便。

4、第9题和第10题,18. 先让学生独立做,19. 核对时要让学生说出每个算式的意义。

5.提前做完的学生可以做第l9*题。

当学生想出一种算法后,还要引导学生想一想其它的做法。

这道题的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。

四、作业
练习十四的第5、6、8题。

乘法分配律的应用篇6
课题五:乘法分配律的应用
教学内容:教科书第64页例7,练习十四的第3一10题。

教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

教学难点:应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。

教学过程:
一、复习
教师出示试题:
1.(35+65)×37
2.35×37+65×37
3.85×(174+26)
4.85×174+85×26
5.(80+8)×25
6.80×25+8×25
7. 32×(200+3)8.32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。

下面大家一起来计算。

第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。

大家抓紧时间做,比一比看哪几个组的同学算得快。

“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。

而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。

从下面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课
1.教学例7
(1)教师出示例题:计算9×37+9×63。

教师:这道题是要计算两上乘积的和。

“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。


“联系下面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。

)“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。

再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。


教师:从下面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。

现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。

教师肯定学生的回答后。

板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“下面计算中的第二步根据是什么?”(乘法分配律)。

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

三、课堂练习
做练习十四的题目。

1. 第3题,
2. 让学生口算。

当计算101×57和45×102时,
3. 提问:“你是怎样做的?得多少?”
2、第4题,5. 先让学生自己计算。

核对时让学生回答。

“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。

学生回答后教师把“38×?”中的“?”改为“1”。

“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

3、第7题,7. 先让学生独立做,8. 然后集体核对,9. 核对的要让学生说一说是怎样做的。

当核对“26×3”时,10. 学生说出计算方法后,11. 再让学生说一说计算过程。

学生发言后,12. 教师说明:26乘以3可以写作(20+6)×3,13. 根据乘法分配律等于20乘以3的积再加6乘以3的积,14. 这实际上是应用了乘法分配律。

这就是说,15. 我们过去学过的乘法口算有些应用了乘法分配律。

这道题中的第7小题应用乘法结合律比较简便,16. 第
4、6、8、9题应用乘法分配律比较简便。

4、第9题和第10题,18. 先让学生独立做,19. 核对时要让学生说出每个算式的意义。

5.提前做完的学生可以做第l9*题。

当学生想出一种算法后,还要引导学生想一想其它的做法。

这道题的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。

四、作业
练习十四的第5、6、8题。

乘法分配律的应用篇7
教学内容:教科书第64页例7,练习十四的第3一10题。

相关文档
最新文档