建模竞赛一等奖高校硕士研究生招生指标分配问题
数学建模国赛奖项设置
数学建模国赛奖项设置一、数学建模国赛简介全国数学建模竞赛(以下简称为数学建模国赛)是我国面向高校大学生的一项重要数学竞赛活动。
该竞赛旨在培养大学生的创新意识、团队协作精神和实际问题解决能力,已经成为全国高校数学教育的重要组成部分。
二、奖项设置及等级数学建模国赛奖项设置分为以下几个等级:1.全国一等奖:获奖比例约为5%;2.全国二等奖:获奖比例约为10%;3.全国三等奖:获奖比例约为15%;4.各省一等奖、二等奖、三等奖:获奖比例分别为各省参赛队伍的1%、2%和3%。
此外,各赛区还会设立优秀奖、组织奖等奖项。
三、获奖比例与奖金设置全国一等奖、二等奖、三等奖的获奖队伍将获得相应的奖金奖励,具体金额会因赛事年度和赛区不同而有所调整。
各省奖项的奖金设置同理。
四、参赛对象与组别划分数学建模国赛参赛对象为全国高校在校本科生、研究生。
竞赛分为两个组别:本科组和高职高专组。
每个参赛队伍由三名选手组成,选手可以跨专业、跨年级、跨学校组合。
五、竞赛流程与时间安排数学建模国赛通常分为预赛和决赛两个阶段。
预赛阶段,参赛队伍需在规定时间内完成一篇论文,论述自己对给定问题的建模分析和解决方案。
决赛阶段,参赛队伍需根据组委会提供的题目,在规定时间内完成论文。
六、如何提高获奖几率1.积累基础知识:熟练掌握数学、编程、统计等基本技能;2.注重团队协作:明确分工,保持良好的沟通与协作;3.培养创新意识:多参加课外学术活动,锻炼自己的创新思维;4.参加模拟竞赛:提前熟悉竞赛流程,提高应对能力;5.注重时间管理:合理规划比赛时间,保证论文质量。
通过以上措施,相信大家在数学建模国赛中取得优异成绩的可能性会大大提高。
数学建模阅卷分配问题
SJ
k 1 nj
jk ijk
x zi A j (i 1,2, ,19; j 1,2, ,19)
4)每个评委评判某个学校的B题卷数目不能超过该校B题卷 数的总量,不评B题卷的评委评阅该校B题卷的数目为0,即:
(1 SJ
k 1
jk
) xijk (1 z i ) B j (i 1,2, ,19; j 1,2, ,19)
1707
B
1708
B
1709
B
1710
A
1801
B
1802
B
1803
B
1804
B
1805
A
1806
A
1807
B
1808
B
1901
A
1902
B
1903
A
-
-
-
-
-
-
-
-
-
-
数学建模竞赛评卷中的试卷分配问题
现有来自19所学校的19名评委(每校一名)评阅试卷,同 时要求: 1)每份试卷经四位评委评阅; 2)每位评委只能一道题,且来自01,04,06,12,16学校 的评委要求评A题,来自02,05,07,10学校的评委要求评B 题; 3)为了使每位评委的工作量尽可能的平均,要求每个评委 评阅的试卷数在40-45份; 4)每名评委尽可能回避本校答卷,并且每个评委评阅的答 卷尽可能广泛。 根据上述已知条件以及要求,寻找最佳的评卷分配方案。
19
7)来自01,04,06,12,16学校的评委评A题,来自02, 05,07,10学校的评委评B题,即 zi 1 (i 1,4,6,12,16); zi 0 (i 2,5,7,10)
数学建模国赛奖项设置比例
数学建模国赛奖项设置比例会根据具体的比赛规模和参赛队伍数量而有所不同。
以下是一种常见的数学建模国赛奖项设置比例,供参考:
1. 一等奖:占参赛队伍总数的2%-5%左右。
-一等奖通常颁发给在解题过程中展示出杰出创新能力、高质量论文和准确解决问题的少数优秀队伍。
2. 二等奖:占参赛队伍总数的10%-15%左右。
-二等奖颁发给在解题过程中表现出较高水平、论文内容完整且解决问题的能力较强的队伍。
3. 三等奖:占参赛队伍总数的20%-30%左右。
-三等奖通常颁发给在解题过程中表现出良好水平、论文内容基本完整并初步解决问题的队伍。
4. 优秀奖/鼓励奖:根据参赛队伍总数和实际情况进行设置。
-优秀奖/鼓励奖可以根据需要设立,用于表彰那些在解题过程中表现出一定水平、展示出潜力和努力的队伍。
值得注意的是,具体的奖项设置比例可能会因不同赛事、主办方的规定和考量而有所调整。
此外,对于一些特殊奖项,例如最佳
创新奖、最佳团队合作奖等,可以根据比赛的目标和主题进行额外设立。
最重要的是,数学建模国赛奖项的设置应该公正、公平,并鼓励参赛队伍在解题过程中充分发挥创造力和团队合作精神,展现出优秀的数学建模能力。
研究生招生名额分配方案
研究生招生名额分配方案
为了确保研究生招生的质量和公平性,我们需要制定一个合理的招生名额分配方案。
以下是一个可能的方案,供您参考:
一、基本原则
1. 公平性:确保每个符合条件的申请者都有平等的机会申请研究生招生名额。
2. 质量优先:在符合基本申请条件的前提下,优先考虑具有优秀学术成绩、科研能力、创新精神和良好综合素质的申请者。
3. 区域平衡:在名额分配上应考虑各地区的经济发展水平和教育资源分布情况,以确保不同地区的申请者都有公平的竞争机会。
二、名额分配
1. 根据各高校的学科优势和师资力量,按照一定的比例将招生名额分配给各高校。
2. 考虑各地区的教育资源和发展水平,适当调整各地区的招生名额比例。
3. 对于一些特殊学科或领域,可以设置单独的名额,以吸引更多的人才。
三、选拔方式
1. 申请者需通过初试和复试两个环节的考核,考核内容包括专业知识、综合素质、英语能力等。
2. 对于特别优秀的申请者,可以通过保送或破格录取的方式直
接进入复试环节。
3. 设立面试环节,以便更好地了解申请者的综合素质和适应能力。
四、监督机制
1. 建立健全监督机制,确保招生名额分配方案的公平、公正和透明。
2. 对于违规行为或疑似作弊行为,应进行调查和处理,以维护招生的公平性和声誉。
3. 定期对招生名额分配方案进行评估和调整,以适应社会和经济发展的变化。
以上是一个研究生招生名额分配方案的大致框架,具体实施时需要根据实际情况进行调整和完善。
希望对您有所帮助。
第23章 高校硕士研究生指标分配问题
高等学校研究生招生指标分配问题,对研究生的培养质量、 学科建设和科研成果的取得有直接影响。特别是2011年研究生 招生改革方案中,将硕士研究生招生指标划分为学术型和专业 型两类。这一改革方案的实施,给研究生教育的发展带来发展 机遇的同时,也给研究生招生指标分配的优化配置提出了新的 思考。 附件的数据是某高校2007-2011年硕士研究生招生实际情况。 研究生招生指标分配主要根据指导教师的数量以及教师岗位进 行分配。其中教师岗位分为七个岗位等级(一级岗位为教师的 最高级,七级岗为具备硕士招生资格的最低级)。另外数据表 还列出了各位教师的学科方向, 2007-2011 年的招生数,科研 经费,发表中、英文论文数,专利数,获奖数,获得校、省优 秀论文奖数量等信息。
(4)掌握MATLAB常用残差检验等功能。
第二十三章
Matlab数学建模案例分析
本文针对高校硕士研究生指标分配问题,采用聚类分析、相关分析、 回归分析等方法,建立了系统聚类模型、多元线性回归方程模型,采用 最小二乘估计算法计算得到了各个导师研究生指标的分配名额,并对 2012年得招生指标进行了预分配,结果较准确。 问题一中,要求将部分导师所缺失的数据补充完整。首先,采用聚类 分析的方法,建立两种模型。第一种模型,将缺失数据的导师在其相同 学科间进行系统聚类,建立聚类模型;第二种模型,将缺失数据的导师 的各项指标与所有的导师的各项指标进行聚类,建立聚类模型。然后, 对两种聚类模型均采用最小欧氏距离平方的方法进行求解。最后,得出 每位缺失数据导师的完整信息,十位导师的岗位级别依次为:四级岗、 七级岗、七级岗、七级岗、四级岗、三级岗、七级岗、六级岗、四级岗 、七级岗。 问题二中,要求以岗位级别为指标,分析每个岗位的招生人数、科研 经费、发表中英文论文数、申请专利数、获奖数、获得优秀论文数量的 统计规律,并给出合理的解释。首先,作出招生人数、科研经费、发表 中英文论文数等指标数据关于各个岗位的直方图,分析其分布情况。然 后,运用相关性分析,对硕士招生总人数与各指标进行相关性分析,得 出硕士招生人数与申请专利数、获奖数等质变具有较强的相关性的结论 。
高校数学建模竞赛模型评价指标权重确定分析
高校数学建模竞赛模型评价指标权重确定分析随着现代社会对数据分析和决策能力的要求日益增加,高校数学建模竞赛正逐渐成为培养学生创新思维和解决实际问题能力的重要途径。
在高校数学建模竞赛中,模型评价指标的权重确定是确保评价结果准确可靠的关键步骤。
在本文中,将对高校数学建模竞赛模型评价指标权重确定的分析方法进行探讨。
一、确定评价指标在进行模型评价指标权重确定之前,首先需要确定评价指标。
评价指标的选择应充分考虑到模型的特点和应用领域,同时需要具备客观性、权威性和可操作性。
常见的评价指标包括模型的准确度、稳定性、鲁棒性、适应性等。
通过对问题的分析和对模型的理解,结合实际需求,选择合适的评价指标。
二、层次分析法确定权重层次分析法是一种常用的确定评价指标权重的方法。
该方法将评价指标的层次结构划分为若干层次,通过专家评价和层次结构的比较,确定各层次之间的权重关系,从而得到最终的权重分配。
1. 建立层次结构首先,建立评价指标的层次结构。
以模型的准确度、稳定性、鲁棒性、适应性为评价指标,可以将其划分为一级层次。
在一级层次下,可以再划分为二级层次,如模型的数学基础、数据质量、算法选择等。
不同的问题可能有不同的层次划分,根据实际情况进行调整。
2. 两两比较接下来,对于同一层次下的评价指标进行两两比较,得到它们之间的相对重要性。
以准确度和稳定性为例,可以构建一个判断矩阵,由专家根据其专业知识和经验,填写各个评价指标之间的重要程度。
3. 计算权重通过计算判断矩阵的最大特征值和对应的特征向量,可以得到各个评价指标之间的权重。
最大特征值表示相对重要性的大小,特征向量表示每个指标对应的权重值。
通过对所有层次的两两比较和计算,可以得到最终的权重分配结果。
三、灰色关联度法确定权重灰色关联度法是另一种确定评价指标权重的常用方法。
该方法基于灰色数学理论,通过构建评价矩阵,计算各个指标之间的关联度,从而确定权重值。
1. 构建评价矩阵首先,构建评价矩阵,其中每一行表示一个评价指标,每一列表示一个模型样本。
硕士点 奖金分配方案
硕士点奖金分配方案一、前言随着社会的不断发展,硕士点的重要性日益凸显。
硕士点是研究生教育和培养创新人才的重要环节,为了更好地激励硕士研究生的发展,合理的奖金分配方案显得尤为重要。
本文将就硕士点奖金的分配方案进行系统的讨论,以期为相关工作提供参考和指导。
二、奖金来源硕士点的奖金来源主要包括以下几个方面:教育部门直接拨款、企业赞助和校内奖学金基金。
教育部门直接拨款是最为重要的奖金来源,它的使用和分配应当受到相应的政策法规的约束。
而企业赞助和校内奖学金基金则相对自由度较大,可以根据具体情况进行分配。
三、奖金分配方案1. 基本原则(1)公平公正原则。
奖金分配应当遵循公平公正的原则,不偏袒任何一方,确保每一个硕士研究生都能在奖金分配中受到公平对待。
(2)奖励重点突出原则。
对于在学业、科研、社会实践等方面表现突出的硕士研究生,应当给予相应的奖励,倡导勤奋好学的价值观。
(3)激励创新原则。
奖金分配要注重激励硕士研究生在学术研究、科技创新等方面的表现,以促进其积极性和创造性。
2. 分配对象硕士点的奖金分配对象主要包括硕士研究生本人、硕士生导师、科研团队和学校相关支持部门。
这些对象在硕士点的教育和科研过程中发挥着重要的作用,应当在奖金分配中得到相应的认可和激励。
3. 分配比例(1)硕士研究生本人。
针对硕士研究生个人的表现,包括学业成绩、科研成果、社会实践等方面,采取绩效考核、竞赛评选等方式进行评定,然后按照一定的比例进行奖金分配。
(2)硕士生导师。
导师在硕士研究生的指导培养过程中付出了大量的心血,应当得到相应的奖励和认可。
导师的奖金比例可以根据学术水平、科研成果、对学生的指导等多方面因素进行综合评定。
(3)科研团队和学校支持部门。
科研团队和学校相关支持部门在硕士点的科研和教学环节中也发挥了重要作用,应当按照实际贡献进行相应的奖金分配。
四、实施和监管奖金分配方案的实施和监管非常关键,应当建立健全的管理机制。
应当明确奖金的发放程序和要求,建立奖金分配的公示和申诉机制,提高奖金分配的透明度和公开性。
研究生指标分配
研究生指标分配随着社会的发展,研究生教育在我国的地位日益重要。
为了保证研究生教育的质量和有效性,各个高校和学科都制定了一套研究生指标分配方案。
本文将介绍研究生指标分配的相关内容,包括指标的种类、分配的原则和方法等。
一、研究生指标的种类研究生指标分配是根据学校或学科的需求和特点来确定的。
一般来说,研究生指标可以分为以下几类:1. 招生指标:即每年用于招生的名额。
招生指标是根据学校或学科的发展需求来确定的,包括硕士研究生和博士研究生的招生名额。
2. 奖学金指标:即用于奖励优秀研究生的名额。
奖学金指标是根据研究生的学术表现、科研成果和社会贡献等综合因素来确定的。
3. 项目指标:即用于特定研究项目的名额。
项目指标是根据学校或学科的科研项目需求来确定的,主要用于支持科研工作和培养优秀研究生。
4. 资助指标:即用于资助研究生的名额。
资助指标是根据学校或学科的经济实力和社会资源来确定的,主要用于支持研究生的学习和生活费用。
二、研究生指标分配的原则研究生指标分配是一个复杂的过程,需要考虑多种因素和利益关系。
一般来说,研究生指标分配应遵循以下原则:1. 公平公正原则:研究生指标应按照一定的程序和标准进行分配,确保每个申请者都有平等的机会。
2. 优质优先原则:研究生指标应优先分配给具有优秀学术表现和科研潜力的申请者。
3. 需求导向原则:研究生指标应根据学校或学科的发展需求来确定,保证研究生教育的质量和效益。
4. 综合考量原则:研究生指标分配应综合考虑申请者的学术成绩、科研能力、综合素质和培养需求等因素。
三、研究生指标分配的方法研究生指标分配是一个综合性的工作,需要根据具体情况制定相应的分配方法。
一般来说,研究生指标分配可以采取以下几种方法:1. 定额分配法:按照学校或学科的需求和计划,将研究生指标按照一定的比例分配给各个专业或研究方向。
2. 竞争选拔法:通过考试、面试、论文评审等方式对申请者进行综合评价,选拔出符合条件的研究生。
高校硕士研究生招生指标分配问题
⾼校硕⼠研究⽣招⽣指标分配问题⾼校硕⼠研究⽣招⽣指标分配问题摘要针对问题⼀,为避免不同学科对岗位等级的影响,仅在同类学科中进⾏判断。
⾸先利⽤相关分析选出显著性指标,然后进⾏线性回归预测,考虑四舍五⼊存在风险,因此接着利⽤Fisher判别法,以岗位级别的质⼼为分组基础,对模型进⾏修正,得到岗位级别判别模型。
最后运⽤⽅差分析检验模型的合理性。
结果如下:考虑岗级存在不公平因素。
(2)科研经费、每⼈论⽂数、专利数、获奖数、优秀论⽂数五个指标可以参与考虑指标分配;针对问题三,建⽴类型能⼒参数函数,将导师分成学术型,专业型,全才型三类,从⽽引出导师的类型能⼒得分利⽤熵权法与岗位级别能⼒得分综合考虑,求出各导师的综合得分,据此进⾏导师⼈数的初分配,因为初分配中⼈数为⼩数及⼈员存在漏分现象,采⽤“取整⼀次修正,0-1规划⼆次修正”的⽅法,最终得到导师的⼈数分配表。
根据导师的三种类型能⼒⽐重,求得2012年校⽅应招收学术型研究⽣316⼈,专业型研究⽣328⼈,可达到最优教学效果。
针对问题四,通过对问题三模型的改进,在问题四中引⼊了学科参量,由学科不同特点,构建学科评估体系对学科能⼒⼤⼩进⾏排名。
结合学科能⼒与问题⼆中得出的结论,得到各导师的招收⼈数调整系数,最终得出调整系数及调整⼈员表。
针对问题五考虑各个专业的需求情况、国家的发展计划,并将指标量化,利⽤BP神经⽹络进⾏训练,得到各导师指标分配数与指标的神经模型。
关键词:判别分析能⼒函数Jefferson模型0-1规划模型灰⾊预测熵权法调整系数⼀问题重述1.1问题背景⾼等学校研究⽣招⽣指标分配问题,对研究⽣的培养质量、学科建设和科研成果的取得有直接影响。
特别是2011年研究⽣招⽣改⾰⽅案中,将硕⼠研究⽣招⽣指标划分为:学术型和专业型。
这既给研究⽣教育带来发展机遇的同时,也给研究⽣招⽣指标的优化配置提出了新的思考。
已知某⾼校2007-2011年硕⼠研究⽣招⽣实际情况。
全国建模竞赛一等奖 高校硕士研究生招生指标分配问题
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 夏旭东2. 刘小均3. 陈卓指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):高校硕士研究生招生指标分配问题摘要在研究生教育规模化趋势下,各高校对研究生的指标分配也呈现出多元化,高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
作为全日制硕士研究生招生工作的首要环节,招生指标分配的合理性和科学性对我国教育制度的完善具有重要意义。
本文基于统计中的相关分析理论,针对学科情况、科研情况、国家政策等因素对招生指标分配方案进行了调整,希望为研究生指标分配提供科学的参考依据。
针对问题一,主要是缺失数据的补充,利用已知数据选取合理的方法,建立理想的数学模型。
根据对数据的细致分析,选择了距离判别分析法,建立模型将级别的相关关系,本文通过Excel作图,直观地反映了招生人数和科研经费等各因素在不同年份的数值与岗位级别之间的关系,得出申请专利数和获奖数与岗位级别相关性较小,其余因素与岗位级别有较大相关性。
高校硕士研究生招生指标分配问题
高校硕士研究生招生指标分配问题摘要高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
特别是2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
针对问题一,从附件所给数据可得,2007-2011年岗位等级数据出现缺失,针对这一问题,我们从两个方面进行考虑,一是针对每一种学科内部,基于已知的岗位等级样本对缺失的样本数据进行判别分析;二是在不考虑学科分类的情况下基于所有已知的样本数据,对未知数据进行判别分析,并根据实际情况,从两种结果选取最佳分类方案。
针对问题二,当以岗位级别为指标时,我们考虑把七个岗位级别看作是相互独立的,基于每一个岗位级别内部的招生人数、科研经费、发表中英文论文数、申请专利数、获奖数以及获得优秀论文数量可能会出现一定的相关性,所以我们考虑运用主成分分析的方法进行变量降维,找出每一个岗位级别侧重于的综合指标的信息贡献率,获得其统计规律。
针对问题三,利用第二问结果,并假设各学科之间没有差异。
我们用虚拟变量表示学术型和专业型,并将其作为被解释变量,将第二问得出的主成分因素作为解释变量,运用Eviews软件,建立二元选择模型进行分析。
针对问题四,1 问题背景与提出据统计,显示自高校扩招以来, 我国研究生教育发展很快,选择考取硕士研究生的比率在不断提高,与此同时国家发展改革委办公厅也在2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
随着研究生人数的急速膨胀, 将不可避免地影响甚至强烈冲击传统的研究生教育管理体制和教育培养方法。
各研究生培养单位应该也主动适应这种情况的变化, 研究并调整有关的管理体制及与其相配套的培养方法,这使得对研究生招生指标分配进行优化配置势在必行。
每年研究生指标的分配
每年研究生指标的分配
每年研究生指标的分配是一个重要的问题,尤其是在当前高校扩招的背景下。
研究生是高等教育的重要组成部分,对于科研和人才培养有着重要的作用。
因此,如何合理地分配研究生指标,成为了高校和政府需要思考和解决的问题。
研究生指标的分配应该根据有关部门的规定和原则进行。
首先要考虑到国家和地方的需求,根据不同专业和行业的发展需求来确定研究生招生计划。
其次,要充分发挥高校的自主权,根据学科建设和人才培养的需要,制定本校的研究生招生计划。
最后,要考虑到教学和科研资源的平衡和合理利用,避免出现资源浪费和重复建设的情况。
在研究生指标的分配中,应该注重质量和效益。
不能仅仅以数量为目标,而应该注重培养出高素质的研究生。
同时,要注重研究生的就业和社会需求,培养出符合社会需求的高水平人才。
总之,研究生指标的分配需要考虑多方面的因素,从国家需求、高校自主权、资源利用、质量效益等多个角度出发,制定合理的研究生招生计划,为研究生的培养和发展提供有力保障。
- 1 -。
全国建模竞赛一等奖 高校硕士研究生招生指标分配问题
x
X
2
,当x使得
1-2
T
1x
K
(8)
定义判别函数
W
x
1
2
T
1x
K
x
1 2
1
2
T
1
1
2
(9)
则判别规则可改写成
4
x x
X1 X2
,当x使得W ,当x使得W
x x
0 0
(10)
高校硕士研究生招生指标分配问题
第十八组 张飞鹏 张振宇 王华彬 摘要
高等学校研究生招生指标的分配问题,对研究生的培养质量、学科建设和研究成果 的取得由很大影响,本文主要针对高校硕士研究生招生指标分配的问题运用数学建模的 方法进行研究,并得到了一系列的研究结论。
对于问题一,考虑到教师数量和教师岗位主要决定指标分配,同时不同学科之间的 岗位等级划分对指标的决定程度不同,我们将所缺少的十个岗位数据对应到所在的学科, 利用 Fisher 判别分析的方法得到了缺少的的统计数据依次为 6、7、7、4、3、2、6、5、 7 等,并通过得到的对应关系去检验已知岗位等级的准确率,依次为 92.1%、92.1%、100%、 80%、100%、94.1%、93.8%、84.7%、84.7%。
学院数学建模竞赛培训名额分配办法
****学院数学建模竞赛培训名额分配办法数学建模竞赛是一项在全国影响巨大的竞赛活动,自我校从1993年第一次参加全国数模竞赛以来,取得了优秀的成绩,为我校赢得了荣誉。
为了在2012年的全国数模竞赛中取得好成绩,现希望从各学院中遴选优秀学生参加培训,遴选标准为学生的知识结构和学院过去取得的竞赛成绩,知识结构要求是学生的高等数学+线性代数+大学物理+计算机类成绩在学院前20位。
主要推荐对象为2010级学生,也欢迎2009级学生参加,但需要保证培训和竞赛时间。
为了不遗漏对数学建模具有浓厚兴趣的学生,每个学院再另外增加一定数量的不限成绩名额。
具体分配名额如下:学院名额学院名额电气与电子工程学院18+3 食品科学与工程学院8+3机械工程学院12+3 生物与制药工程学院8+3土木工程与建筑学院12+3 化学与环境工程学院8+3经济与管理学院12+3 动物科学与营养工程学院8+3说明:1、18+3表示推荐18名成绩限制类学生和3名不限成绩学生。
各学院将推荐表汇总后交给,具体的工作计划(时间、地点、培训内容等)另行通知。
2、希望各学院能够把最优秀的学生推荐上来,以免影响下一年度的推荐名额。
3、2012年数模竞赛培训活动一般按照如下过程进行:第一阶段,利用星期六和星期天时间对学生集中培训8次,时间从4月下旬到5月底。
培训内容包括扩展学生基础知识、使用数学与统计软件、熟悉常用算法以及赛题讲解等。
第二阶段,举办武汉工业学院数模竞赛,选拔优秀学生代表我校参加全国数模竞赛。
第三阶段,对遴选出来的学生安排专门指导教师进行一对一强化培训,时间从6月中旬到8月底。
第四阶段,9月7日-10日参加全国数模竞赛。
数学建模竞赛培训推荐表所在学院学生姓名学生学号联系电话QQ。
质量视野下高校硕士研究生招生计划分配模型构建
质量视野下高校硕士研究生招生计划分配模型构建单位即各个高校,各高等院校再按照本校的基本情况综合权衡以后分配到各个二级学院,各学院再按照学校要求下达到各学位点和导师。
高校在分配给各学院招生计划过程中尚存在以下问题: 1.计划分配的科学依据不足。
部分高校的招生计划分配通常是根据各学院上一年的招生计划数,结合上级主管部门给高校当年的计划增量,凭经验分配给各学院。
这种分配模式缺乏科学、合理的判断依据,没有充分考虑学校发展规划、各学院的培养条件及培养质量等问题,容易导致基数多的学院“占便宜”以及各学院间为争基数而博弈,从而损害考生和招生单位的利益,有失招生公允。
2.计划分配与学校发展规划脱节。
部分高校在为各招生专业进行名额分配时依据往年的招生情况,对于一些生源充分的专业,则追加招生名额;对于一些生源不足的专业,则减少招生计划。
这种分配模式完全忽视了学院的教学条件、导师规模和学科发展规划,使得学科重要性与研究生招生资源配置明显失衡,容易导致研究生培养质量下降问题。
3.计划分配与社会需求脱节。
部分高校在计划分配过程中,对于国家政策、就业质量等问题有所忽视,造成招生的热门专业变成就业的冷门专业,社会需求与研究生人才培养形成明显脱节。
研究表明:当前对研究生招生计划编制的研究尚停留在经验介绍层面,对计划编制目前仍未有一个系统的解决思路和实施方法。
部分学者提出采用层次分析、打分方法进行招生计划编制,对招生计划编制摆脱经验依赖性,实现计划编制的量化起到一定的推动作用,但仍存在一定的操作难度,难以起到示范和推广作用。
因此,有必要建立一个明确的招生计划编制模型,为高校研究生招生计划的合理制定提供一定的理论指导,为领导的决策应对提供可靠依据和智力支持,同时也真正体现招生计划编制作为促进学科发展、提供人才培养质量的核心调节手段的作用。
二、高校硕士研究生招生计划分配原则研究生招生计划分配最根本的原则是在各种相关政策规定范围内,解决研究生人数相对缺乏和各学院研究生需求之间的矛盾,协调研究生在各学院及学科专业之间的分配,实现研究生和各学院教育资源的优化配置,实现研究生、学科、学校三者和谐发展的目标。
(完整word版)硕士研究生招生指标分配
硕士研究生招生指标分配摘要本文针对高校硕士研究生招生指标分配问题,通过主成分分析和因子分析法,提取出主要影响因素,建立多元线性回归模型,完成了对缺失数据的补全;采用标准差法处理数据,更好的将各因素与导师岗位等级的内在联系体现,并给出合理解释;针对导师岗级、招生类型两个指标,运用层次分析法,引入打分体系,建立招生指标分配优化模型,结合多元线性回归,对2012年名额生进行预分配;考虑学科的特点与发展需求,进行差异分配,给出调整方案;为使分配方案更合理,增添新的指标数据,在上述模型的基础上进一步修正。
其中,因子分析法和线性回归法的结合应用,使得相关系数R值在0.98左右,拟合程度较高;标准差法处理数据的使用较好的反映了各个因素间的内在联系,有一定的借鉴作用;运用层次分析法将定性指标和定量指标进行了结合,减少了人为主观因素的干扰,为招生名额分配的合理性和准确性提供了科学依据。
关键字:硕士研究生招生指标分配层次分析主成分分析因子分析多元线性回归1、问题重述高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
2011年研究生招生改革中,将硕士研究生招生指标划分为学术型和专业型两类,即给研究生教育的发展带来机遇,也给研究生招生指标分配的优化配置提出新的思考。
现阶段研究生招生指标分配主要根据指导教师的数量以及教师岗位进行分配。
教师岗位等级有七个(一级岗位为最高级,七级岗为最低级)。
请根据题目提供的各位教师的学科方向,2007-2011年的招生数,科研经费,发表中、英文论文数,专利数,获奖数,获得校、省优秀论文奖数量等信息。
并参考有关文献、利用附件的数据建立数学模型,解决下列问题。
(1)对编号为18、103、110、123、150、168、274、324、335、352的教师岗位等级进行分析预测。
(2)分析岗位级别与招生人数、科研经费、发表中英文论文数、申请专利数、获奖数、获得优秀论文数量的统计规律,并给出合理解释。
全国大学生数学建模竞赛奖金设置
全国大学生数学建模竞赛奖金设置引言全国大学生数学建模竞赛是我国高校中具有重要影响力和较高参与度的学术竞赛之一。
为了激励广大大学生参与数学建模竞赛,同时提高其学术水平和创新能力,合理、公平地设置奖金是十分必要的。
本文将讨论全国大学生数学建模竞赛奖金设置的相关问题,并提出一种合理的奖金分配方案。
奖金设置的目标全国大学生数学建模竞赛奖金设置的目标是多方面的。
首先,奖金是对参赛学生的激励和肯定,可以激发学生的学习兴趣和参与热情,鼓励他们投入更多的时间和精力进行建模研究。
其次,奖金设置也是对优秀学生的一种奖励和表彰,可以提高他们的社会声誉和竞争力,为他们的未来发展提供有力支持。
此外,奖金也可以用于改善比赛组织和技术条件,提高比赛的质量和影响力。
奖金分配原则在设置全国大学生数学建模竞赛奖金时,应遵循以下原则:1. 公平公正:奖金分配应公平合理,不偏袒任何一方。
参赛学生的成绩是最重要的评判标准,优秀的成绩应能得到应有的奖励。
2. 激励导向:奖金设置应能提高参赛学生的积极性和主动性,激发他们的学术热情和创新能力。
因此,在设置奖金时要注意奖励与成绩之间的关系,使奖金能真正起到激励作用。
3. 稳定可持续:奖金设置应具有可持续性,能够长期为全国大学生数学建模竞赛提供稳定的奖金支持。
同时,奖金的数额应适度,不能过高或过低。
奖金分配方案基于上述原则,提出一种合理的全国大学生数学建模竞赛奖金分配方案如下:1. 一等奖:每年全国大学生数学建模竞赛共设立200个一等奖,每个一等奖奖金为2000元。
一等奖旨在表彰最优秀的竞赛团队,鼓励他们在数学建模领域的深入研究和创新。
2. 二等奖:每年设立300个二等奖,每个二等奖奖金为1500元。
二等奖旨在激励竞赛团队在数学建模领域的优秀表现和突出贡献。
3. 三等奖:每年设立500个三等奖,每个三等奖奖金为1000元。
三等奖主要奖励竞赛团队取得的较好成绩和具有一定创新性的研究成果。
4. 优秀奖:每年设立1000个优秀奖,每个优秀奖奖金为500元。
研究生指标分配方案
研究生指标分配方案研究生指标分配方案背景随着研究生教育的发展,研究生人数呈现快速增长的趋势。
为了更好地进行研究生招生和培养工作,我们需要制定一套合理的研究生指标分配方案。
目标制定一套公平、科学的研究生指标分配方案,确保研究生招生和培养工作的质量和效益。
方案概述我们将采取以下措施来进行研究生指标分配:•设立总指标: 根据学校发展战略和研究生教育需求,设立年度总的研究生招生指标。
•按学科领域划分指标: 根据学校学科特长和发展优势,将研究生指标划分为不同学科领域。
•依托导师资源: 根据学校导师资源和学科发展需求,合理利用导师的指标配额。
•考虑质量和效益: 在指标分配过程中,注重考虑研究生培养质量和效益,避免盲目增加指标。
•综合评估招生计划: 通过综合评估招生计划的合理性和可行性,确保指标分配方案的科学性和可操作性。
方案实施步骤以下是研究生指标分配方案的实施步骤:1.制定总指标: 学校招生办公室根据学校发展战略和研究生教育需求,制定年度总的研究生招生指标。
2.划分学科领域: 根据学校学科特长和发展优势,将研究生指标划分为不同学科领域,确保指标的合理性和针对性。
3.利用导师资源: 根据学校导师资源和学科发展需求,合理利用导师的指标配额,确保导师的培养工作得到充分体现。
4.考虑质量和效益: 在指标分配过程中,注重考虑研究生培养质量和效益,避免过度扩张和低水平招生。
5.综合评估招生计划: 综合评估招生计划的合理性和可行性,确保指标分配方案的科学性和可操作性。
6.定期评估调整: 定期评估指标分配方案的执行情况和效果,根据实际情况进行合理调整。
方案效果评估为了评估研究生指标分配方案的效果,我们将进行以下评估:•招生情况评估: 分析研究生招生情况,包括招生数量和招生质量等方面的评估。
•师资配套评估: 评估导师资源的利用情况,包括导师与学生的配对情况和导师的指导质量等方面的评估。
•研究生培养效果评估: 对已毕业研究生进行追踪评估,评估其就业情况和学术贡献等方面的成果。
ccpc名额分配规则
ccpc名额分配规则摘要:一、CCPC赛事简介PC背景2.赛事分类与等级二、CCPC名额分配规则概述1.名额分配原则2.各类别参赛名额分配三、具体名额分配规则1.学生名额分配a.本科生名额分配b.研究生名额分配2.教师名额分配3.特邀名额分配四、名额分配的公平性与合理性1.保障各类别参赛者的权益2.鼓励优秀选手参与五、总结1.名额分配规则对赛事的重要性2.持续优化名额分配机制,提高赛事水平正文:一、CCPC赛事简介CCPC(China Collegiate Programming Contest,中国大学生程序设计竞赛)是我国面向大学生的一项年度程序设计竞赛,旨在发现和培养优秀的计算机编程人才。
该赛事分为省级、区域级和全国级三个层次,按照难度和水平分为不同的类别。
二、CCPC名额分配规则概述CCPC的名额分配规则主要遵循公平、公正、公开的原则,以保障各类别参赛者的权益,同时鼓励全国各地的优秀选手参与。
三、具体名额分配规则1.学生名额分配a.本科生名额分配:根据各高校的报名情况,按照一定比例分配名额。
比例设置考虑到了各高校的计算机专业学生人数、往届参赛成绩等因素。
b.研究生名额分配:研究生参赛名额相对较少,主要参考各高校的研究生招生规模进行分配。
2.教师名额分配:为了保证赛事的顺利进行,每个参赛队伍可以有1-2名指导教师。
指导教师名额的分配主要参考各高校的教师数量和赛事组织情况。
3.特邀名额分配:针对往届成绩优秀的选手和高校,CCPC组委会会给予一定数量的特邀名额,以鼓励他们继续参与赛事。
四、名额分配的公平性与合理性CCPC的名额分配机制在保证公平性的同时,兼顾了赛事的竞技性和观赏性。
通过科学合理的名额分配,赛事能够吸引到全国各地的优秀选手,提高整体竞赛水平。
五、总结CCPC名额分配规则对于保障赛事的公平性、公正性和公开性具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 夏旭东2. 刘小均3. 陈卓指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):高校硕士研究生招生指标分配问题摘要在研究生教育规模化趋势下,各高校对研究生的指标分配也呈现出多元化,高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
作为全日制硕士研究生招生工作的首要环节,招生指标分配的合理性和科学性对我国教育制度的完善具有重要意义。
本文基于统计中的相关分析理论,针对学科情况、科研情况、国家政策等因素对招生指标分配方案进行了调整,希望为研究生指标分配提供科学的参考依据。
针对问题一,主要是缺失数据的补充,利用已知数据选取合理的方法,建立理想的数学模型。
根据对数据的细致分析,选择了距离判别分析法,建立模型将级别的相关关系,本文通过Excel作图,直观地反映了招生人数和科研经费等各因素在不同年份的数值与岗位级别之间的关系,得出申请专利数和获奖数与岗位级别相关性较小,其余因素与岗位级别有较大相关性。
针对问题三,首先要确定2012年硕士研究生招生总人数,根据2007-2011前五年的数据,建立灰色预测模型,预测出总人数。
通过层次分析法确立的数学模型确定各岗位级别的权重,根据权重得出相应总人数。
引入相对权重的概念,将各学科各岗位的权重确定,得到2012年招生名额分配的具体分配方案表。
针对问题四,结合各学科从2007到2011研究生指标分配名额趋势,从学科的特点和学科发展的需要出发,分析出A,E,I,J,K学科是重点建设和发展的学科,B,C,D,F,G学科属于基础保持学科,而学科H虽然指标虽增长量很大,但波动性很大,因此在2012年各学科在分配指标的权重上有所差异。
分别采取了线性拟合和时间序列不同的分析法,得出了调整方案。
针对问题五,前面的分配方案中,对研究生指标分配的因素还不够充分,仍具有一定的局限性,为使分配方案更科学、更合理。
通过招生计划的探讨,以及分配现状的分析,提出了从学校的学科特色、硕士研究生生源数量出发,提出采用基于加速遗传算法(AGA)的PP法,提取评价指标样本集的分类信息来确定各评价指标的分类权重,解决硕士研究生招生计划编制中名额分配问题,实现研究生招生计划的科学分配以及研究生资源的优化配置。
关键词:判别分析层次分析主成分分析 GM(1,1)模型一、问题重述1.1问题的背景高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
研究生指标分配是指招生单位的教育部门或有关工作人员采取适当的手段,对各院系及其学科招生人数进行合理配置、协调和控制等活动。
在招生及分配过程中,必须对招生单位培养能力、师资力量、科研水平等各影响因素总和均衡,由于主观因素发挥较大作用,因此在指标分配过程中具有很好的可操作性,显然这种方法过于片面,缺乏科学、合理的判断依据,很难保证招生指标分配和人才培养的之类的协调发展。
特别在2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
而我国在研究生招生指标分配方面至今还没有一套科学、合理的分配方法。
因此,通过根据数据建立数学模型对研究生招生指标进行分类,得出各指标之间的统计规律,并结合更多参考因素提出更加合理的分配方案,具有更加强烈的社会需求,成为各高校分配指标面临的一个实际问题。
1.2问题的提出1. 由于统计数据的缺失,第18、103、110、123、150、168、274、324、335、352位教师的数据不完整,请你用数学模型的方法将这些缺失的数据补充完整。
2. 以前的硕士研究生名额分配方案主要参考导师岗位级别进行分配。
请你以岗位级别为指标,分析每个岗位的招生人数、科研经费、发表中英文论文数、申请专利数、获奖数、获得优秀论文数量的统计规律,并给出合理的解释。
3. 根据第二问的结论,提出更加合理的研究生名额分配方案,使得新方案既兼顾到岗位又能兼顾到其他因素,例如研究生的招生类型等,并要求用此方案对2012年的名额进行预分配。
4. 如果在研究生招生指标分配当中,考虑到学科的特点和学科发展的需要,进行差异分配,请你设计调整方案,并用你的方案给出2012年的调整方案。
5. 如果想把分配方案做得更加合理,你认为还需要哪些指标数据,用什么方法可以完成你的方案?请阐述你的思想。
二、模型假设(一)模型的假设1、所有指标准确反映了该高校各个学科的真实招生能力;2、每位专家给出的评价权重是客观的;3、分配给各个学科的招生名额方案只与所计算出来的权重有关三、符号说明四、问题分析4.1问题一的分析 项指标,选取了判别分析法,通过已知样本的岗位级别判断缺失数据的样本的岗位级别,由考虑量纲,引入马氏距离。
经主成分分析降维,减少指标数量,编程求解出缺失数据。
4.2问题二的分析由于历年硕士研究生名额都是以导师岗位级别进行分配,由影响分配的有招生人数、科研经费、发表中英文论文数、申请专利数、获奖数、获得优秀论文数量等因素,因此可以通过Excel 作曲线图,分析各因素在不同年份的数值与各岗位级别之间的关系。
从而得出各岗位与各因素之间的统计规律,并结合相关统计规律的知识对得出的统计规律进行解释和分析。
4.3问题三的分析运用灰色预测理论中的(1,1)GM 模型预测出2012招生名额,而研究生招生名额分配的新方案需要既兼顾到岗位又能兼顾到其他因素,属于多因素影响的决策问题,因此可利用层次分析法建立模型,求解出各个因素对最终名额分配的权重,进而根据权重来决定招生名额分配的新方案。
通过综合权重来确定各学科各岗位的研究生分配名额。
4.4问题四的分析与问题三不同,问题四从学科的特点和学科发展的需要入手,需要进行差异分配。
因此要对前五年的各学科各岗位的数据进行分析与预测,分析出重点建设符号 定义2n Cij a CR层次总排序随机一致性比率 CI 一致性指标RI 随机一致性指标λ 判断矩阵的最大特征根n 判断矩阵的阶数ω权向量 ij P第i 各学科j 等级的教师在整个研究生名额分配中的权重 i ai 学科在研究生名额分配中的权重 ij x 第i 学科j 等级教师的人数j ωj 等级教师所占权重和发展的学科和基础保持学科,以及这几年的发展趋势。
运用线性拟合与时间序列等不同预测方法,综合给出2012年的调整方案4.5问题五的分析问题三、四中对对研究生指标分配的因素还不够充分,得出的分配方案具有一定的局限性,因此要加入了一些其他影响研究生指标分配的因素,使分配方案更科学、更合理,采用更合理的方法提高硕士研究生的生源质量,适应社会主义市场经济对各种高素质人才的需求。
五、模型的建立与求解5.1问题一5.1.1概念的引入判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行分类.准则的不同,判别方法又分为距离判别法,Fisher 判别法,Bayes 判别法和逐步判别法.距离判别分析方法是判别样品所属类别的一应用性很强的多因素决策方法,根据已掌握的、历史上每个类别的若干样本数据信息,总结出客观事物分类的规律性,建立判别准则,当遇到新的样本点,只需根据总结得出的判别公式和判别准则,就能判别该样本点所属的类别。
距离判别分析的基本思想是:样本和哪个总体的距离最近,就判它属于哪个总体。
利用已知类别的样本培训模型,为未知样本判别一种统计方法。
马氏距离是由印度学家马哈拉诺比斯提出的,表示数据的协方差距离。
它是一种有效的计算两个未知样本集的相似度的方法。
与欧式距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的,即独立于测量尺度。
设12(,,,)'m x x x x =和12(,,,)'m y y y y =从期望12(,,)m μμμμ=和方差阵()0ij m m δ⨯=>∑的总体G 抽得的两个观测值,则称x 与y 之间的马氏距离21(,)()'()d x y x y x y -==--∑样本x 和G 类之间的马氏距离定义为x 与G 类重心间的距离:21(,)()'()i i i d x G x x μμ-=--∑ 1,2,,i k =马氏距离有如下的特点:1、马氏距离不受计量单位的影响;2、马氏距离是标准化后的变量的欧式距离3、若变量之间是相互无关的,则协方差矩阵为对角矩阵多总体的距离判别法随着计算机计算能力的增强和计算机的普及,距离判别法的判别函数也在逐步改进,一种等价的距离判别为:有个K 总体,分别有均值向量μi (i=1,2,…,k)和协方差阵Σi = Σ,各总体出现的先验概率相等。
又设Y 是一个待判样品。
则与的距离为(即判别函数)21(,)()'()i i i d y G y y μμ-==--∑111'2''i i i y y y μμμ---=-+∑∑∑上式中的第一项Y ’ Σ-1Y 与i 无关,则舍去,得一个等价的函数11()2'''i i i i g Y y μμμ--=-+∑∑将上式中提-2,得11()2('0.5'')i i i i g Y y μμμ--=-+∑∑则距离判别法的判别函数为:令11()('0.5'')i i i i f Y y μμμ--=+∑∑判别规则为1()max ()l i i kf Y f x ≤≤=,则l y G ∈ 从概率论的角度看,可把判别问题归结为如下模型。